
Concept of Select Unlocking Optimization

Michal Kvet

Department of Informatics, Faculty of Management Science and Informatics

University of Žilina

Žilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract—Ensuring data integrity stored in a database requires

change encapsulation in a transaction. Transaction maintains

consistency by shifting the database from one consistent state to

another, protected by atomicity, isolation, and durability. This

paper focuses on the isolation and parallelism allowing

distributed access to the data tuple across multiple transactions.

Access to the data tuple is marked by the locks applied on the

row level. Locks can be shared expressing data retrieval process

or exclusive intended to change the values of the columns. The

general locking rule takes the lock before the operation and

releases it just after the operation or at the end of the transaction.

Oracle database, however, does not release the lock physically,

whereas the data block access would be necessary to be reloaded

during the transaction approval. Therefore, this paper aims in

optimizing the process of unlocking data before the data retrieval

process using multiple strategies.

Keywords—database transaction; unlocking; performance;

data retrieval

I. INTRODUCTION

The main benefit of the relational paradigm and relational

database processing is just the integrity, protected by

transaction management. The transaction is an inseparable part

of the data processing by shifting the database from one

consistent state to another, which applies consistency, as well.

It can consist of multiple operations inside, which are either

completely accepted or the whole transaction is rejected [1]

[2] [9].

Transactions and overall database processing are commonly

placed in a complex environment, forcing the system to

provide access to the data tuples in parallel, to optimize the

performance and limit any waiting operations. On the other

hand, whereas integrity should be ensured, no data can be lost,

no change can be hidden, or no change can be refused after

approval. To establish a parallelism option in databases,

access to the data tuple must be marked and associated with

the particular transaction, invoking the operation. For those

purposes, transaction data locks are applied [9] [14]. If the

data manipulation operation is to be executed (Insert, Update,

Delete or Select), locks are applied on the row level

granularity, while any structural change takes the whole object

lock [5]. In principle, shared and exclusive locks can be

present, depending on the operation to be applied on the row –

whether the data are only obtained for the data retrieval

process and evaluation or if there is an attempt to change to

the content of the stored data. Individual locks influence the

ability to access the tuple in parallel, as well as techniques for

building a consistent state.

Among the transaction and individual operations, it is

critical to set the proper rules for applying and releasing locks.

Before any data touches, appropriate locks must be applied [3]

[4] [6] [9]. However, what about releasing them? Either from

a logical, but also a physical point of view? Well, releasing is

not done later than at the end of the transaction. In principle, it

must take all the blocks, which were operated in the

transaction and wipe the used locks there. To do that

physically, it would require taking the processed block set and

proceed them sequentially. But there can be a significant

performance issue [1] [8] [9] [10]. Namely, blocks do not need

to be present in the memory due to the cache size demands

and overcrowding [12] [20]. It, therefore, consequences in the

necessity to load the block from the physical database storage

once again for maintaining locks. It would naturally cause

additional costs and I/O operations. In a reality, database

systems use a different approach and postpone physical lock

release to the next block access. It has, however, many

negatives. Firstly, past information about the transaction's

existence must be stored [11] [12]. Secondly, a transaction

does not release a block at once, but it depends on the access

[11] [12]. Thirdly, even after the instance restart, locks are still

present in the database, consequencing their transfer across the

exports, if they are done as a physical data file copy [15].

Fourthly, before attempting to obtain the lock on the data row,

the system must evaluate, which locks should be applied as

they reference active transactions and which ones are

dummies referring to already-ended transactions [17]. It brings

additional demands and costs. Moreover, in principle,

irrelevant data are associated and stored inside the data blocks,

aren´t they? It means that storage demands are not optimal.

However, the main disadvantage of the entire lock

management is based on transactions, which must be created

dynamically as a result of lock processing and thus of data

layer changes. Namely, when the block content is changed

(lock is released), such a request must be recorded in the

transaction logs. And thus trigger and invoke a new

transaction, even if it is only about accessing data, without the

need to change it. It requires proper categorization and

normalization [18] [22] [23].

