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Abstract: In the past few years, automatic building 
detection in aerial images has become an 
emerging field in computer vision. Detecting the 
specific types of houses will provide information 
in urbanization, change detection, and urban 
monitoring that play increasingly important roles 
in modern city planning and natural hazard 
preparedness. In this paper, we demonstrate the 
effectiveness of detecting various types of houses 
in aerial imagery using Faster Region-based 
Convolutional Neural Network (Faster-RCNN). 
After formulating the dataset and extracting 
bounding-box information, pre-trained ResNet50 
is used to get the feature maps. The fully 
convolutional Region Proposal Network (RPN) 
first predicts the bounds and objectness score of 
objects (in this case house) from the feature 
maps. Then, the Region of Interest (RoI) pooling 
layer extracts interested regions to detect objects 
that are present in the images. To the best of our 
knowledge, this is the first attempt at detecting 
houses using Faster R-CNN that has achieved 
satisfactory results. This experiment opens a new 
path to conduct and extent the works not only for 
civil and environmental domain but also other 
applied science disciplines. 

Index Terms: RCNN, Neural Network, Deep 
Learning, Convolution, Mini batch 

1. INTRODUCTION 
In this section, we present the motivation for 

the development of an application to detect 
houses in aerial images. Subsequently, we 
discuss the prior works that have recently been 
published and explain how our proposed 
framework can be beneficial in the modern 
urbanized world. We also show the novelty of  

 
Manuscript received February 13, 2023.  

 Corresponding Author: M. Hadi Amini, moamini@fiu.edu 
Khandaker Mamun Ahmed, M. Hadi Amini and Luiz Manella 
Pereira are with the Knight Foundation School of Computing and 
Information Sciences, Florida International University (FIU), 
Miami, FL, USA; and the Sustainability, Optimization, and 
Learning for InterDependent networks laboratory (solid lab), FIU, 
Miami, FL, USA 
 Farid Ghareh Mohammadi is with the Department of Radiology, 
Center for Augmented Intelligence (CAI), Mayo Clinic, 
Jacksonville, FL, USA 
 Manuel Matus and Ioannis Zisis is with the Dept. of Civil & 
Environ. Engineering Florida International University, Miami, FL, 
USA 
Farzan Shenavarmasouleh is with the R&D Department, MediaLab 
Inc., GA, USA 

this paper, which is followed by a brief 
description of the paper’s organization. 

1.1 Motivation 

 House detection is an important problem in 
computer vision and pattern recognition which 
has gained considerable attention in the past few 
decades [1]–[3]. Due to rapid urbanization, 
detecting houses plays a salient role in modern 
city planning, urban monitoring, change 
detection, and population estimation. Moreover, 
building shape related information can provide 
valuable input in engineering and risk 
applications related to natural hazards (e.g. 
extreme wind events, flooding, etc.). Aerial 
imagery is one of the prominent data sources for 
urban monitoring because it extracts various 
information such as roads, trees, buildings, etc. 
Although aerial imagery provides valuable 
insights, extracting appropriate features from 
them is a challenging task.  
 On the other hand, in recent years, deep 
learning models, especially Convolutional Neural 
Network (CNN) based models, have become a 
popular choice among the researchers for its 
state-of-the-art success in image classification, 
object detection, and localization tasks [4]–[7]. 
Faster-RCNN is a recently proposed object 
detection algorithm that has achieved state of-
the-art results in ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) [8], [9]. In this 
work, we have utilized a faster-RCNN algorithm 
to detect buildings in aerial images. 

1.2 Literature Review  

 In this section, we first talk about the history 
the algorithm applied in this work followed by a 
brief review of the prior works.  

1.2.1 CNN and RCNN family of Algorithms:  

 Due to the rapid developments of science and 
technology (e.g., advancements in automated 
vehicles, robotic navigation, and object tracking), 
object detection has become a prominent field of 
study. The goal of object detection is to find the 
location of an object from a given image and 
mark the object in an appropriate category. 
However, object detection is a challenging task. 
The object’s orientation, location, size, and 

