
Mathematical Model Checking
Based on Semantics and SMT

Schreiner, Wolfgang; Reichl; Franz-Xaver

Abstract: We report on the usage and implemen-
tation of RISCAL, a model checker for mathematical
theories and algorithms based on a variant of
first-order logic with finite models; this allows to
automatically decide the validity of all formulas and
to verify the correctness of all algorithms specified
by such formulas. We describe the semantics-based
implementation of the checker as well as a recently
developed alternative based on SMT solving, and
experimentally compare their performance. Further-
more, we report on our experience with RISCAL
for enhancing education in computer science and
mathematics, in particular in academic courses on
logic, formal methods, and formal modeling. By
the use of this software, students are encouraged
to actively engage with the course material by
solving concrete problems where the correctness
of a solution is automatically checked; if a solution
is not correct or the student gets stuck, the software
provides additional insight and hints that aid the
student towards the desired result.

Index Terms: model checking, logic, seman-
tics, formal verification, reasoning about programs,
computer science education

1. INTRODUCTION

SOFTWARE based on formal logic plays an
ever-increasing role in areas where a mathe-

matically precise understanding of a subject do-
main and sound rules for reasoning about the
properties of this domain are essential. A prime
example is the formal modeling, specification, and
verification of computer programs and computing
systems, but there are many other applications in
areas such as knowledge-based systems, com-
puter mathematics, or the semantic web.

As for reasoning in these domains, there
are two main approaches, proving and model-
checking. The main advantage of proof-based
systems [6], [9] is their generality: they can op-
erate with rich formal systems such as first-order
logic and reason about domains of infinite size.
Their disadvantage, however, is that such rich
logics are generally undecidable such that the

Manuscript received June 8, 2020. This work was supported by
the Johannes Kepler University Linz, Linz Institute of Technology,
Project LOGTECHEDU “Logic Technology for Computer Science
Education” and by the OEAD WTZ project SK 14/2018 SemTech.

W. Schreiner (contact person) is an associate professor at the
Research Institute for Symbolic Computation of the Johannes Kepler
University Linz, Austria (e-mail: Wolfgang.Schreiner@risc.jku.at).

F.-X. Reichl is a student of computer mathematics at the Johannes
Kepler University, Linz, Austria (e-mail: franz.x.reichl@gmail.com).

failure to construct a proof for a conjecture does
not indicate its invalidity. This is a major problem
in areas such as program verification where these
conjectures are verification conditions derived not
only from the specifications of the program but
also from extra (in practice human-provided) infor-
mation such as loop invariants; if these invariants
are too strong or too weak, the verification con-
ditions are not valid, even if the program satisfies
its specification.

The main advantage of model checkers [2] is
their automatism: they decide without user as-
sistance the validity of conjectures; furthermore,
if a conjecture is invalid, they produce a coun-
terexample that demonstrates its invalidity. Their
disadvantage is that they have to be based on
decidable calculi, which usually entails finite do-
mains of interpretation or weaker formal systems
than first-order logic. For instance, bounded model
checkers consider only finite (prefixes of) program
runs and typically only check for specific proper-
ties such as preconditions of built-in operations.

In this paper, we present an approach that
combines the generality of a rich logic with the
automation of model checking. This approach is
implemented in RISCAL [11], [12], [16], a soft-
ware system for the formalization of mathematical
theories and the specification and verification of
algorithms operating in such theories. The soft-
ware also provides various means to aid the un-
derstanding of results, e.g., by producing coun-
terexamples or by the graphical visualization of
evaluation trees [15]. The checking mechanism
is based on an executable version of the deno-
tational semantics of the specification language;
recently we have developed an alternative ap-
proach based on the translation of this language
to the language SMT-LIB supported by various
satisfiability modulo theories solvers [10].

Various other modeling languages also support
checking but differ from RISCAL in the application
domain of the language or the exhaustiveness of
the checks. Alloy [4] is based on a relational logic
designed for modeling abstract systems but little
suitable for mathematical theories. TLA+ [5] em-
beds first-order logic but is untyped and also sup-
ports models of infinite size; thus, the TLA+ toolkit
does not really represent a reliable decision pro-
cedure. In contrast, RISCAL is based on full first-
order logic and also allows, e.g., implicitly defined

4

functions and nondeterministic computations; still
by its restriction to models of (parametrizable)
finite size, the validity of formulas and the correct-
ness of algorithms is fully decidable [13].

A main application of RISCAL is in edu-
cational scenarios where questions and prob-
lem statements have a precise and machine-
understandable meaning and where the correct-
ness of answers and problem solutions can be
automatically checked. The use of this software
gives students the possibility to self-check the cor-
rectness of their solutions and to use the feedback
of the software to correct their errors. The goal is a
style of “self-directed learning” where students do
not just passively consume educational material
but actively interact with it by producing problem
solutions with the help of software. Ultimately such
software might also be integrated into software for
the automatic grading of assignments [20].

In this paper, we describe our actual experience
with the use of RISCAL in academic courses on
formal specification and verification, formal mod-
eling, and logic; these courses have addressed
various types of audiences, computer scientists as
well as mathematicians, from absolute beginners
to master students in the later phases of their
education. RISCAL has been partially developed
in the context of two projects, “Logic Technologies
for Computer Science Education” (LogTechEdu)
at Johannes Kepler University (JKU) Linz [7],
and “SemTech” at JKU Linz and the Technical
University (TU) of Košice [17], that investigate
and further develop such tools for their use in
computer science education. An example for other
software developed in these projects is the toolset
Jane [18], [19] that illustrates graphically the for-
mal semantics of a simple programming language
and that has been applied in various courses.

