
Common Errors in High School
Novice Programming

Radaković, Davorka; and Steingartner, William

Abstract:
Identifying and classifying the commonness

of errors made by novices learning to write com-
puter programs has long been of interest to
both: researchers and educators. When teach-
ers understand the nature of these errors and
how students correct them, instruction can be
more effective. Some errors occur more fre-
quently than others. In this paper, we ex-
amine the most common programming errors
made by beginning first-year high school gifted
mathematics students in Mathematical High
School. Notwithstanding the extensive cover-
age of these error types in lectures and learning
materials, we found that these errors still oc-
cur when students write programs. Our results
suggest that students who habitually make all
common errors have lower grades, but even ex-
cellent students make logical errors in loop con-
ditions. Therefore, we advise more practice in
logical reasoning for novice programmers and
an introduction to formal semantics.

Index Terms: Computer Science Education,
C# Language, Errors, Novice Programmers,
Programming

Manuscript received April 1, 2023.
This work was supported by the project 048TUKE-

4/2022 – “Collaborative virtual reality technologies in
the educational process”, and by the project 030TUKE-
4/2023 – “Application of new principles in the education
of IT specialists in the field of formal languages and
compilers” both granted by the Cultural and Education
Grant Agency of the Slovak Ministry of Education.

Davorka Radaković (Corresponding author) is with
the Faculty of Sciences, University of Novi Sad, Serbia
(e-mail: davorkar@dmi.uns.ac.rs).
William Steingartner is with the Faculty of Electri-
cal Engineering and Informatics, Technical University
of Košice, Slovakia (e-mail: william.steingartner@
tuke.sk)

1. Introduction

IN today’s world, computer science education
is an important part of the curriculum STEM

(Science, Technology, Engineering, and Math-
ematics). Students exposed to STEM content
at an early age typically expand their interest
in STEM subjects through elementary and high
school and into the faculty level [1, 2]. Com-
puter science education offers an abundance of
new learning concepts and opportunities across
all domains. Computational thinking in educa-
tion prepares today’s students to live and work
in a fully digitized world [3].

Programming is an essential part of Com-
puter science education, but learning program-
ming is sometimes very difficult for first-year
high school students. Therefore, students pro-
duce significant errors in their code when faced
with difficulties in learning programming [4, 5].
The analysis of students’ common errors is nec-
essary for computer science professors to under-
stand students’ problems in learning program-
ming. Accordingly, a computer science profes-
sor needs to obtain expertise in the subject mat-
ter and pedagogical knowledge of teaching the
subject‘s content.

Due to the worldwide COVID-19 pandemic,
teaching in the past two years has been con-
ducted mainly in the home environment. Face-
to-face teaching in schools was substituted with
teaching online, using online platforms as new
virtual classrooms. This pandemic brought re-
markable disruption to education, as well as to
High School Education, locally and all over the
world [6, 7, 8, 9, 10, 11].

Motivated by this lack of constant face-
to-face student-teacher interaction, in [12] we
analyzed high school students’ solutions to
programming exercises in an introductory C#

47



course and identified the most common errors
made by high school students. We used data
collected during a first-year introductory course
in C# programming to determine what mis-
takes are commonly made by high school math-
ematics students in two generations. One gen-
eration attended a class before the pandemic
COVID-19 and the second generation attended
a class during the pandemic COVID-19. We
considered all the different types of errors that
led to an incorrect solution. In addition, we in-
vestigated correlations between students’ error-
related behavior and their performance in the
introductory C# programming course.

We investigate the following research ques-
tions:

• RQ1 Which are the most common errors
made by high school students?

• RQ2 Is there a significant difference be-
tween errors made in students’ tasks done
in face-to-face and online classes?

• RQ3 Is there a significant difference be-
tween errors made in students’ tasks done
in face-to-face classes before pandemic
and post pandemic?

In this paper, we extend our previous work
[12] in the following ways:

• We added one more generation to our
study, the generation that attended
classes in a face-to-face setting after
COVID-19 and been taught online for
more than two years;

• We detail the students’ programming er-
rors;

• We extended Related Work;

• We extended Results with statistical anal-
ysis.

Our work is innovative in several respects.
First, the population of the course is gifted
mathematicians in their first year of high school
mathematics. Second, there was an inconsis-
tency between the errors identified in papers by
the researchers and those errors experienced by
the high school scholars.

The paper is organized as follows: the
next section reviews related work. Section 3
describes the methodology used for detecting
common programming errors. Section 4 illus-
trates the performed analysis and the obtained
results. Lastly, Section 5 outlines the conclu-
sion and future work on the presented topic.