This paper aims to provide an additional layer treating the

locks after the transaction end, without the necessity to

reevaluate the locks associated with the row level granularity

4

stored in the block, as well as the necessity to reclaim new

transactions.

This paper can be divided into three parts. The first part

deals with the existing solutions, streams, and state-of-the-art.

The second part provides the overview of the proposed

solution, supervised by the additional extensions. The third

part deals with the performance evaluation and optimization

strategies limiting the data retrieval process in database

transactions. Besides, the paper is structured into sections

as follows: Section 2 deals with the transaction definition and

ACID property aspect summary. Section 3 deals with the

transaction log structure by emphasizing UNDO and REDO

structures. They are critical in forming consistent data images

during retrieval. Section 4 emphasizes the current approach of

locking by pointing to the Shared and Exclusive locks, as well

as limiting Shared locking in the Oracle database by spreading

the wide ability of parallelism management [9] [21]. Finally,

section 5 deals with the proposed solution and its

enhancements, which are performance studies and evaluated

in section 6.

II. TRANSACTION DEFINITION, ACID

A database transaction is formed by a set of statements

encapsulated inside. It forms the core element of the database

system processing by shifting the database to a new consistent

state. The transaction is responsible for maintaining integrity

by accepting all the constraints defined for the whole database,

and table level, as well as applied for individual attributes or

data groups. A transaction can be accepted and made durable

only if all the constraints are passed, otherwise, the whole

transaction is refused and changes rolled back.

The transaction is defined by these four aspects (ACID) [7]

[8] [9] – atomicity, consistency, isolation, and durability. They

are mainly protected by transaction log files. Atomicity is

associated with the inability to process only part of the

transaction. The whole transaction is either completely

approved or rejected as a common unit. Consistency is related

to applying integrity constraints and rules, not later than

before transaction approval. If any rule violates, the whole

transaction is refused, as stated in the atomicity option.

Durability ensures the possibility of restoring the approved

transaction after a crash.

 Isolation is critical in terms of locking. Each performed

operation in the database system must be time-referenced to

the same moment. It is precise because of massive parallelism

that data can change dynamically. In the analytical

environment, the time reference is either the beginning of the

operation itself or the entire transaction. Therefore, several

situations can arise from the point of view of locking. Ideally,

from the beginning of the operation, or the transaction, no

changes on the relevant data blocks were performed, so the

read operation provided as the data image is consistent and

correct. Thus, it can be directly processed and included in the

result set. In the second case, the lock is not applied over the

record, but the data are not processed correctly in time and

thus their status is more recent, compared to the required

value. In that case, it is necessary to reconstruct the state as it

existed at the defined time. However, such a state is not stored

directly in the database, so it is necessary to access the change

vectors of the transaction and use them to obtain the state in

the past. For active transactions, this log definitely exists. If

the transaction has already been terminated, the transaction log

can be already overwritten and a Snapshot Too Old exception

[9] [13] [16] occurs and the operation is canceled. In general,

locks can be applied over the record. In that case, it is

necessary to construct the historical state regardless of locks

and active transactions on the object.

Thus, to construct any data image, relevant data blocks

must be identified, followed by building a consistent image

using transaction logs. Section 3 deals with the log structure,

UNDO and REDO logs.

III. UNDO, REDO, AND FLASHBACK DATA ARCHIVE

The key to multi-versioning and building consistent data

images is the existence of the UNDO. Each change operation

creates a change vector, which specifies the original data row

content (if exists) stored in the UNDO tablespace and content

after the operation represented by the REDO structure. UNDO

is stored in the database storage and is part of the read

consistency. Vice versa, REDO is primarily stored in the

memory for the active transactions. It aims at the durability of

the approved transactions by copying online redo log content

from the memory to the database storage not later that at the

end of the transaction [9] [10] [11] [14].

UNDO information is applicable in two circumstances –

multi-versioning support or transaction rollback. One way or

another, it primarily focuses on reverse data operations.

UNDO generation cannot be bypassed, as it protects the

database, only direct-path data loading can navigate the

processing for the physical storage by shifting the pointer to

the last associated block - High Water Mark, if the loading is

done successfully.