The remainder of this paper is structured as
follows: In Section 2 we sketch the use of RISCAL
on small examples. Section 3 discusses the
semantics-based implementation of the RISCAL
checker, the alternative method based on SMT
solving, and their experimental comparison. In
Section 4 we describe our experience with the use
of RISCAL in education. Section 5 presents our
conclusions and outlines further work.

This paper is a revised version of [14] extended
by previously unpublished material (Section 3).

2. THE RISCAL SOFTWARE

RISCAL (RISC Algorithm Language) is a lan-
guage and associated software system for formu-
lating theories in first-order logic, describing algo-
rithms in a high-level language, and specifying the
behavior of these algorithms by formal contracts.
The language is based on a type system where
all types have finite sizes (specified by the user);
this allows to fully automatically decide formulas
and to verify the correctness of algorithms for all

Fig. 1. The RISCAL Graphical User Interface

possible inputs. To this end, the system translates
every syntactic phrase into an executable form
of its denotational semantics; the RISCAL model
checker evaluates this semantics to determine
the results of algorithms and the truth values of
formulas such as the postconditions of algorithms.
Figure 1 displays the user interface of the soft-
ware with an editor panel on the left and control
elements and an output terminal on the right.

As an example for the use of RISCAL, take the
following constant and type declarations:
val N:N; val M:N;
type int = Z[-1,N]; type elem = N[M];
type array = Array[N,elem];

These introduce a type array of arrays that have
some length N and elements of type elem; each
such element is a natural number up to some
maximum M . Likewise an auxiliary type int of
integers from −1 to N is defined. Furthermore,
we introduce by the definition
pred occurs(a:array, x:elem, r:int) ⇔

0 ≤ r ∧ r < N ∧ a[r] = x;

a predicate occurs that is true if array a holds
element x at position r. From this, the declaration
fun searchAny(a:array, x:elem): int =

choose result:int with
if ¬∃k:int. occurs(a,x,k) then
result = -1

else
occurs(a,x,result);

introduces an implicitly defined function searchAny
that returns an arbitrary position at which x occurs
in a, respectively the value −1, if x does not occur
in a. RISCAL can execute this definition, e.g., for
N = 4 and M = 3; if we select for this execution
the “nondeterministic” mode, for every input all
possible outputs are determined:
Executing searchAny(Array[Z],Z) with

all 1024 inputs.
Branch 0:0 of nondeterministic function

searchAny([0,0,0,0],0):
Result (0 ms): 0
...
Branch 4:1023 of nondeterministic ...

searchAny([3,3,3,3],3):
No more results (15 ms).

5

Fig. 2. A Pruned Formula Evaluation Tree in RISCAL

Execution completed for ALL inputs
(6741 ms, 1024 checked, ...).

This is possible, because in nondeterministic
mode, the semantics of functions, predicates, and
procedures does not denote a single value but a
finite set of values which is implemented by a lazily
evaluated stream (see Section 3).

Based on the predicate occurs, we may define
and check the (apparently valid) theorem that for
every element x there is some array that holds x
at a unique position:
theorem someUnique(x:elem) ⇔ ∃a:array.
∀r1:int with occurs(a,x,r1).
∀r2:int with occurs(a,x,r2). r1 = r2;

Executing someUnique(Z) with all 4 ...
Execution completed for ALL inputs ...

However, we may also define and check the (in-
valid) theorem that above is true for every array:
theorem allUnique(x:elem) ⇔ ∀a:array.
∀r1:int with occurs(a,x,r1).
∀r2:int with occurs(a,x,r2). r1 = r2;

Executing allUnique(Z) with all 4 ...
ERROR in execution of allUnique(0):
evaluation of
allUnique

at line 33 in file prog.txt:
theorem is not true

ERROR encountered in execution.

We may then ask for a counterexample:
Executing allUnique_refute().
This sequence of variable assignments
leads to a counterexample ...:

x=0
a=[0,0,0,0]
r1=0
r2=1
Execution completed (5 ms).

The truth values of formulas can be also visualized
in RISCAL by the help of “pruned evaluation trees”
(see Figure 2 for an example of such a tree) that
depict those paths in the evaluation of quantified
formulas that determine the overall outcome.

After these preliminaries, we define a determin-
istic procedure that returns the smallest position

r of element x in array a; if x does not occur in a,
the procedure returns −1:
proc search(a:array, x:elem): int {

var i:int = 0; var r:int = -1;
while i < N ∧ r = -1 do {
if a[i] = x

then r := i;
else i := i+1;

}
return r;

}

To verify its correctness, we annotate the proce-
dure with the following postcondition:
ensures if ¬∃k:int. occurs(a,x,k) then

result = -1
else occurs(a,x,result) ∧
∀k:int with occurs(a,x,k). result≤k;

We may then check the correctness of the algo-
rithm for all possible inputs:
Executing search(...) with all 1024...
Execution completed for ALL inputs ...

However, if we replace the test a[i] = x erro-
neously by a[i] 6= x, we get the following error:
ERROR in execution of search(...):
evaluation of ensures ... at line ...:

postcondition is violated by result
-1 for application search(...)