2. Related Works

A brief overview of the most closely related re-
search presented in this section covers the cate-
gorizations of programming errors and the tools
developed to help new programmers.

In the last few years Computer Science (CS)
education has increased interest as a new school
subject, and programming is a key part of com-
puter science and computing [13]. Learning
to program involves the acquisition of complex
new knowledge and related strategies and prag-
matic skills [14].

Ko and Myers in [15] gave the categoriza-
tions of programming errors linking the causes
of errors. Identifying and helping to correct
Java programming errors for Introductory Com-
puter Science students using the education
tool, Expresso, made for Java programming is
presented in [16]. This interactive tool gener-
ates error messages and additionally provides
instructions on how to fix the code. The main
purpose is to be used all along the beginning
process of learning programming and for stu-
dents to become more skilled with Java and
gain a better comprehension of the essential
programming concepts.

In 2005, Jackson, Cobb and Carver pre-
sented an integrated semantic and syntax er-
ror pre-processing system to help new program-
mers decipher the otherwise cryptic compiler
error messages so that they can focus more on
design issues than implementation issues used
in the United States Military Academy for an
introductory programming course [17].

In [18], the authors investigated the types
of errors students most often make when writ-
ing short fragments of Java code using the
CodeWrite exercise tool. They also investigated
how much time students spend solving the most
common syntax errors. It was found that cer-
tain types of errors are not solved faster by stu-

48



dents with higher skills. It was also found that
these errors waste a large portion of students’
time, suggesting that targeted instructional in-
terventions can significantly increase student
productivity.

The frequency of diagnostic reports in [5]
shows a relatively high occurrence of the di-
agnoses “cannot find symbol”, “’;’ expected”,
“’)’ expected”, and “Illegal start of expression”.
The results are similar to the study [17]. In a re-
cent study [4], a data-driven approach was im-
plemented to identify the most common errors
made by Chinese students in a Java-based in-
troductory programming course using data col-
lected by an automated assessment tool “Mul-
berry”. The students’ error-related behaviors
were further analyzed and their relationship to
success in introductory programming was ex-
amined. The study suggests that students’
competency in improving their code is impor-
tant to their success in introductory program-
ming. Also, in [19] authors explored the effec-
tiveness of Enhanced Programming Error Mes-
sages (EPEMs) in a Python-based introductory
programming course in the middle school using
an automated assessment tool Mulberry.

Ettles, Luxton-Reilly, and Denny analyzed
15.000 code fragments [20] created by novice
programmers that contain logic errors. They
classified the errors as algorithmic errors, mis-
interpretations of the problem, and basic mis-
understandings. They also found that misun-
derstandings are the most common source of
logic errors and lead to the most complicated
errors for students to fix.

In [21], a method for categorizing common
errors in solution codes was proposed. The au-
thors used paired source codes (false-accepted)
for these experiments. The LCS (Longest Com-
mon Sub-sequence) algorithm is influenced to
find the differences between false and accepted
codes.

With the development of the internet, there
is an increase in online learning resources. Mas-
sive Online Open Courses (MOOC) obtain suit-
able learning resources for students adjusting
the learning resources recommended to each
student according to the student’s learning style
or knowledge mastery [22]. Also, faculties de-
velop software tools which help students to

master the subject’s material as the visualiza-
tion in modern teaching is of extensive impor-
tance [23, 24, 25, 26].

Due to the COVID-19 pandemic, many
studies confirm the learning loss caused by
school closures and online learning [6, 7, 10, 22,
27, 28]. In addition to this confirmation, the
studies also propose solutions to make up for
the missed knowledge: consolidating the cur-
riculum, increasing instructional time, or im-
proving learning skills by helping teachers apply
structured pedagogy and targeted instruction.

3. Methodology

In this section, we describe the design of our
study, which aims to find out which errors
are commonly made by students in the first
year of a mathematics high school compared to
the three generations before, during, and after
COVID-19 the pandemic.

3.1 Context

We analyze the data collected during a first-
year programming course for gifted mathemati-
cians at the Mathematical Grammar School
“Jovan Jovanović Zmaj” (abbreviated: JJZ),
Novi Sad, Serbia. The school has a special-
ized curriculum which ensures that teaching in
mathematics, physics and computer science is
delivered on a highly advanced level.The stu-
dents are carefully selected through a specific
admission process, which includes a special-
ized entry exam and the assessment of previous
achievements.