To protect the database and make the ability to get

consistent data images for a longer period, the archiving

process has been introduced. Transaction logs are primarily

overwritten if the transaction becomes inactive. However, for

dynamic systems with huge amounts of small transactions, it

would be infeasible to reconstruct the historical image, as

there is high pressure for the online logs and soon after the

transaction approval, particular log would be overwritten. To

prevent log loss for the UNDO reconstruction opportunity, it

is advisable to copy the content of the log into another –

archive repository. The architecture of the archiving is shown

in fig. 1.

The algorithm for the tuple state reconstruction is

summarized in the following steps:

1. Getting current data images obtained from the data

block (located in the database or memory).

• If the block is not currently in the instance

memory, a free memory block must be

identified and the relevant block loaded

into the memory from the database

storage.

5

2. Applying online UNDO data to construct historical

data images using AS-OF version query definition.

3. Applying archive UNDO data if the previous step

does not meet the time requirements referring to

the start point of the operation or the whole

transaction, based on the settings.

If any of the above steps failed, the ORA-01555 Snapshot

Too Old exception is raised.

Figure 1. Log management [9]

Thus, to construct a consistent data image, all the required

transaction log pieces must be present.

In the environment of consistent data image construction

and change management, two locks can be identified, differing

in the access method and assumed data manipulation

operation. Section 4 deals with transaction locking.

IV. LOCKING

Locks are mechanisms limiting and regulating access to

shared resources. Database systems can use various precisions

for the locking granularity, like SQL Server taking page-level

locking, resulting in the inability to perform concurrent Insert

statements, even if they are not blocking each other based on

the unique constraints (primarily expressed by the primary

key). Informix used a predefined number of locks, which

could not be exceeded, later. The value was configured before

starting the database as a static parameter. In the past, applied

table-level locking was also intended, however, it would be

impossible to access and table data in parallel. Oracle database

uses row-level locking. The finest granularity is the column

itself, however, this option would require too many locks. For

example, if the table consists of 10 attributes, by invoking the

Insert statement, at least 10 locks would be necessary to be

placed, as well as stored physically. As a consequence, the

data block would degrade to hugely manipulate the locks.

Besides, various lock strategies are discussed, pointing to

the lost updates [9], pessimistic [9] [15] and optimistic [9] [15]

locking using version column [12] or checksum [16] [19].

Based on the SQL norm, two lock types exist. A shared

lock protects the tuple from executing change on that row. It is

associated with data retrieval (Select statement). Several

Shared locks can be applied for the same row allowing

parallelism in the data access and querying. An exclusive lock

is associated with the change operations limiting the parallel

access to the data tuple. By using an Exclusive lock, only one

transaction can operate the data in any manner (change and

data retrieval). Fig. 2 shows the lock accessibility matrix.

 Shared (S) Exclusive (X)

Shared (S) Y N

Exclusive (X) N N
Figure 2. Locking type matrix

In case of changing the structure of the table, an Exclusive

table lock must be applied meaning, that other transactions on

that table are prohibited.

Oracle database does not use Shared lock, at all. The data

image is protected by the UNDO transaction data by building

a consistent image [9]. Thus, the version of the data tuple is

checked during the retrieval and if necessary, UNDO change

vectors are applied to get the state as existed at the beginning

of the operation or the whole transaction. Thanks to that, the

lock management is simplified and the parallelism options can

be wider spread.

There is, however, a huge performance issue related to the

lock release.

The performance issue is related to the lock release. After

the processing, a particular lock can be released anytime,

based on the applicable rules or business logic, but it cannot

be released later than at the end of the transaction. Data lock is

associated with the type (Exclusive (X) / Shared (S)) and

transaction reference. Thus, from the logical point of view,

releasing an object is reflected by making it available for

consecutive processing and changes. There can be a list of

transactions waiting for the object using the FIFO approach,

thus the next transaction can operate the data, generally.