Furthermore, we may annotate the above loop by
an invariant and termination measure:
invariant 0 ≤ i ∧ i ≤ N;
invariant
∀k:int. 0 ≤ k ∧ k < i ⇒ a[k] 6= x;

invariant
r = -1 ∨ (r = i ∧ i< N ∧ a[r] = x);

decreases if r = -1 then N-i else 0;

Every execution of the procedure checks the valid-
ity of these annotations; this in particular ensures
that the given invariant is not too strong. How-
ever, we may also let the system generate from
this invariant verification conditions whose validity
implies the correctness of the program. These
conditions are theorems that can be automatically
checked in RISCAL by a single mouse-click (see
Figure 3), which ensures that the specified in-
variants are strong enough (they are “inductive”).
Thus, we may subsequently use some other envi-
ronment to verify the correctness of the algorithm
by formal proof for arbitrary values of M and N .

The big advantage of RISCAL is that it al-
lows to formulate rich formal/mathematical/logical
contents (theories and algorithms) in an expres-
sive language (first order logic including expres-
sions that do not necessarily have unique values)
and still have their adequacy fully automatically
checked over small domains. In this way, errors in
the formulations can be easily caught and thus the
formalism be quickly validated; this is not so sim-
ply possible with proof-based approaches where
failed proof attempts more often than not indicate
the inadequacy of proof strategies rather than the
invalidity of proof goals. Only when we are after
such a validation reasonably convinced about the

6

Fig. 3. The Validity of Verification Conditions in RISCAL

correctness of the formulations, we will turn to
proof-based verification over general domains.

3. CHECKING AND SMT SOLVING IN RISCAL

The basic mechanism of RISCAL for checking
the correctness of algorithms and theorems relies
on the evaluation of their denotational seman-
tics; however in [10] an alternative mechanism
is presented which is based on the translation
of RISCAL formulas to the language SMT-LIB
supported by various satisfiability modulo theories
(SMT) solvers. In this section, we sketch both
approaches and compare their performance by a
number of benchmarks.

3.1. Model Checking

RISCAL implements an executable form of the
denotational semantics of every kind of phrase
of its language. If a phrase is deterministic, i.e.,
its evaluation yields a uniquely defined result, its
semantics is typically an element of the domain

Single[T] := Context → T

i.e., it maps a context (which determines the val-
ues of the free variables of the phrase) to a value
of the semantic domain T . However, a phrase
may also be nondeterministic, i.e., its evaluation
may yield multiple results. Then its semantics is
typically an element of the domain

Multiple[T] := Context → Seq [T]

where Seq [T] is a collection of T -values which we
will for the moment consider as a set (more details
will be given below).

For instance, in the case of imperative com-
mands we have T := Context , i.e., the result is
another context (which denotes the values of the
variables after the execution of the command); in
the case of logic formulas we have T := Bool , i.e.,
the result is a truth value; in the case of terms we
have T := Value, i.e., the result is a value of the
object domain of the logic.

The denotation of a phrase of syntactic do-
main S is defined by a mapping [.] : S →
Single[T] + Multiple[T]. For instance, assuming
two deterministic commands C1 and C2, the de-
terministic semantics [C1;C2] ∈ Single[Context]
of their composition can be defined as follows:

[C1;C2] := λc. let c1 = [C1](c) in [C2](c1)

However, if C1 and C2 are nondeterministic,
then we have the nondeterministic semantics
[C1;C2] ∈ Multiple[Context] defined as follows:

[C1;C2] :=

λc. let cs1 = [C1](c) in
⋃

c1∈cs1

[C2](c1)

RISCAL implements these mathematical no-
tions by corresponding constructions in Java. For
instance, we have data types like
public interface Single<T> extends

Function<Context,T> { }
public interface Multiple<T> extends

Function<Context,Seq<T>> { }

The domain Seq [T] is implemented as a class
with an object method get() that returns either
null (the end of the sequence) or a pair of
a sequence element and another object of this
class. Thus Seq [T] actually denotes the domain
of lazily evaluated sequences of T -values as
the basis of the nondeterministic execution se-
mantics. The implementation of the (determinis-
tic/nondeterministic) semantics of phrases such
as command sequences is based on functions like
static Single<Context>
seqCommand(Single<Context> C1,

Single<Context> C2)
{ return (Context c) ->

{ Context c1 = C1.apply(c);
return C2.apply(c1); } }

static Multiple<Context>
seqCommand(Multiple<Context> C1,

Multiple<Context> C2)
{ return (Context c) ->

{ Seq<Context> cs1 = C1.apply(c);
return cs1.mapJoin(C2); } }

The whole implementation heavily depends on the
lambda expressions introduced in Java 8; in fact,
the RISCAL implementation of the denotational
semantics resembles very much a (higher-order)
functional program.

RISCAL first builds from the concrete syntax of
a phrase an abstract syntax tree; then it applies
a type checker to annotate this tree with symbolic
information determined by static analysis; then it
translates the annotated tree to its denotational
semantics; finally, it executes this semantics of
the phrase. Since modern JIT compilers heavily
optimize at runtime the executions of the func-
tional objects resulting from this translation, we get
an evaluation mechanism for the various phrases,
which is much more efficient than classical “in-
terpretation”; in fact, the translation mechanism

7

achieves many of the advantages we get by “com-
pilation” to a low-level machine language.

If the phrase is a formula, we thus have (since
every RISCAL type is finite) a decision procedure
for the validity of the formula. If the phrase is a
program, we have an execution mechanism for
the program; if the program is annotated with
meta-information such as preconditions, postcon-
ditions, loop invariants, and termination measures,
we have a model checker for the correctness of
the program. Since RISCAL also implements a
verification condition generator where the derived
verification conditions are again RISCAL formulas,
we thus also have a (limited form of) a program
verification environment. From RISCAL Version 3
on, the language also supports the concept of
concurrent systems whose semantics are tran-
sition systems; the evaluation of these systems
yields a model checker for the verification of the
invariance of safety conditions.