The introductory course in C# program-
ming was held five school hours per week. The
main topics covered in this course were program
structure, input/output, variables and opera-
tors, conditionals and loops. In the course dur-
ing the first semester (i.e. first four months),
students created simple C# programs, working
on a variety of programming tasks.

Students were exposed to active-learning
pedagogy and tasked with interacting with their
teacher in a class. All programming tasks were
demonstrated from scratch on the computer.
Unfortunately, the classrooms have only one
computer on the teacher‘s desk. Therefore, at

49



a beginning of the school year students had at
least 5 hours block in a computer classroom
when they learned how to write a C# program,
to compile it and run it in different environ-
ments: Visual Studio, JDoodle, command line.
In this way students could test their solutions
in computer at home.

Three separate surveys were conducted,
one before the pandemic COVID-19 in the
2019/2020 school year; one during the pan-
demic in 2020/2021 and one after the pandemic
in 2022/2023.

3.2 Participants

Research results presented in the paper are
obtained from data sample of a total of 53
students: the first group (2019/2020 school
year) consisted of 18 students, the second
(2020/2021 school year) of 19 students, and
the third (2022/2023 school year) of 16 stu-
dents. Some students had completed seventh
and eighth grade at the Mathematical Gram-
mar School: 10 from the first group, 15 from
the second group (in 2018/2019 school year
there were formed 3 classes for the 7th grade)
and 8 from the third group. Thus, they had
prior knowledge of programming. Table (Table
1) shows descriptive statistics concerning the
number of students participating in our survey.

Students who completed 7th and 8th grade
in JJZ learned basics of C#. Further, some stu-
dents that participated in competitions had ex-
perience with C++, and some students learned
Python in elementary school. There was no
pre-tests for measuring students’ existing pro-
gramming knowledge.

Table 1: Participants by generation
Generation Number

of
students

7th and 8th
grade

finished in JJZ
2019/2020 18 10
2020/2021 19 15
2022/2023 16 8

The gender composition of the classes of
each generation are presented in the Table 2.
Also, this table has for each generation a num-

ber of males and females who finished 7th and
8th grade in “Jovan Jovanović Zmaj”.

Table 2: Gender composition of the classes
Gender Generation

2019/2020
Generation
2020/2021

Generation
2022/2023

M 11 8 9
F 7 11 7

7th and 8th grade finished in JJZ
M 7 6 3
F 3 9 5

The average age of the students was 15
years as students had to have by the begin-
ning of the school year at least 14 and a half
years. The most students came from various
regions of Vojvodina, the north part of Serbia,
and smaller number came from the central Ser-
bia. There is also similar school in Belgrade:
Mathematical Grammar School specialized for
students talented in mathematics, physics and
computer science.

3.3 Procedure

An important part of learning are evaluations,
mostly taken as written tests or exams. Accord-
ingly, all data collection was conducted using
the students’ written exams. Thus, the stu-
dents solved their tasks by writing on paper,
without the opportunity to compile the pro-
gram. Therefore, the students did not have the
help of the compiler to warn them of errors, as
is common in other studies [5, 15, 16, 18, 29].
In addition, all solutions were checked manu-
ally. We analyzed the number of occurrences
of the eight common type of errors.

We analyzed the solutions from the first
three written exams, i.e. data analysis was
based on 159 student solutions. The structure
of the written exams is as follows:

• The first written exam: two theoretical
tasks and three programming tasks with
the following parts:

– define variables;
– load variables;

50



– calculate some standard value e.g.
area, volume;

– control flow statements;
– print answer.

• The second written exam had five pro-
gramming tasks:

– loading variables under a condition;
– loops, nested loops;
– counting with conditions.

• The third exam had three theoretical
tasks and three programming tasks:

– loading variables under a condition;
– loops, nested loops;
– counting with conditions;
– efficient summarization; and
– finding the nth member of the se-

quence iteratively.

Figure 1: Task in the 1st exam.

Figure 2: Task in the 2nd exam.

Figure 3: Task in the 3rd exam.

The loading variables under a condition
means the loading variables inside a loop un-
der a condition while the condition is not met.
Figures 1-3 show the translation of the original
tasks in exams (written in Serbian) into English.
For each exam, there is given an example of a

task. The first exam had only one task with
logical conditions, while in other exams each
task had at least one use of logical conditions.
Also, the first exam does not cover loops and
type casting.