The physical points and principles are, however, more

complicated to ensure the consistency and the performance of

the lock release management. Namely, to release the tuple, it

is necessary to touch the relevant database block and vacuum

the transaction lock reference. However, where is that block

located? Ideally, it is placed in the memory Buffer cache, so

the access is straightforward by identifying the block and

changing its content (lock release). It, naturally, requires

storing additional information in the transaction log, whereas

the block content is changed. The more complicated situation,

however, arises, if the particular block is not currently in the

memory. In that case, it would be necessary to obtain the

address of the row (ROWID), load the block into the memory,

release the lock physically, record the change in the

transaction log and finally, save the block physically into the

database. As evident, such physical lock release could be too

demanding requiring additional I/O operations and limiting the

performance of the system – whereas the release is protected

by the transaction UNDO and REDO structures, transaction

approval can be done only if all the data are logged, as well as

physical operations are successfully done. Therefore, database

systems postpone the physical lock release to the next usage of

the block meaning, that improper locks are still present in the

database blocks. Moreover, when attempting to access the data

tuple, it is necessary to apply the lock. Before that, however,

expired row locks must be removed from the consideration

6

bringing additional demands. The data flow diagram is shown

in fig. 3.

Figure 3. Data flow diagram

Section 5 provides a new approach to managing the data

locks.

V. PROPOSED SOLUTION

The proposed solutions discussed in this paper aim to

identify locks applied for the tuple or generally applied for any

object inside the data block. Namely, we use the block

grouping approach in this paper. Thus, if the tuple is to be

evaluated by identifying and limiting expired locks, the whole

block is reconsidered, whereas the finest processed granularity

of the memory Buffer cache is the block itself, thus the whole

block must always be fully loaded for the consideration and

evaluation.

To ensure the performance, the new structure needs to be

introduced, dealing with the transaction reference list, which

can be associated with the row tuple itself, or the block

references can be used. It is named the Lock Tracker module

and it consists of the object tuple identifier, transaction, and

applied locks. Its internal data structure can vary, depending

on the linear linked list or depending on the applied priority

rules forming B+trees. Generally, random distribution in the

dynamic array can be used, as well, however, if a massive

number of transactions is present, identifying the ended

transactions would require scanning the whole structure.

The first solution (SOL_B+pure_tuple) is associated with

the primary key or unique constraint, which identifies any data

row, any tuple stored in the table. It uses the rule of the

database, that each table of the relational database uses a

primary key for object identification. If this were not the case,

an artificial identifier would be introduced in the form of a

sequence of records or physical addresses. One way or

another, the B+tree index would be present, consisting of the

key for traversing through it. The leaf layer stores the key

value and 10-byte value addressing the position of the row in

the physical database storage layer – data file, data block, and

position of the row inside the block. Besides, in our proposed

solution, we have added there a list of locks applied for the

tuple. It takes the transaction reference list, pointing to the

transaction log definition and applied lock type. Expired locks

are marked by the boolean flag. The architecture of the

solution is shown in fig. 4. Lock Tracker stores the tuple

reference (ROWID) and transaction reference list. In this

approach, it is shaped by the linear linked list, where each

element stores the transaction identifier, lock type, expiration

flag, and timestamp, when the lock was applied. Transaction

start and approval timestamps are not present, whereas they

can be obtained in the online transaction log segment.

Figure 4. Solution architecture

The enhancement of the solution (SOL_B+priority_tuple)

introduces the priority in the transaction reference list.

Namely, expired transactions are put in the first part of the

transaction reference list. Thanks to that, the search starts with

the first element and can be stopped by reaching the first

active transaction in the list. A proprietary, transaction

reference list is divided into two parts – expired and active

transactions, however, inside the structures, data are randomly

distributed.

Among the solution specified above, two other

enhancements have been evaluated and considered. They aim

on using priority inside the transaction reference list to

optimize and make easier transaction identification. For this

perspective, two solutions were identified – the transaction

reference list was B+tree oriented based on the transaction

start timestamp (SOL_B+time_tuple), or the priority of the

transaction was set based on the total number of applied locks

(SOL_B+locknum_tuple). Namely, it is assumed, that

expired transactions with a higher number of applied locks

should be prioritized.