Towards Real-time House Detection in 
Aerial Imagery Using Faster Region-based 

Convolutional Neural Network 

46



 

altitude can vary greatly in an image, making the 
task more difficult to solve. In the human visual 
system, we not only see and identify an object, 
we can identify multiple overlapping objects in 
diverse backgrounds. Moreover, we can classify 
these different objects and identify their 
boundaries, differences, and relationship to one 
another. However, in the field of computer vision, 
CNN-based architectures are applied 
successfully to solve various detection related 
tasks such as face detection, pedestrian 
detection and vehicle detection [10]–[14]. 
 The first successful CNN architecture was 
developed by Yann Lecun in 1998 to recognize 
handwritten digits on checks [15]. In 2012, more 
than 12 years later, Alex Krizhevsky et al. 
followed his path and built the famous AlexNet 
algorithm that won the ImageNet challenge [16]. 
Since then, CNN architectures have become the 
gold standard for solving computer vision tasks 
and are now outperforming humans in some 
scenarios.  
 In 2014 Girshick et al. proposed the Regions 
with CNN features (R-CNN) algorithm for object 
detection, which is the first algorithm of the R-
CNN family of algorithms [17]. RCNN achieved 
the mean average precision (mAP) result of 
53.3% in PASCAL VOC dataset. To capture all 
possible objects’ locations from a given image, 
authors applied the selective search algorithm 
[18]. The selective search algorithm proposes 2k 
regions for an image. In Figure 1, two examples 
of selective search are given where different 
sized scales are used to capture all possible 
objects. Each proposed region is warped to a 
compatible form of 227×227 pixels and forward 
propagated through the CNN architecture to 
compute feature maps. Next, the Support Vector 
Machine (SVM) algorithm is utilized to compute 
the classification score. In the RCNN 
architecture the workflow is like: an input image 
is given to detect possible objects; the selective 
search algorithm proposes ∼2k regions which 
are forwarded to the CNN layers, and the CNN 
architecture generates feature maps to detect 
which objects are present in the image. To 
compute the region proposal and features for 
images, R-CNN requires 13 s/image on a GPU 
integrated environment and 53 s/image on a 
CPU based environment, which is a significantly 
high computation time. Therefore, to minimize 
the computation time required by RCNN, an 
improved version of RCNN named Fast-RCNN 
was proposed by the same author Ross Girshick 
[19] in 2015. 
 The Fast-RCNN model requires an input 
image and a set of object proposals for its 
computation. Initially, it processes the whole 
image with several convolutional (conv) layers 
and max-pooling layers to produce the feature 
maps. Then, a fixed�length feature vector from 
the feature map is extracted by the RoI pooling 
layer to classify objects. Fast-RCNN is 25 times 

faster than R-CNN with the test time of 2 
seconds per image. Even though Fast-RCNN 
significantly improved the processing time and 
model’s performance, the selective search was 
still the bottleneck that slowed down the overall 
process. Region proposals are dependent on the 
feature maps and reusing the feature maps to 
generate region proposals will be cost-free. 
Taking this idea into consideration, Ren et al. 
developed the faster R-CNN that exceptionally 
improved the overall model performance [8]. In 
Figure 2, we show a faster R-CNN algorithm 
where conv layers compute the feature maps 
and RPN layer extracts region proposals from 
the feature maps for classification. The faster R-
CNN algorithm can detect objects in real time 
with the computational time of 0.2 seconds per 
image. 
 Figure 3 demonstrates the performance 
comparison of the R-CNN architectures where 
we can see that faster R-CNN reduced 
processing time by 250x, whereas Fast-RCNN 
had a reduction of 25x against the base case 
processing time of x for R-CNN. Both faster and 
Fast-RCNN maintained the same mean average 
precision (mAP) score of 66.9%, where R-CNN 
architecture’s mAP score was 66.0%. 1  

1.2.2 Recent Works on House Detection:  

 Buildings are the primary source of information 
for urban planners and, many governmental and 
non-governmental agencies as they provide the 
holistic overview of a geographical area. 
However, building detection is a challenging task 
because of its complex appearance, variant 
shapes, and surroundings. In the past few years, 
researchers have proposed several building 
extraction methods and followed various 
approaches [20]–[22]. Although building 
detection methods with good performance have 
evolved significantly over the years, there are 
still many aspects that have not been considered 
and need improvements.  
 Stankov et al. [23], [24] exploited the 
multispectral information and applied a grayscale 
hit-or-miss transform (HMT) method for building 
detection. In the paper, authors transformed the 
multispectral images to grayscale images in 
order to apply grayscale HMT. Sirmacek et al. 
[25] extracted shadow information and areas of 
interest using invariant color features and utilized 
edge information building detection. In [26], Ziaei 
et al. presented a comparison between three 
object-based models for urban feature 
classification from WorldView-2 images, where 
they have shown that rule-based classification 
outperformed support vector machines (SVM), 
and nearest neighbour (NN) algorithms. Building 
extraction from Quickbird images is presented by 
Lefevre et al. [27] by using an adaptive ` binary 
HMT method. Authors also proposed a  
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1Stanford lecture notes on CNN by Fei Fei Li and Andrej 
Karpathy  
 