3.2. SMT Solving

The application of SMT solvers in RISCAL,
presented in [10], relies on the translation of a
theorem (and of the specification on which the
theorem depends) into an SMT-LIB [1] script. For
this purpose, we use the SMT-LIB logic of Quanti-
fier Free Formulas with Fixed Size Bit Vectors and
Uninterpreted Functions (QF_UFBV). This idea of
a translation is related to [8] where a translation
of TLA+ enabled the application of SMT solvers.

The translation ensures that the original
RISCAL theorem is valid if and only if the gen-
erated SMT-LIB formula is unsatisfiable. This can
be decided by a variety of SMT solvers supporting
the QF_UFBV logic, in particular Boolector, CVC4,
Yices 2, and Z3. As already discussed above,
RISCAL provides the functionality to generate
verification conditions for algorithms. Since these
conditions are just theorems in RISCAL, they can
be also decided by the translation to SMT-LIB.

In the remaining part of this section, we will
discuss selected aspects of this translation which
proceeds in two steps:

1) We translate the input into a form that makes
the later encoding substantially easier and
negate the given theorem.

2) We encode the preprocessed RISCAL spec-
ification into SMT-LIB such that satisfiability
of the negated theorem is preserved.

The translation step, e.g., renames overloaded
functions such that every function gets a unique
name. We also eliminate several kinds of expres-
sions by rewriting them into logically equivalent
forms; in particular we replace “choose expres-
sions” (nondeterministic choices) by applications
of newly introduced “choice functions”, whose in-
terpretations are restricted by appropriate axioms.
For example, the theorem:

theorem T(x:N[N]) ⇔ x ≥
choose y:N[N] with x=2·y ∨ x=2·y+1;

is preprocessed to:
fun chooseFun(x:Z[0,N]):Z[0,N]
axiom chooseAx ⇔ ∀x:Z[0,N].

(∃y:Z[0,N]. (((x = (2·y)) ∨
(x=((2·y)+1))) ∧ (chooseFun(x)=y)));

theorem T ⇔ ∃x:N[N].(x<chooseFun(x));

The encoding step performs two tasks:
1) We eliminate all universal and existential

quantifiers because the target of our trans-
lation (QF_UFBV) is a quantifier-free logic.
To eliminate existential quantifiers, we
mainly apply the technique of “skolemiza-
tion”, i.e., we replace existentially quantified
variables by applications of uninterpreted
“Skolem functions”. However, since the re-
sult is only an equi-satisfiable (not a logically
equivalent) formula, this transformation is
only possible within the negated theorem
whose satisfiability is to be decided.
As a more general technique, we replace
universally and existentially quantified for-
mulas by expanding them into conjunctions
respectively disjunctions of instantiations of
the body formula for all values of the type of
the quantified variable.

2) We encode the types and operations of
RISCAL in the theory of bit vectors. While
this translation is generally based on com-
monly known representations, major adap-
tations were necessary, e.g., to deal ap-
propriately with integer domains of varying
sizes, and to devise effectively computable
mappings between the RISCAL types and
the bit vector domains.

In the following we illustrate the translation on
the basis of the following RISCAL specification:
type nat=N[100];
type set=Set[nat];
fun diff(A:set,B:set):set=(A\B)∪(B\A);
theorem assoc(a:set,b:set,c:set)⇔

diff(diff(a,b),c)=
diff(a,diff(b,c));

Here we introduce a type set of sets that have
elements of type nat. Furthermore, we introduce
with diff a function that represents the symmet-
ric difference of two sets. Finally, we introduce
the theorem assoc that states that the symmetric
difference is associative (obviously this is a valid
theorem). We translate this RISCAL specification
to the following SMT-LIB script:
(set-logic QF_UFBV)
(define-sort nat ()(_ BitVec 7))
(define-sort set ()(_ BitVec 101))
(define-fun diff ((A (_ BitVec 101))

(B (_ BitVec 101)))(_ BitVec 101)
(bvor (bvand A (bvnot B))
(bvand B (bvnot A))))

(declare-fun f ()(_ BitVec 101))
(declare-fun f_1 ()(_ BitVec 101))
(declare-fun f_2 ()(_ BitVec 101))

8

TABLE 1
SMT PERFORMANCE

Model Theorem Values RISCAL Yices
catlogic Imp1 N=2, M=1 71748 92
sets associativeUnionT N=8 235413 2
gcd2 _gcdf_8_PostUnique N=100 Timeout 55
bubble _swap_0_CorrOp0 N=6, M=6 253559 6
sat3 _DPLL2_14_CorrOp0 n=2, cn=2 Timeout 10
matrices symAdd N=4 Timeout 4
graphs _handshaking N=3 0 9682

Theorem_8_PreSat
sat3 _DPLL2_14_PostNot n=3, cn=2 0 920

TrivialSome
bubble _bubbleSort3_2 N=4, M=4 10399 25695

_CorrOp0
search _bsearchp_1_CorrOp3 N=4, M=4 205 4635

(assert (let ((a f))(let ((b f_1))
(let ((c f_2))(distinct
(diff (diff a b) c)
(diff a (diff b c)))))))

(check-sat)(exit)

Here we introduce sorts nat and set that repre-
sent the same named RISCAL types as well as a
function diff that represents the corresponding
RISCAL function. In the definition of this function
we can see that we represent the union of sets
by bitwise disjunction and the set difference by
means of bitwise negation and conjunction (as
A \ B = A ∩ Bc). Finally, we represent the
negation of the theorem assoc. For this purpose,
we first introduce three nullary functions for the
skolemization of the quantified variables a, b, and c
(as we negate the theorem, we have existentially
quantified variables). In the assert statement we
then state the negated theorem.