Another development and research stream was associated

with block management instead of the tuple. Whereas the

finest processed granularity to be transferred between the

database and memory is the block itself, it is useful to process

the whole block instead of tuple management. Thus, by

accessing the block, all expired transaction locks must be

identified and removed. To do that, the Block extractor data

structure has been introduced as an extension of the Lock

Tracker reference. Three physical data structures and models

7

were applied for the Block extractor module.

SOL_B+LL_block introduces a linear linked list for the tuple

mapping to the data blocks. SOL_B+bitmap_block uses a

bitmap index structure on the block level characterizing the x-

axis. The object identifier (primary key) is defined by the y-

axis. The content is a boolean value. Note, that there is only

one block reference for each bitmap column. The last solution

(SOL_B+stitching_block) does not introduce a separate

storage structure for the data block and tuple association,

instead stitching in the B+tree layer is used. Thus, instead of

sorting the data based on the index key on the leaf layer,

linking is done based on the block references.

A. Lock vacuuming

There are many circumstances when expired locks can be

removed. The whole process aims to optimize I/O operations

and minimize costs during the processing. Therefore, we have

identified the following operations, which can be preceded by

the lock reevaluation:

• Block is to be saved by moving from the memory

Buffer cache to the database using the Database

Writer background process.

• CheckPoint operation, which completely frees

memory Buffer cache by saving dirty (changed) data

blocks to the database.

• Reloading from the database before evaluating in

Buffer cache.

• Existing data blocks are present in the memory,

identified by the direct pointer from the Lock

tracker.

• Dynamic remapping – loading a small number of

blocks into the memory on demand and vacuuming

the locks (mostly operated during weak database

workload).

VI. PERFORMANCE AND DISCUSSION

The environment used for the performance evaluation was

characterized by the multi-tenant Real Application Cluster

container database. The used database system was Oracle

Database 21c Enterprise Edition (Release 21.0.0.0.0 –

Production. The server parameters were delimited by the

following values:

• Processor: AMD Ryzen 5 Pro 5650 2.3GHz

• Operating memory: 64 GB, DDR4 3200MHz,

• Disc storage: 2TB PCIe Gen3 x4 NVMe v1.4,

reading 3500 MB/s, writing 3300 MB/s.

The air transport monitoring data set was used for the

analysis, consisting of the planned and real routes of the

airplanes, enhanced by the various parameters characterizing

the flight conditions, like speed, height, or positional data.

Besides, each airplane was monitored by assigning its position

to a particular region – FIR (Flight Information Region). A

temporal data model using synchronization groups [13] was

used. Validity was associated with the FIR entry and exit time

with the second granularity precision, defined by the Oracle

Data data type. The data snippet of the FIR assignment is

shown in fig. 5.

Figure 5. Evaluated data structure – Flight information region (FIR) temporal

assignment

European regions for the FIR definition are shown in fig. 6.

Figure 6. Flight information region (FIR) map in Europe [24]

The evaluation study was focused on the data loading

operations – inserting new data object states to the database –

data obtained from the airplanes separately or bulk collected

within the data catcher and group module. Then, the Update

operation was evaluated, pointing to the difference between

the planned expected route and the real route. Additionally, an

Update statement was made by using data corrections if the

communication fails or the data transfer was delayed.

The second evaluation stream was characterized by data

retrieval, by which the processing was easier, whereas expired

locks were not present, and it was no longer necessary to

check the locks and identify active transactions during the data

retrieval process. It must be also noted, that removing the lock

requires physical data block change, which is always protected

by raising new transaction by storing change vectors in the

log.

To reach the complexity of the processing, data

maintenance operations are also evaluated, which are typically

launched during a weak workload. The activities there are

mostly related to the CheckPoint and Remapping.

The results evaluated the processing time and costs of the

processing. For declarative purposes, reached values are in

percentage. Each evaluation study was performed 10 times

and the results express the average values.