3.4 Categories of Programming Errors

Our review of the literature revealed that re-
searchers use a variety of methods to identify
common errors. Commonly accepted catego-
rizations of errors include:

• lexical errors (when a sequence of char-
acters that does not match the pattern
of any token),

• syntactic errors (when the rule of the lan-
guage writing techniques or syntax has
been broken),

• semantic errors (when a sentence is syn-
tactically correct but has no meaning,
e.g. wrongly typed), and

• logical errors (even if the syntax and other
factors are correct, we may not get the
desired results due to logical issues).

Furthermore, these errors can be either static
(compile-time) or dynamic (run-time) in na-
ture. However, the nature of the errors is highly
dependent on the task at hand [16].

Logical errors are the most difficult of all er-
ror types to detect since they cannot be identi-
fied by the compiler. Typically, where there are
situations where the programmer’s code com-
piles and executes successfully, but does not
produce the proposed output for all possible in-
puts [20], those situations are considered as log-
ical errors. Therefore we consider as suitable to
provide some foundations from formal seman-
tics of programming languages to high school
students because it offers them valuable tools
for critical thinking, language comprehension,
logical reasoning, and error prevention, mostly
logical errors.

4. Results

In this section, we focus on the results and ob-
servations obtained.

51



4.1 List of Common High-school Student Er-
rors

The following errors were identified in our re-
search made by both groups of students:

• The comparison operator (==) and the
assignment operator (=);

• Unbalanced:

– parentheses ‘(‘, ‘)’;
– square brackets ‘[‘, ‘]’;
– curly brackets ’{‘, ‘}’; and
– quotation marks.

• Inserting a semi-colon after the parenthe-
ses defining conditions in the if, for, fore-
ach, or while constructs.

• Separating the for-loops with commas
(‘,’) instead of semi-colons (‘;’).

• The equal sign in front of:

– the greater-than sign (or) (‘=>’)
for a greater than or equal; and

– the (or less than or equal) (‘=<’),
instead of following them.

• Improper type casting, i.e. missing of the
cast.

• Logical errors in loop conditions.

Figure 4: Example of unbalanced or missing
brackets ‘[‘, ‘]’, ‘(‘, ‘)’, ‘{‘, ‘}’.

Figure 5: Example of missing semicolon ’;’ at
the end of statement.

Figure 4 shows an example of unbalanced
or missing some of the brackets ‘[‘, ‘]’, ‘(‘, ‘)’,

Figure 6: Example of logical errors.

Figure 7: Example of incorrect syntax.

Figure 8: Example of an uninitialized variable.

‘{‘, ‘}’. Figure 5 shows missing semicolon ‘;‘ at
the end of statement. Logical errors are often
the most general errors [16] and Figure 6 shows
one of the typical ones.

Example of incorrect syntax is given in Fig-
ure 7, and Figure 8 presents uninitialized vari-
able in the for-loop.

4.2 Results and Discussion

To analyze all the obtained results, the Statis-
tica version 14.1 is used [30]. The Factorial
Analysis of Variance (ANOVA), LS Means, and
Posthoc Tukey HSD tests were used to ana-
lyze the number of errors in all three genera-
tions. The statistical significance level is set to
p < 0.05.

To answer RQ1, we show the overview of
the occurrence of errors in the all three written
exams for all tree generations in tables: Table
3, Table 4 and Table 5. From the data given in
the tables we can see that the first and the sec-
ond generation have less errors than the third
generation.

Table 3 presents details about the number
of errors of the generation 2019/2020. If we

52



compare the number of errors and number of
students which made these errors we can see
that there is much higher number of mistakes
than students which made them, e.g. 20 mis-
takes to 5 students, or some mistakes are made
only once per student. In the same manner, the
Table 4 from the generation 2020/2021, gives
the similar findings.

Table 5 has much higher occurrence of er-
rors and they are made by larger number of
students: 1st task 34 errors (17 students), 2nd
task 42 errors (23), and 3rd task 33 errors (20).

Figure 9: LS Means of number of errors by
types of errors.

Figure 9 shows that Incorrect syntax has
the biggest occurrence, and second are Logical
errors in loop conditions. Errors are numbered
in the same order as they are listed in Tables 3,
4, and 5.

Figure 10: LS Means of number of errors by
generations.

Figure 10 shows LS Means of number of er-

rors in all tree generations, with p = 0.00240. It
confirms that generations 2019 and 2020 have
similar occurrence of errors, while generation
2022 has larger number of errors. Therefore,
to answer RQ2 results show that we have simi-
lar results for face-to-face generation 2019 and
online generation 2020, but face-to-face gen-
eration 2022 has a significant difference with
both 2019 and 2020 generations. Hence, RQ3
is confirmed.