If we apply an SMT solver to this SMT-LIB
script, it reports that the formula is unsatisfiable,
which shows that the theorem assoc is valid.
Indeed, the SMT solver Yices 2 reports a result
almost instantaneously, whereas the basic check-
ing mechanism of RISCAL does not produce an
answer in a reasonable amount of time.

3.3. Experimental Comparison

In [10] we systematically compared the perfor-
mance of the checking mechanisms presented in
the previous two sections. For this purpose, we se-
lected a variety of RISCAL specifications respec-
tively theorems. On the one hand, we checked
these theorems with the semantics-based mech-
anism of RISCAL. On the other hand, we applied
the SMT-LIB translation and invoked the SMT
solvers Boolector, CVC4, Yices 2, and Z3, on
the generated scripts. Finally, we compared the
obtained results. The conducted tests showed that
in general Yices 2 [3] delivered the best results in
terms of performance. Thus, here we only present
the results of the tests performed with Yices 2.

In Table 1 we give a (small) selection of these
results achieved with checking/deciding a variety
of theorems that are all valid and that cover
a variety of types, e.g., integers, maps/arrays,

and sets. The entries of this table are to be
read in the following way. Column 1 gives the
name of the tested RISCAL specification. Col-
umn 2 gives the tested theorem. Column 3 gives
the used model parameters. Column 4 gives the
time needed by the semantics-based checking
mechanism of RISCAL. Column 5 gives the time
needed by the translation and the SMT solver
Yices 2 to decide the given theorem. All fig-
ures represent wall clock times in milliseconds,
measured on an Intel Xeon Gold 6128 proces-
sor with 1.5 TB of memory. A “timeout” is re-
ported if the checking time exceeded a threshold
of twenty minutes. The used RISCAL specifica-
tions and the generated SMT-LIB scripts are pub-
licly available at https://www.risc.jku.at/research/
formal/software/RISCAL/papers/thesis-Reichl.tgz.

The first six examples of Table 1 illustrate the
speedups that can be achieved through the usage
of SMT solvers. We want to point out that the tests
presented in [10] indicate that such speedups
cannot only be achieved for few selected cases,
but for a broad variety of RISCAL specifications
and theorems. Indeed, in approximately 75% of
the tests, the translation used together with the
application of Yices 2 was substantially faster than
the semantics-based mechanism of RISCAL.

However, while often significant speedups can
be achieved by the usage of SMT solvers, there
are also cases where the semantics-based check-
ing mechanism delivers superior results. We de-
tected certain patterns in RISCAL specifications
that seem to have a negative influence on the
performance of the SMT based checking mech-
anism. The last four examples of Table 1 illustrate
two such patterns that may make the usage of the
translation disadvantageous.

Examples 7 and 8 illustrate that theorems that
contain existentially quantified formulas may be
checked significantly faster by the semantics-
based method. There are, in particular, two rea-
sons for this. On the one hand, RISCAL can often
find a witness for an existential quantifier very fast.
Thus, it can often report the validity of theorem
very soon — like in the mentioned examples.
On the other hand, the translation has to negate
the theorems. Thus, existential quantifiers are
transformed to universal quantifiers. But universal
quantifiers have to be expanded, which can result
in large formulas that seem to be disadvantageous
for all the tested SMT solvers.

Examples 9 and 10 illustrate that RISCAL spec-
ifications with “choose expressions” may be dis-
advantageous for the application of SMT solvers.
To justify this assertion, we have to consider that
such expressions are translated to applications of
uninterpreted functions. This, for example, means
that choose x:T, where T is some type, is rep-
resented by a function, whose image is the set of

9

bit vectors that represent the type T . Often not all
the bit vectors from the image of such a function
correspond to a value that can actually be attained
by the original choice. Therefore, it is necessary
to use certain assertions that guarantee that the
function only attains values that correspond to
values that can be given by the choice. These as-
sertions often seem to have a negative influence
on the performance of the SMT solvers.

To sum up, the comparison of the two decision
mechanisms shows that the SMT based mecha-
nism has the potential to significantly speedup the
decisions of the validity of formulas. Still, it cannot
fully replace the semantics-based checking mech-
anism of RISCAL, as certain specification patterns
favor the usage of this mechanism.

4. LOGIC AND SEMANTIC SOFTWARE FOR EDUCATION

The intent of our projects LogTechEdu and
SemTech is to further advance education in com-
puter science and related topics: by utilizing the
power of modern software based on formal logic
and semantics, students shall engage with the
material they encounter by actively producing
problem solutions rather than just passively con-
suming them from the lecturer. For this purpose,
we have experimented with various pieces of
related software respectively further developed
such software. For instance, David Cerna has
in the frame of LogTechEdu at JKU Linz re-
cently developed an Android app “AXolotl” for the
touch-based training of first-order reasoning with
term matching respectively substitution; likewise,
William Steingartner and Valerie Novitzká have in
the frame of SemTech at TU Košice developed the
toolset “Jane” for the semantics-based execution
and visualization of a simple procedural language
that has been successfully employed in various
courses on programming language semantics.