Fig. 6 shows the results for the costs, which consider the

server resources, processing time, data storage, CPU, I/O

operations, and overall used sources. Costs are the internal

indicator of server resource utilization. The reference for the

evaluation is the original solution with no explicit lock release

management and cleaning operation. For the Insert statement,

8

additional demands can be identified, ranging from 2% to 11%

depending on the structure and priority management. Namely,

recording and prioritizing transactions based on its start point

requires an additional 7%. This indicator, however, does not

provide sufficient power, whereas long-run transactions with

low lock number can be present. Therefore, the more relevant

solution is associated with recording the lock number applied

for the data tuples by making that value a priority for the

B+tree definition. Thus, the lock number is treated as a key of

the B+tree and locator through the balancing. For the lock

number recording, 11% can be identified for the direct

separate management and 12% for the bulk management,

which aggregates the locks and applies the change just after

the bulk operation itself. By comparing the direct Insert

statements and bulk operations, it can be concluded, that there

is no significant difference on the performance. When dealing

with the blocks, an additional 3 up to 5% can be identified,

just expressing the management inside the block extraction

module and grouping ROWIDs to the same block, reflecting

the data migrations, as well, if the Update operation extends

the storage demands and the original block can no longer

serve the state due to its capacity. As evident from the results,

for the Insert operation, an additional 19-20% of costs are

present for the bitmap management of the block definition. By

analyzing the costs and overall structures, it can be concluded,

that it is caused by the bitmap, which must be reconstructed by

adding a new extent (a set of blocks are newly associated with

the table), requiring extending and recalculating the bitmap

matrix content. The rest operations – Update (comparing

expected and real route and management of data corrections)

lower the demands up to 15% for the block management using

stitching. Namely, Update statements benefit from the lock

expiration management by lowering the demands for active

transaction identification. Only pure B+tree brings slightly

higher demands, whereas the transactions are randomly

distributed across the list with no priority management and

there is no specific differentiation between active and ended

transactions, thus the list must be always fully scanned.

As the title of the paper denotes, it primarily aims on

optimizing the performance of the data retrieval process,

represented by the Select statement. Looking at the reached

results, by applying operations and collecting expired

transactions by removing outdated locks, significant benefit

can be identified, lowering the demands up to 45% for block

management. Pure tuple management lowers the demands up

to 50%. By introducing the priority, demands can be generally

lowered up to 59%, and the start point of the transaction takes

61%. The best solution was provided by the lock number

management as a priority lowering the demands up to 61%. It

can be concluded that the number of applied locks is the best

indicator for marking the transaction. The more locks used in a

transaction, the more prioritized it should be in the event of its

termination.

Finally, the data block maintenance has been also

evaluated, and managed by the CheckPoint and Remapping

operations. Although additional demands can be identified,

ranging from 5% through 8% up to 12%, the operations are

done during the low workload of the system, therefore, it does

not make much sense to optimize and limit the additional

costs, mainly due to the fact, that in the case of the Select

statement operations, the performance has increased radically.

Fig. 7 shows the costs additional costs in percentage by

taking original lock release management as a reference.

Figure 7. Results - costs

The second evaluation stream was based on processing

time. Fig. 8 shows the results, expressed in percentage, as

well. These characteristics do not reflect the I/O operations,

storage and resource demands, instead, the demands are just

reflected by the total time required to complete the task.

For the Update statements, the system benefits from

extracting the block, instead of using data row granularity. The

reason is based on the data migrations, where the original row

is moved to another block. However, by using the index, both

blocks are memory loaded, thus the expired locks are

automatically identified and removed. The processing time

demands are even more decreased, compared to the total costs.

Namely, for the data retrieval process, the best solution was

obtained using lock number management, lowering the

demands using 65%. The start timepoint of the transaction

does not need to express the right priority, mostly if there

is complex analytics on the data, so the data source is not

huge, the complexity is reached by the calculations and data

processing.

Inside the maintenance process, only 6% of demands are

present for the block granularity processing, whereas there

is direct access to the expired transactions list. Compared to

tuple management, block references must be extracted,

bringing an additional 1 to 2%.