Figure 11: Univariate Tests of Significance for
Number of Errors.

Univariate Tests of Significance for Number
of Errors in Figure 11 show that factors Gener-
ation and Type of Error are statistically signifi-
cantly different from each other with p < 0.05
(Generation p = 0.002402; Type of Error p =
0.000101).

Figure 12: Tukey HSD test for Generations.

Figure 13: Tukey HSD test for Types of Errors.

The Posthoc Tukey HSD test for Genera-
tions obtained that generations 2019 and 2022
have statistically significantly different results
(p = 0.0456660), as well as generations 2020
and 2022 (p = 0.002082) (Figure 12). Also,
the Posthoc Tukey HSD test for Types of errors
(Figure 13) obtained that error incorrect syntax

53



is statistically significantly different from errors:
(==) vs (=); unbalanced or missing quotation
marks; separating the for loops with commas
instead of semi-colon and Improper type cast-
ing.

Further, the errors of unbalanced or missing
brackets, quotation marks, and missing semi-
colons at the end of statements can be caused
by sloppiness as discussed in [31]. If the stu-
dents have done these tasks on computer they
would corrected them at the most cases.

Furthermore, we found that students who
write their code neatly usually do not have un-
balanced errors. As can be seen from tables,
another common error (up to 10%) was that
conditions in the if-else statement were incor-
rect because the comparison operator was re-
placed with the assignment operator. Also, in-
serting a semicolon before an if, for, foreach,
or while block was common among 10% of the
students.

Surprisingly, the most common errors were
logical errors in loop conditions, made by 30%
of the students in the initial evaluations, even
though this type of error was consistently cov-
ered in the lectures. If we compare 1st and 2nd

exams, there is a much higher number of logi-
cal errors in the 2nd exam, but that is due to a
bigger number of tasks which have logical con-
ditions. In the 3rd exam, in which students had
more experience, the number of mistakes had
fallen off.

No significant difference was found between
students‘ errors and grades achieved between
face-to-face and online classes, in contrast to
reports in [20, 21], which noted that there
were alarming signs in core subjects such as
math and reading that students may be falling
even further behind pre-pandemic expectations
in some grades. On the other hand, students in
generation 2022/2023 had a worse grade point
average, although they had face-to-face classes,
in the previous two years they didn’t have it
constantly, and a lack of attention was noticed.
This conclusion can be also confirmed by the
average marks given in the Figure 15. Our sec-
ond hypothesis is not accepted if we observe
the first two generations.

The 3rd generation is a bit specific: they
had all classes in 1st year in face-to-face, but

two and a half years before they were online,
and that could be the main reason why the re-
sults are such different as the 1st generation.

In addition, authors in [32] presented the
average learning loss scaled by the length of
time schools were closed during the pandemic.
The main reasons that student performance
was the same before and during the pandemic
could be that classes were held online without
interruption and at the same times as face-to-
face classes and that groups were rather small,
with up to 19 students.

Finally, we have to notice that some student
had made many errors although they had a prior
programming experience.

4.3 Student Errors and Marks in the Course

Introduction to programming is usually difficult
for high school students. However, our stu-
dents are gifted and have academic achieve-
ment in math and science, which is one of the
most important predictors of their success in in-
troductory programming courses [4]. Although
the observed groups of students passed an ad-
ditional exam to be included in the gifted math-
ematics course, some students abandoned their
excellent mastery of the subjects in high school.
Consequently, the students with many errors in
their exams had pure grades (grades 1, 2, and
3). The range of grades is from 1 to 5, where 5
is highest mark. Figure 14 show that students
from generation 2022/2023 have lower marks in
all 3 written tasks, according to the high num-
ber of mistakes made in the tasks.

On the other hand, it can be seen that up
to 20% of students with very good and excel-
lent grades make logical mistakes under loop
conditions. Therefore, logical thinking should
be practiced more in class.