In this paper we will discuss in more detail those
activities that the first author has been directly
connected to, mostly related to the RISCAL soft-
ware that was described in the previous sections.

a) Formal Specification and Verification:
Since 2005, the first author has given at JKU Linz
a yearly 4.5 ECTS course on “Formal Methods
in Software Development”; the goal is to educate
master students in computer science and com-
puter mathematics in the formal specification and
verification of computer programs with the help
of various freely available software environments.
Since 2009 we have also used our own “RISC
ProofNavigator” and since 2011 our “RISC Pro-
gramExplorer” for the purpose of verifying pro-
grams by deriving and proving verification con-
ditions. In this course groups are of moderate
size (about 25 participants) and have already
considerable technical background (their formal
background, however, is varying).

However, by relying on proof-based verification
tools, the adequacy of formal specifications and
annotations (loop invariants) could be only judged
by proving the validity of the generated verification
conditions. If such proofs did not immediately
succeed (after applying some standard interac-
tions with the respective proof assistants), many
students were not really able to deduce from the
failed proof attempt whether this was due to an
inadequate proof strategy or due to deficiencies
in the specifications/annotations; moreover, some-
times verification attempts trivially succeeded be-
cause preconditions were unsatisfiable or post-
conditions were generally valid.

In 2017, we introduced RISCAL into the course,
replacing some of the initial use of the RISC
ProofNavigator/ProgramExplorer. In a first exer-
cise students had to validate specifications with
the help of various techniques integrated into
RISCAL, such as executing implicitly defined func-
tions that were automatically generated from pro-
cedure contracts or checking whether pre- and
postconditions satisfied various consistency cri-
teria. In later exercises, students had to anno-
tate procedures with invariants and termination
measures, and check the verification conditions
generated by RISCAL. If conditions were not valid,
the RISCAL trace/visualization features could be
applied to determine the sources of the errors.

Final anonymous evaluations of the course soft-
ware performed in 2018 and 2019 indicated a very
high satisfaction of students with RISCAL con-
cerning its ease of use and learning success; the
ratings were significantly better than for the proof-
based RISC ProofNavigator/ProgramExplorer and
summarily higher than for the six other toolsets
used in the course (the extended static checker
ESC/Java2 being the second most popular one).
However, there was no objectively visible effect on
exercise grades, which remained mostly in the 80–
95% (good to very good) range.

Also outside of JKU Linz, at the Czech Technical
University in Prague, Stefan Ratschan used in
2019 RISCAL in a 4.5 ECTS course on “Formal
Methods and Specification” for 80 students. The
software was applied with very good success;
apart from some feedback for improving usability
and requests for additional features, no problems
were reported; in 2020, RISCAL has been em-
ployed in this course again.

Apart from courses, two bachelor students of
technical mathematics used RISCAL to elaborate
in their bachelor theses the formal specification
and verification of algorithms from discrete mathe-
matics (mostly relating to set and graph theory) re-
spectively for searching and sorting of sequences
in various representations (including the major
asymptotically fast algorithms). Especially in the
latter case, it was astonishing to see that the stu-

10

dent, without prior expertise in formal verification,
was able to come up with sufficiently strong loop
invariants to let the verification succeed. These
are (anecdotal but nevertheless) strong indica-
tions that students that already have a certain
background are indeed able to develop formally
adequate theories and specifications.

b) Formal Modeling: In 2019, at JKU a new
3 ECTS course “Formal Modeling” for bache-
lor students of technical mathematics was intro-
duced, as well as an accompanying prosemi-
nar. The course was given in three modules by
three lecturers; in the module “Logic Models of
Problems and Computations” of that course (in
which about 15 students participated), we applied
RISCAL to model classical “computational” prob-
lems but also “dynamic” search and scheduling
problems, often disguised in the form of “puzzles”
such as, e.g., the well-known “goat, wolf, and
cabbage” river crossing puzzle.

In contrast to the computational problems spec-
ified by a pair of pre- and postconditions, the dy-
namic problems were modeled in RISCAL (which
at that time did not yet have direct support for
such systems) by nondeterministic algorithms of
the following structure:
proc system(s0:State):

Tuple[N[N],Array[N,State]]
requires init(s0);

{
var s:State = s0;
var i:N[N] = 0;
var t:Array[N,State] =

Array[N,Action](s);
while ¬goal(s) ∧ i < N do
{

choose s1:State with next(s,s1);
s = s1; i = i+1; t[i] = s;

}
return 〈i,t〉;

}

The predicate init constrains the initial state of the
system; the predicate goal describes the desired
goal state. Starting with the initial state s0 as the
current state s, the program nondeterministically
chooses a successor state s1 that is related to s by
the relation next . The computation terminates with
the trace t of the states traversed when a desired
goal state has been found or a bound for the
number i of steps has been reached (to reduce
the search space, typically the computation of the
successor state is split into the nondeterministic
choice of an “action” a and the subsequent deter-
ministic computation of s1 from s and a).

Students were handed out specification tem-
plates with all the necessary declarations; their
task was to formalize the goal predicate and the
next relation. By running the procedure system
in nondeterministic mode, the adequacy of the
definitions could be evaluated.

Students apparently liked the “puzzle-like” na-
ture of these problems; also, because of the pos-

sibility of self-checking, the submitted solutions
were indeed mostly correct. In the proseminar
(attended by five students), two students modeled
self-selected problems, in one case the card game
“Uno”, in the other case the problem of the mini-
mization of finite state automata.