The significant performance degradation of the processing

time can be, however, identified for the solution using

bitmaps. Namely, the additional demands have risen to 29%

for direct Insert statements and 34% for bulk loading. Well,

the bitmap cannot be easily extended and requires structure

reconstruction and rebuilding. Although the bitmap storage

9

demands are low, as shown in fig. 7, processing time requires

significantly higher values (fig. 8).

Figure 8. Results – processing time

Processing time results in form of chart are present in fig. 9.

Figure 9. Results – processing time – graphical representation

VII. CONCLUSIONS

Efficiency in data processing is critical for the whole data

management and is directly reflected by the performance of

the whole information system. The massive parallelism for the

data access is currently required, supervised by getting

consistent data images based on the transaction UNDO logs.

To ensure consistency and no data loss, access to the data

must be properly controlled by the locks. In relational

databases, based on the SQL norm concerning transactions,

Shared and Exclusive locks are present for manipulating the

data and updating them. Data locks are applied for the data

tuple, generally to bring a suitable environment for parallel

access and processing. These locks are stored within the data

in the database blocks. Thus, before attempting to access the

data, the particular block is memory loaded and particular

locks are applied, if possible. The release of the locks is then

applied based on the business rules, but not later than at the

end of the transaction. The state-of-the-art solutions, however,

apply for the lock release only logically, whereas it would

require additional data block access and I/O operations. As a

consequence, the loaded data block holds expired locks, which

must be sequentially reevaluated to vacuum expired ones. The

principle is based on touching the data, preceded by the lock

consolidation. As stated, it brings additional demands,

whereas the lock management cannot be removed or

postponed without the integrity risks.

The proposed solution brings an additional layer of

managing and securing data locks. It aims in vacuuming

expired locks for already-ended transactions in a separate

process. Thus, before writing the block from the instance

memory to the database, transaction locks applied for the

block are reevaluated. Moreover, the specific module for the

transaction expiration recording is introduced, which uses the

number of accessed and changed blocks as a priority level.

Thanks to that, the number of expired locks is significantly

lowered. It brings two main advantages. Firstly, disc storage

demands are lowered by allowing a higher fill ratio of the

block. Secondly, removing the expired lock operation before

attempting to process the data row is shortened and optimized

by the introduced transaction reference module. In this paper,

pure tuple and block granularities have been analyzed,

followed by the transaction list reference in B+tree using

transaction identifiers, priorities defined by the start timepoint

of the transaction, or the number of applied locks inside.

Another solution was based on the bitmap structure, which,

however, does not allow dynamic rebuilding by adding new

data blocks.

The aim of future research will focus on transaction

distribution and locking across multiple instances operating

the pluggable database. Environment-applying table partitions

can be characterized by various local indexes for each data

fragment. It is assumed, that the proposed solution can reach

even more significant performance benefits. On the other

hand, it would require an additional synchronization layer

recording expired transactions across the distributed

ecosystem.

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:

022-1-SK01-KA220-HED-000089149, Project title: Including

EVERyone in GREEN Data Analysis (EVERGREEN).

10

REFERENCES

[1] Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017

[2] Al-Sanhani, A.H., Hamdan, A., Al-Thaher, A.B., Al-Dahoud, A.: A
comparative analysis of data fragmentation in distributed database. ICIT
2017 - 8th International Conference on Information Technology,
Proceedings. 724–729 (2017).
https://doi.org/10.1109/ICITECH.2017.8079934

[3] Cornejo, R.: Dynamic Oracle Performance Analytics. Dynamic Oracle
Performance Analytics. (2018). https://doi.org/10.1007/978-1-4842-
4137-0

[4] Dudáš, A., Škrinárová, J, Vesel, E.: Optimization design for parallel
coloring of a set of graphs in the high-performance computing. In:
Proceedings of 2019 IEEE 15th International Scientific Conference on
Informatics, pp 93–99. ISBN 978–1–7281–3178–8

[5] Elbahri, F., Al-Sanjary, O., et al.: Difference Comparison of SAP,
Oracle, and Microsoft Solutions Based on Cloud ERP Systems: A
Review, 15th IEEE International Colloquium on Signal Processing & Its
Applications (CSPA), 8-9 March 2019

[6] Graefe, G., Guy, W., Sauer, C.: Instant Recovery with Write-Ahead
Logging: Page Repair, System Restart, Media Restore, and System
Failover, Second Edition. Synthesis Lectures on Data Management. 8,
1–113 (2016).