4.4 The Role of Formal Semantics in Teaching

Formal semantics is a way to precisely define
the meaning of programming languages using
mathematical principles. It helps to understand
how computer programs work and how they in-
teract with the computer [33]. It helps to catch
mistakes early on by analyzing the produced
code before execution, making error detection
and correction easier. When the user’s code

54



Table 3: Overview of the occurrence of errors in the written exams for generation 2019/2020
Generation 2019/2020 1st exam 2nd exam 3rd exam

Type of error
Number

of
errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

(==) vs (=) / / / / 1 1

xUnbalanced or missing
‘[‘, ‘]’,‘(‘, ‘)’, ‘{‘, ‘}’ 5 1 / / / /

Unbalanced or missing
quotation marks / / / / / /

Separating the for
loops with commas
instead of semi-colons

/ / / / / /

Missing ’;’ at the
end of statement / / / / 3 2

Improper type casting / / 1 1 / /
Incorrect syntax 20 5 3 1 14 4
Logical errors
in loop conditions / / 4 4 2 2

Figure 14: Marks distribution of each task by generations

does not behave as expected, formal semantics
provides a structured approach to understand-
ing and troubleshooting its behavior, enabling
to find and fix problems.

In our opinion, learning about formal se-
mantics is important for high school students
because it helps us write clearer, more efficient,

and reliable code. It allows to catch mistakes
early, understand and fix problems, optimize
the produced code for speed, and even create
new things. By understanding formal seman-
tics, students can become better programmers
(and IT experts) and gain a deeper understand-
ing of how programming languages work.

55



Table 4: Overview of the occurrence of errors in the written exams for generation 2020/2021
Generation 2020/2021 1st exam 2nd exam 3rd exam

Type of error
Number

of
errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

(==) vs (=) / / / / / /
Unbalanced or missing
‘[‘, ‘]’,‘(‘, ‘)’, ‘{‘, ‘}’ 2 1 / / 3 1

Unbalanced or missing
quotation marks / / / / / /

Separating the for
loops with commas
instead of semi-colons

/ / / / / /

Missing ’;’ at the
end of statement / / / / / /

Improper type casting / / 3 3 / /
Incorrect syntax 10 1 2 2 4 2
Logical errors
in loop conditions / / 3 3 / /

Table 5: Overview of the occurrence of errors in the written exams for generation 2022/2023
Generation 2022/2023 1st exam 2nd exam 3rd exam

Type of error
Number

of
errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

Number
of

errors

Number of
students

made errors

(==) vs (=) 3 3 1 1 2 1
Unbalanced or missing
‘[‘, ‘]’,‘(‘, ‘)’, ‘{‘, ‘}’ 11 3 8 4 2 1

Unbalanced or missing
quotation marks / / 2 1 0 0

Separating the for
loops with commas
instead of semi-colons

/ / 2 1 3 1

Missing ’;’ at the
end of statement 10 3 5 4 12 4

Improper type casting / / 1 1 5 5
Incorrect syntax 5 3 8 4 4 3
Logical errors
in loop conditions 5 5 15 9 5 5

56



Figure 15: Average marks of each task by gen-
eration.

Hence, building upon the previous strategy
of employing innovative teaching methods in
programming, we will gradually explore poten-
tial frameworks suitable for incorporating se-
mantic approaches into high school program-
ming education. This entails expanding the uti-
lization of formal semantics as a foundation for
teaching programming at the high school level.

5. Conclusion

In this paper, we analyzed high school students’
solutions to programming exercises in an in-
troductory C# course. We were interested in
describing students’ errors. We identified the
most common errors made by high school stu-
dents and classified them. After above pre-
sented analysis we can draw some general con-
clusions, and we hope that teachers of program-
ming courses can find it useful.

We agree with the findings in [31] that the
deficits in students’ strategic knowledge are one
of the main reasons that programming is chal-
lenging for students.

As the analysis showed the biggest occur-
rence of errors has incorrect syntax, and second
are logical errors in loop conditions. Incorrect
syntax in C# may result from many different
mistakes in code, such as failing to put strings
within quotation marks, incorrectly using oper-
ators, and so forth. The reason can be found
in the lack of student attention, or insufficient
exercise by themselves. Students who did not
do their homeworks regularly had bigger num-
ber of errors. In loops, there is a problem with
interval boundaries that is not paid enough at-

tention to, for example, whether we are talking
about one interval, or the union of two inter-
vals, when negating the required interval. If the
student had tried entering a number from the
given interval on the computer and tested how
the program behaves when entering limit val-
ues, there would not have been so many errors
in the code. Additionally, students in the sec-
ond group were also observed in their second
year, and only students with pure grades still
make logical errors in loop conditions.

Given the current state of affairs, our rec-
ommendation for an extension of programming
instruction would be to introduce a theoretical
introduction to formal semantics. This would
familiarize students with the theoretical fea-
tures of languages, which would help them to
recognize the important features at the level of
syntax and how they are related to the result-
ing semantics, thus helping them to avoid some
mistakes when writing programs [34, 35].