All in all, we encountered the use of RISCAL
in this novel way a success; it also demonstrated
nicely how by the utilization of nondeterministic
choices models of “computational systems” can
be constructed, for which RISCAL was originally
not designed. A crucial point, however, here was
the appropriate modeling of the system to manage
the exponential explosion of the search space of
nondeterministic choices.

c) Logic: The courses presented so far
mainly dealt with moderately sized groups of stu-
dents with some prior technical and formal knowl-
edge. However, since 2013 we are at JKU also
(together with three other lecturers) engaged in a
4.5 ETCS course “Logic” for first semester bach-
elor students of computer science; this course is
attended by 250–350 students most of which have
just passed their high school exam, not all with a
technical focus. The course is internally organized
in three modules “SAT” (propositional logic and
satisfiability solving), “FO” (first order predicate
logic) and “SMT” (satisfiability modulo theories);
the FO module takes half of the course.

Over the years we have also integrated more
and more the use of logic-based software tools
into the course, a SAT solver (Limboole), an inter-
active proving assistant (RISC ProofNavigator), an
automated prover (Theorema), and SMT solvers
(Boolector, Z3). However, prior to 2018, we con-
fined the use of these tools to three optional
“laboratory” assignments that students could per-
form on interest and/or as a substitute for three
instances of weekly tests. The main reason was
that we could not spend adequate time with the
explanation and support of this software and thus
did not want to make the use of the software
mandatory; consequently, however, only a minor-
ity of 5–10% of the students used the software,
mainly as a substitute for failed tests. To bring
the software more into the “main stream” of the
course, we introduced in 2018 weekly “bonus”
assignments by which students could earn up
to 20% of the grade points for the forthcoming
tests. These assignments were of comparatively
low complexity; they were mainly intended to raise
more interest in the software and thus in the
practical aspects of the course.

Also starting with the mentioned year, RISCAL
replaced the RISC ProofNavigator in the second
module FO, specifically in one laboratory assign-
ment and three of the bonus assignments. Ques-
tions were handed out in the form of RISCAL
skeleton files in which students had to fill in some

11

missing parts; RISCAL itself was provided in the
form of a virtual machine (to be downloaded and
executed in the free VirtualBox environment) and
on a remote server (to be used via an X2go client).
In a “syntax” assignment students had to “paren-
thesize” formulas to make their structure unique
(RISCAL checked their equivalence to the original
unparenthesized formulas) and to translate infor-
mal statements into formal ones (RISCAL checked
the equivalence to another formalization). In a
“semantics” assignment, students had to deter-
mine satisfying assignments of first-order formulas
(RISCAL checked the correctness of the answers)
and to transform formulas into logically equivalent
forms with certain syntactic constraints (RISCAL
checked here the equivalence). In a “pragmat-
ics” assignment, students had to translate given
informal problem specifications (pre- and post-
conditions) into logic formulas, which partially in-
volved the definition of auxiliary functions and
predicates; here RISCAL was used to validate the
results by, e.g., checking the input/output behavior
of a function implicitly defined by this condition.

At the end of the course, an anonymous evalu-
ation gave the following results: about 40% of the
students performed at least one RISCAL exercise,
about the same number reported the use of the
software as helpful. These numbers clearly trail
the SAT solver Limboole used in the SAT module
(about 60% used this one and reported it as
helpful) but are also much ahead of the other tools
in FO and SMT (used by about 25%). Of those
who submitted bonus assignments, most indeed
earned the full amount of potential grade points.
As for the more general questions on why students
used the software, twice as many reported as
the main reason to earn the bonus points rather
than intrinsic interest. Still, most positive impact
on interest was reported to the software, while
most impact on understanding was attributed to
the exercises (three times more than to software).
While the overall level of grades did not signifi-
cantly differ from the previous years, we found a
strong correlation between performance on bonus
assignments and performance in classroom as-
signments; indeed, most students that failed the
course did not perform the bonus assignments.

Thus, in a nutshell, many students performed
the software-based bonus exercises and those
who did so achieved also significantly better re-
sults in the classroom exercises. However, weak
students (subsequently failing the course) mostly
did not use the software. The reason to use the
software was mainly the “extrinsic” motivation to
earn additional grade points and not an “intrinsic”
interest. Nevertheless, software was cited as a
factor to improve interest in the course, but much
less as a factor in improving understanding.

In case of RISCAL, a main deterring factor

Fig. 4. A RISCAL Web Exercise

to use the software was the need for a local
installation (even if by a virtual machine), the
need to learn to use the software, and the need
to manipulate text files. In the 2019 instance of
the course, we therefore introduced a web-based
frontend to a server installation of RISCAL that
allowed students to perform the exercises within
their web browsers (see Figure 4). Indeed, now
about 170 students (from about 330 active stu-
dents) submitted RISCAL-based exercises via the
web interface; most with correct results. A prelimi-
nary statistical evaluation indicates that those who
did so indeed performed in the course tests better
than those who did not. Based on these results,
we plan in 2020 to proceed with the RISCAL
exercises via this frontend.

d) Correct Program and Algorithm Develop-
ment: There is one kind of courses where the
potential of RISCAL has not yet been applied:
those on the development of programs (respec-
tively algorithms) where their correctness with re-
spect to given specifications should be checked.
Here lecturers might hand out program assign-
ments in the usual way by the desired interface
of a procedure and an informal explanation of
the inputs it can expect and the results it must
deliver. However, additionally, the procedure would
be equipped with a formal contract, against which
the student could fully automatically check the
correctness of her solution and the lecturer could
fully automatically check the correctness of a sub-
mission. If a solution fails the check, the reported
error also demonstrates a concrete input/output
pair that demonstrates the failure. In this way, in
particular, erroneous boundary cases (that very
often give problems) can be quickly detected.