[7] He, Q., Zhang, F., Bian, G., Zhang, W., Duan, D., Li, Z., Chen, C.:
Research on Data Routing Strategy of Deduplication in Cloud
Environment. IEEE Access. (2021).

[8] Jin, D., Chen, G., Hao, W., Bin, L.: Whole Database Retrieval Method
of General Relational Database Based on Lucene. Proceedings of 2020
IEEE International Conference on Artificial Intelligence and Computer
Applications, ICAICA 2020. 1277–1279 (2020).
https://doi.org/10.1109/ICAICA50127.2020.9182496

[9] Kuhn, D., Kyte, T.: Oracle Database Transactions and Locking
Revealed. Oracle Database Transactions and Locking Revealed. (2021).
https://doi.org/10.1007/978-1-4842-6425-6

[10] Lew, M.S., Huijsmans, D.P., Denteneer, D.: Optimal keys for image
database indexing. In: Del Bimbo, A. (ed.) Image Analysis and
Processing. Lecture Notes in Computer Science, vol. 1311, pp. 148–155.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63508-4_117

[11] Mikkilineni, R., Morana, G., Keshan, S.: Demonstration of a New
Computing Model to Manage a Distributed Application and Its
Resources Using Turing Oracle Design, 25th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 13-15 June 2016

[12] Pendse, S., Krishnaswamy, V., et al.: Oracle Database In-Memory on
Active Data Guard: Real-time Analytics on a Standby Database, 2020
IEEE 36th International Conference on Data Engineering (ICDE), 20-24
April 2020

[13] Kuhn, D., Alapati, S.R., Padfield, B.: Expert Oracle Indexing and
Access Paths. Expert Oracle Indexing and Access Paths. (2016).
https://doi.org/10.1007/978-1-4842-1984-3

[14] Kumar, Y., Basha, N., et al.: Oracle High Availability, Disaster
Recovery, and Cloud Services: Explore RAC, Data Guard, and Cloud
Technology, Apress, 2019

[15] Kvet, M, Matiasko, K., Kvet, M.: Complex time management in
databases, Central European Journal of Computer Science vol.4, 2014,
pp. 269-284, doi: 10.2479/s13537-014-0207-4

[16] Kvet, M.: Database Block Management using Master Index, FRUCT 32
conference, 9-11 November 2022, Finland

[17] Kvet, M.: Covering Undefined and Untrusted Values by the Database
Index, Information Systems and Technologies, Lecture Notes in
Networks and Systems, 2022, ISBN: 978-3-031-04828-9

[18] Kvet, M. and Papán, J.: The complexity of the data retrieval process
using the proposed index extension, IEEE Access, 2022.

[19] Kvet, M.: Relation between the Temporal Database Environment and
Disc Block Size

[20] Qian, Z., Wei, J., Xiang, Y., Xiao, C.: A Performance Evaluation of
DRAM Access for In-Memory Databases. IEEE Access. 9, 146454–
146470 (2021). https://doi.org/10.1109/ACCESS.2021.3123379

[21] Riaz, A.: Cloud Computing Using Oracle Application Express, Apress,
2019

[22] Rolik, O., Ulianytska, K., Khmeliuk, M., Khmeliuk, V., Kolomiiets, U.:
Increase Efficiency of Relational Databases Using Instruments of
Second Normal Form. 221–225 (2022).
https://doi.org/10.1109/ATIT54053.2021.9678605

[23] Schreiner, W., Steingartner, W., Novitzká, V.: A novel categorical
approach to semantics of relational first-order logic. Symmetry
12(1584), 2020 (2020)

[24] https://www.researchgate.net/figure/Flight-Information-Regions-in-
Europe_fig3_328927722

11