Our results also provide potential directions
for future studies, we could additionally con-
sider code and “algorithmic” smells to guide
students to write not only correct programs but
also appropriate and correct programs. The re-
sult of our research is relevant to teachers and
researchers who wish to advance programming
pedagogy. However to obtain more reliable con-
clusions, we are aware of the fact that it is re-
quired to repeat the research by enrolling new
generations of students and to observe their
progress in learning programming.

References

[1] H. B. Gonzalez and J. J. Kuenzi. Science, Technol-
ogy, Engineering, and Mathematics (STEM) Edu-
cation: A Primer. https://fas.org/sgp/crs/
misc/R42642.pdf, 08 2012. Accessed 1 April
2022.

[2] N. DeJarnette. America’s children: providing early
exposure to stem (science, technology, engineering
and math) Initiatives. Education, 133(1):77–84,
2012.

[3] TeachEngineering STEM Curriculum for K-
12. https://www.teachengineering.org/
curriculum/browse. Accessed 1 April 2022.

[4] Y. Qian and J. Lehman. An Investigation of High
School Students’ Errors in Introductory Program-
ming: A Data-Driven Approach. Journal of Educa-
tional Computing Research, 58(5):919–945, 2020.

[5] D. McCall and M. Kölling. A new look at novice

57



programmer errors. ACM Transactions on Compu-
tational Education, 19:1–38, 2019.

[6] M. Bakator and D. Radosav. Managing Educa-
tion in the COVID-19 era. In International Confer-
ence on Information Technology and Development
of Education — ITRO 2020, pages 134–137. Uni-
versity of Novi Sad, 10 2020.

[7] S. Pokhrel and R. Chhetri. A Literature Review
on Impact of COVID-19 Pandemic on Teaching
and Learning. Higher Education for the Future,
8(1):133–141, 2021.

[8] V. Vilić. Cyber security and privacy protection
during coronavirus pandemic. In Sinteza 2021
– International Scientific Conference on Informa-
tion Technology and Data Related Research, pages
158–164, 2021.

[9] W. Steingartner, M. Jankura, and D. Radaković.
Visualization of Formal Semantics – Possibilities of
Attracting Formal Methods in Teaching. In Sinteza
2021 – International Scientific Conference on In-
formation Technology and Data Related Research,
pages 235–239, 2021.

[10] Sabine Meinck, Julian Fraillon, and Rolf Strietholt.
The impact of the COVID-19 pandemic on educa-
tion International evidence from the Responses to
Educational Disruption Survey (REDS). 02 2022.

[11] Kathleen Godber and Denise Atkins. COVID-19
Impacts on Teaching and Learning: A Collabo-
rative Autoethnography by Two Higher Education
Lecturers. Frontiers in Education, 6, 07 2021.

[12] D. Radaković and W. Steingartner. High school
students’ common errors in programming. In Sin-
teza 2022 – International Scientific Conference
on Information Technology and Data Related Re-
search, pages 104–108, 2022.

[13] J. Waite and S. Sentance. Teaching programming
in schools: A review of approaches and strate-
gies. https://www.raspberrypi.org/app/
uploads/2021/11/Teaching-programming-
in-schools-pedagogy-review-Raspberry-Pi-
Foundation.pdf, 2021. Raspberry Pi Foundation.

[14] Anthony Robins, Janet Rountree, and Nathan
Rountree. Learning and teaching programming: A
review and discussion. Computer Science Educa-
tion, 13(2):137–172, 2003.

[15] A. J. Ko and B. A. Myers. Development and eval-
uation of a model of programming errors. In Pro-
ceedings of the 2003 IEEE Symposium on Human
Centric Computing Languages and Environments,
HCC ’03, page 7–14, USA, 2003. IEEE Computer
Society.

[16] Maria Hristova, Ananya Misra, Megan Rutter, and
Rebecca Mercuri. Identifying and correcting java
programming errors for introductory computer sci-
ence students. volume 35, pages 153–156, 01 2003.

[17] J. Jackson, Mike Cobb, and Curtis Carver. Identi-
fying top java errors for novice programmers. pages
T4C – T4C, 11 2005.

[18] Paul Denny, Andrew Luxton-Reilly, and Ewan Tem-
pero. All syntax errors are not equal. ITiCSE ’12,
page 75–80, New York, NY, USA, 2012. Associa-

tion for Computing Machinery.
[19] Zihe Zhou, Shijuan Wang, and Yizhou Qian.

Learning from errors: Exploring the effectiveness
of enhanced error messages in learning to program.
Frontiers in Psychology, 12, 2021.