clustering-based approach to convert grayscale 
image to binary image and to determine 
operators parameters automatically. In [28], 
Grinias et al. presented a novel segmentation  
algorithm based on a Markov random field model 
for building and road detection. To detect 
changes of buildings from VHR imagery, Guo et 
al. [29] presented a parameter mining approach 
by introducing GIS data. For automatically 
extracting and recognizing 2- D building shape 
information, Sahar et al. [30] used vector parcel 
geometries and their attributes to simplify the 
building extraction task. Huang et al. [31] 
introduced a framework for building extraction 

from high-resolution imagery aiming to alleviate 
Morphological Building Index (MBI) algorithm’s 
limitations. Benarchid et al. [32] used shadow 
information and object-based approach to 
extract buildings where they first used object-
based classification to detect building and then 
the invariant color features to extract shadow 
information of the buildings. Based on shadow 
detection, Chen et al. [33] proposed a superpixel 
segmentation algorithm for splitting input image 
into patches, and the Level Set segmentation 
algorithms is leveraged to extract buildings for 
detection. 
 In this paper, we present a Faster RCNN 
based deep learning model that can detect 
different houses in aerial images. 

Figure 1:  Two examples of selective search showing the necessity of different scales. On the left we find many objects at different 
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv [18]. 

 
Figure 2: Faster-RCNN architecture. 

48



 

 
Figure 3:  Performance comparison of R-CNN architectures: 

R CNN, Fast-RCNN, Faster R-CNN. 1 

1.3 Contribution 

 Faster-RCNN is one of the promising 
algorithms for object detection that has also 
opened up the area of real time object detection. 
In some situations, we need to extract the 
building’s information in real time and our 
proposed method can be a good fit for such 
scenarios. It is our understanding that faster-
RCNN based house detection technique, which 
paves the way for real time detection, has not 
been considered in previous works. The main 
contributions of this paper are listed as follows: 
• House detection in aerial images leveraging 

faster R-CNN algorithm that paves the way 
for real time detection. 

• Bounding-box information extraction and 
preprocessing of the dataset to remove 
inconsistent data that may hamper the 
overall performance of the model. 

• Demonstrate the effectiveness of data 
augmentation such as random rotation, 
horizontal flip and shearing to im�prove 
performance and generalizability, and avoid 
over-fitting. 

• Demonstrate our model’s performance by 
considering average precision, loss function, 
prediction scores and image precision. 

1.4   Organization 

 The paper is organized as follows: Section II 
presents the methodology of the work including 
data pre-processing, data augmentation and the 
house detection technique. Section III represents 
experimental setup. Section IV is dedicated for 
result analysis. Finally, Section V concludes the 
paper. 

2. PROPOSED METHOD 
This section discusses data pre-processing, and 
data augmentation techniques, and the 
methodology used to detect houses. In Figure 4, 

we show the overall architecture of our proposed 
model that includes dataset generation, data 
preprocessing, data augmentation, object 
detection, and results afterwards. 

 
Figure 4: Overview of methodology adopted in this study 

 

2.1  Data pre-processing 
 In our dataset, we have aerial images and 
XML files containing the annotation information 
of the images. XML file is an extensible markup 
language file where components of the file are 
described by tags, and texts in between the start 
tag and end tag are the contents of the 
component. From the XML files, we extract the 
associated bounding-box information (for our 
case its the aerial image file, xmin, ymin, xmax, 
ymax and label) of each image. In the generated 
dataset, we observed 37 different labels / 
categories of houses where most of them are 
redundant (e.g., typo and inconsistent labels). 
For example the category of T shaped houses 
were labelled as t shape, t-shaped, t type, type t 
and t-shape which is inconsistent and it can be 
minimized to one category. After analyzing 37 
labels, we concluded that 37 different labels can 
be minimized to only 5 categories (T shaped, L 
shaped, C shaped, Rectangular shaped, and U 
shaped). Moreover, we had some anomalies in 
the extracted information such as xmin > xmax 
or ymin > ymax. In such cases, if possible, we 
exchanged min and max values without 
changing the bounding-box information of an 
object, otherwise we disregarded them due to 
incorrect bounding boxes. 

2.2 Data augmentation 
 Data augmentation is a technique to artificially 
expand the dataset size by marginally modifying 
the original data. Data augmentation helps to 
avoid overfitting and improves model’s 
performance. In images data augmentation 
technique is performed by flipping, random 
rotation, shifting, or shearing the original image. 
Deep learning is a data-hungry technique that 
yields better performance with larger dataset, 
avoids over-fitting, and improves the model’s 
generalizability. Therefore to improve model 
performance and avoid overfitting, we 
augmented our dataset using horizontal flip, 
random rotation with the angle value of 10 
degrees, shears with the value of 0.1, and 
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random rotation with randomly generated angle 
value. In Figure 5, we demonstrated the 

augmented results after applying the data 
augmentation techniques.  

 
Figure 5: Data augmentation: 5a Horizontal flip; 5b Random rotation with 10°;5c Shear with 0.1;5d Random rotation with a random 

value. 

2.3 House Detection using Faster-RCNN 
The most widely used state-of-the-art object 
detection technique of the R-CNN family is 
Faster R-CNN that was first published in 2015 
[8]. In the R-CNN family of papers, the evolution 
among versions is usually in terms of 
computational efficiency, processing time, and 
performance improvement (i.e. mAP). These 
networks usually consist of  
1.    A region proposal algorithm to generate 

“bounding boxes” or locations of possible 
objects in the image. 

2.  A feature generation stage to obtain features 
of these objects (usually using a CNN).  

3.    A classification layer to predict which class 
an object belongs to. 4) A regression layer to 
make the coordinates of the object bounding 
boxes more precise. 
 

  To generate feature maps (e.g., Figure 7), 
ResNet50 is utilized in the initial stage where the 
input image goes through a set of convolutional 
layers, pooling layers and fully connected layers. 
After generating feature maps, RPN layer which 
is a small network, takes the feature map as an 
input, slides over it, and outputs a set of 
rectangular object proposals. Nine region 
proposals (anchors) are predicted at each sliding 
window location with respect to the center 

(Figure 8) of the anchor associated with scales 
of (128 x 128, 256 x 256, 512 x 512) and aspect 
ratios of (1:1, 1:2 and 2:1) (Figure 6). A binary 
class label of being an object or not an object is 
assigned to each anchor for RPN training based 
on the Intersection-over-Union (IoU) overlap with 
the ground-truth box. An anchor is considered 
positive if it has the highest IoU with any ground 
truth box or is greater than 0.7. If the IoU is less 
than 0.3 it is labeled as negative. The anchors 
which are neither positive nor negative (greater 
than 0.3 and less than 0.7) are disregarded from 
the RPN training. The loss function of RPN is 
defined as: 

 
Figure 6: An example of generating 9 anchors from a single 

centroids with different scales and aspect ratios. 
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Figure 7: Sample feature map 

 

 
Here, i is the index of an anchor in a mini-batch 
and pi is the predicted probability of anchor i 
being an object. The ground-truth label Pi ∗ is 1 if 
the anchor is positive and is 0 if the anchor is 
negative. ti is a vector representing the 4 
parameterized coordinates of the predicted 
bounding box and ti ∗ is that of the ground-truth 
box associated with a positive anchor. The 
classification loss Lcls is log loss over two classes 
(object vs. not object). For the regression loss, 
we use Lreg(ti , ti ∗ ) = R(ti − ti ∗ ) where R is the 
robust loss function (smooth L1). The term Pi 
∗Lcls means the regression loss is activated only 
for positive anchors Pi ∗ = 1 and is disabled 
otherwise (i.e. Pi ∗ = 0). The outputs of the cls 
and reg layers consist of pi and ti respectively. 
The two terms are normalized by Ncls and Nreg 
and weighted by a balancing parameter λ. 
 For the model training, the batch size is 
defined to 16 and stochastic gradient descent 
(SGD) optimizer is applied with the learning rate 
of 0.005, momentum of 0.9 and weight decay of 
0.005. 