[20] Andrew Ettles, Andrew Luxton-Reilly, and Paul
Denny. Common logic errors made by novice pro-
grammers. pages 83–89, 01 2018.

[21] Md Rahman, Shunsuke Kawabayashi, and Yutaka
Watanobe. Categorization of frequent errors in so-
lution codes created by novice programmers. SHS
Web of Conferences, 102:04014, 01 2021.

[22] Y. Zhang, D. Hongle, L. Zhang, and J. Zhao. Per-
sonalization exercise recommendation framework
based on knowledge concept graph. Computer
Science and Information Systems, 20(2):857–878,
2023.

[23] V. Tsimbolynets and J. Perháč. Visualization Tool
for Structural Operational Semantics of Simple Im-
perative Languages. IPSI Transactions on Internet
Research, 19(1):66–74, 2023.

[24] W. Steingartner, D. Radaković, and R. Zsiga.
Some Aspects about Visualization of Natural Se-
mantics for a Selected Domain-Specific Language.
IPSI Transactions on Internet Research, 19(1):46–
54, 2023.

[25] M. Sulír, M. Bačíková, S. Chodarev, and
J. Porubän. Visual Augmentation of Source Code
Editors. Journal of Visual Languages & Comput-
ing, 49:46–59, 2018.

[26] Marek Kvet. Complexity and Scenario Robust Ser-
vice System Design. In 2019 International Con-
ference on Information and Digital Technologies
(IDT), pages 271–274, 2019.

[27] S. G. Jaramillo. COVID-19 and primary and
secondary education: the impact of the crisis and
public policy implications for Latin America and
the Caribbean. https://www.latinamerica.
undp.org/content/rblac/en/home/library/
crisis_prevention_and_recovery/covid-
19-y-educacion-primaria-y-secundaria--
repercusiones-de-la-.html, October 2020.
Online, Accessed April 1st, 2022.

[28] Education in a Pandemic: The Disparate Im-
pacts of COVID-19 on America’s Students.
https://www2.ed.gov/about/offices/list/
ocr/docs/20210608-impacts-of-covid19.pdf,
2021. Online, Accessed April 1st, 2022.

[29] Ana Díaz and Carmen Lacave. The impact
of covid-19 in collaborative programming. under-
standing the needs of undergraduate computer sci-
ence students. Electronics, 10, 07 2021.

[30] TIBCO. Statistica® 4.1.0. https://docs.tibco.
com/products/tibco-statistica-14-1-0,
2023. Accessed: 31.8.2023.

[31] Ella Albrecht and Jens Grabowski. Sometimes it’s
just sloppiness – studying students’ programming
errors and misconceptions. In Proceedings of the
51st ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’20, page 340–345, New
York, NY, USA, 2020. Association for Computing
Machinery.

58



[32] E. Ahlgrenjoão et al. The global education
crisis – even more severe than previously es-
timated. https://blogs.worldbank.org/
education/global-education-crisis-even-
more-severe-previously-estimated, 2022.
Accessed, Accessed April 1st, 2022.

[33] David A. Schmidt. Programming language seman-
tics. In Teofilo F. Gonzalez, Jorge Diaz-Herrera,
and Allen Tucker, editors, Computing Handbook,
Third Edition: Computer Science and Software En-
gineering. CRC Press, 2014.

[34] W. Steingartner, J. Perháč, and A. Biliňski. Vi-
sualizing Tool for Graduate Course: Semantics of
Programming Languages. IPSI Transactions on In-
ternet Research, 15(2):52–58, 2019.

[35] Wolfgang Schreiner. Logic and Semantic Tech-
nologies for Computer Science Education. In In-
formatics’2019, 2019 IEEE 15th International Sci-
entific Conference on Informatics, pages 7–12,
Poprad, Slovakia, November 20–22, 2019. IEEE.

Davorka Radaković received her B.Sc. in
Mathematics in 2001, M.Sc. (former Mr,

2 years) in Informatics in 2010, and PhD
degree in Computer science in 2019 from the
University of Novi Sad (Serbia), Faculty of
Sciences. Her scientific research is focused on
the development of a platform for dynamic
geometry.

William Steingartner works as Associate Pro-
fessor of Computer Science at the Department
of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics, Techni-
cal University of Košice, Slovakia. He defended
his PhD thesis “The Rôle of Toposes in Infor-
matics” in 2008. His main fields of research
are the semantics of programming languages,
category theory, compilers, data structures and
recursion theory. He also works with type the-
ory and software engineering.

59