 
Figure 8:  Centriods of RPN. 

3. EXPERIMENTAL SETUP 
The entire experiment is carried out in Google 
Colab environment developed by Google as a 
simulation environment. The experiment 

leverages Colab environment utilizing GPU 
runtime settings using python as the 
programming language. The deep learning 
object detection classifier has been implemented 
using python version 3.7.3 and the PyTorch 
framework. 

4. EXPERIMENTAL EVALUATION 
 This section provides a brief description of the 
dataset we have used for our experiments 
followed by the performance evaluation of our 
proposed work. 

4.1 Dataset Description 
 In this experiment, we explored google earth 
images to detect houses of different shapes. In 
Figure 9, we demonstrate the process of 
creating our dataset using LabelMe [34] 
annotation tool where house objects are 
manually annotated in each image. The 
annotation tool then generates an XML file 
containing the annotated information for each 
image. (Figure 11) shows the structure of a 
sample xml file after completing the annotation 
process and in Figure 10 we show a sample 
annotated image afterwards. Finally, the 
annotation files along with the associated aerial 
image dataset are downloaded from the 
LabelMe application for carrying out the 
experiment. 

 
Figure 9: Flowchart for dataset annotation. 

 

51



 

 
Figure 10: Sample aerial image data annotated with 

bounding box information. Here, r represents rectangular 
shaped houses and l represents l shaped houses 

 
Figure 11: XML file: Annotation information of images such 

as shape, number, bounding-box information 

4.2 Experimental results 
 Object detectors performance is measured by 
average precision (AP), image precision and 
loss functions. In our experiment, we evaluated 
our methods performance by average precision, 
image precision and loss function. We defined 
different number of epochs to observe the 
model’s performance. In our observation, the 
simulation performs better with twenty epochs. In 
Figure 12, we demonstrate average precision in 
different IoU thresholds: 0.50, 0.55, 0.60, 0.65, 

0.70, 0.75. As the IoU threshold increases the 
average precision decreases naturally. 
Moreover, in Figure 13, we show the average 
image precision by comparing all IoU thresholds. 
From Figure 13, we can see that image precision 
increases moderately for 20 epochs. In Figure 
14, we show the loss function against the 
number of iterations where we observe that after 
400 iterations with twenty epochs the loss 
function is converged. The equations for 
calculating precision, average precision are 
discussed in the followings where tp = True 
positive; fp = False positive; tn = True negative; fn 
= False negative. 

 

4.2.1 Intersection over union (IoU) 
 IoU measures the overlap between 2 
boundaries. We use that to measure how much 
our predicted boundary overlaps with the ground 
truth. In our dataset, we defined various IoU 
threshold r ∈ {0.5, ..., 0.75} in classifying whether 
the prediction is a true or a false positive. 
Intersection over Union (IoU) for comparing 
similarity between the ground-truth and predicted 
shapes A, B ⊆ S ∈ Rn is attained by equation 3. 

 

4.2.2 Interpolated precision 
 The interpolated precision, pinterp, is calculated 
at each recall level, r, by taking the maximum 
precision measured for that r. The formula is 
given as such: 

 
 In our experiment an average for the 6-point 
interpolated average precision (AP) is 
calculated. And the formula to calculate the AP 
is attained by: 
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Figure 12: Average precision 

 
Figure 13: Image precision 

 
Figure 14:  Loss function. 

 

5. CONCLUSION AND FUTURE WORKS 
 House detection is a fundamental but 
challenging issue in the field of aerial and 
satellite image analysis. It provides valuable 
information in different domains including civil 
engineering, urbanization, and modern city 
planning. During the last few years, considerable 
efforts have been made to develop various 
methods for detecting houses in aerial images. 
In this paper, we present a Faster-RCNN based 
house detection method that achieved a 
satisfactory result. Our proposed method can be 
utilized in real time object/house detection 
scenarios. A wide range of ensembles of faster 
RCNN is being utilized in various contexts such 
as pedestrian detection, vehicle detection, and 
face detection. In this experiment, we have 
leveraged pretrained resnet-50 model to detect 
houses in aerial images. A performance 
comparison of various models, such as VGG19, 
SeNet, GoogleNet, MobileNetV2, DenseNet201, 
and InceptionResNetV2, is important for both 
application and academic purposes and thus 
remains an integral part of our future research. 
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