We are not in charge of a corresponding course
where RISCAL can be applied in this sense but
plan in the near future to approach other lecturers
teaching program/algorithm development that may
find interest in the use of RISCAL.

12

5. CONCLUSIONS

From the presented experience, we have good
evidence that by the use of a “mathematical model
checker” such as RISCAL the education in various
areas of science and engineering may be substan-
tially improved. This of course mainly applies to
closely related “formal” topics, but may be also rel-
evant for topics like programming, where RISCAL
can check in small domains the correctness of
programs with respect to their specifications.

Our main success lies so far on levels of
education where students have already at least
some prior (technical and/or formal) background.
In courses targeted to absolute beginners, mainly
the stronger students profit from the software,
while the weaker students (already struggling with
the basic material) are potentially overwhelmed by
the additional “burden” to use software. Here the
use of software requires careful evaluation and
fine-tuning.

RISCAL itself has reached a stable state and
has been applied in various courses, mostly but
not only at JKU. However, while RISCAL is pri-
marily targeted to educational scenarios that typ-
ically focus on small models, its semantics-based
checking mechanism is efficient enough to also
analyze models of non-trivial size. Furthermore,
the novel SMT-based decision mechanism pre-
sented in this paper allows to check models of
sizes that were out of the reach of RISCAL so far.

Further work will focus on the improvement of
feedback mechanisms to help students under-
stand the computed results and the integration
with proof-based environments to let RISCAL be
used as a “pre-checker” of formalizations in small
domains before turning to general proofs in do-
mains of arbitrary size. We also plan to extend the
recently introduced notion of “concurrent systems”
by a model checker for specifications in linear
temporal logic (LTL).

REFERENCES

[1] BARRETT, C., FONTAINE, P., AND TINELLI, C. The
Satisfiability Modulo Theories Library (SMT-LIB). http:
//www.SMT-LIB.org, 2016.

[2] CLARKE, E. M., HENZINGER, T. A., VEITH, H., AND
BLOEM, R., Eds. Handbook of Model Checking. Springer,
Berlin, Germany, 2018. doi:10.1007/978-3-319-10575-8.

[3] DUTERTRE, B. Yices 2.2. In Computer-Aided Verifi-
cation (CAV’2014) (July 2014), A. Biere and R. Bloem,
Eds., vol. 8559 of Lecture Notes in Computer Sci-
ence, Springer, pp. 737–744. https://doi.org/10.1007/
978-3-319-08867-9_49.

[4] JACKSON, D. Software Abstractions — Logic, Lan-
guage, and Analysis, revised ed. MIT Press, Cam-
bridge, MA, USA, 2012. https://mitpress.mit.edu/books/
software-abstractions-revised-edition.

[5] LAMPORT, L. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley Longman, Amsterdam, The
Netherlands, 2002. http://research.microsoft.com/users/
lamport/tla/book.html.

[6] LEINO, K. R. M. Dafny: An Automatic Program Ver-
ifier for Functional Correctness. In Logic Program-
ming and Automated Reasoning (LPAR-16), Dakar, Sene-
gal, April 25–May 1, 2010 (2010), E. M. Clarke and
A. Voronkov, Eds., vol. 6355 of Lecture Notes in Com-
puter Science, Springer, Berlin, Germany, pp. 348–370.
doi:10.1007/978-3-642-17511-4_20.

[7] LOGTECHEDU. JKU LIT Project LOGTECHEDU, July
2019. http://fmv.jku.at/logtechedu.

[8] MERZ, S., AND VANZETTO, H. Encoding TLA+ into Many-
Sorted First-Order Logic. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z - 5th International Conference,
ABZ 2016 (Cham, 2016), M. J. Butler, K.-D. Schewe,
A. Mashkoor, and M. Biró, Eds., vol. 9675 of Lecture
Notes in Computer Science, Springer International Pub-
lishing, pp. 54–69. doi:10.1007/978-3-319-33600-8_3.

[9] NIPKOW, T., PAULSON, L. C., AND WENZEL, M. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic.
Springer, Berlin, Germany, October 2017. http://isabelle.
in.tum.de/doc/tutorial.pdf.

[10] REICHL, F.-X. The Integration of SMT Solvers into the
RISCAL Model Checker. Master’s thesis, Research Insti-
tute for Symbolic Computation (RISC), Johannes Kepler
University Linz, Austria, April 2020. https://www.risc.jku.
at/publications/download/risc_6103/Thesis.pdf.

[11] RISCAL. The RISC Algorithm Language (RISCAL),
March 2017. https://www.risc.jku.at/research/formal/
software/RISCAL.

[12] SCHREINER, W. The RISC Algorithm Language
(RISCAL) — Tutorial and Reference Manual (Version 1.0).
Technical report, RISC, Johannes Kepler University, Linz,
Austria, March 2017. Available at [11].

[13] SCHREINER, W. Validating Mathematical Theories and
Algorithms with RISCAL. In CICM 2018, 11th Conference
on Intelligent Computer Mathematics, Hagenberg, Aus-
tria, August 13–17 (2018), F. Rabe, W. Farmer, G. Pass-
more, and A. Youssef, Eds., vol. 11006 of Lecture Notes
in Computer Science/Lecture Notes in Artificial Intelli-
gence, Springer, Berlin, pp. 248–254. doi:10.1007/978-
3-319-96812-4_21.

[14] SCHREINER, W. Logic and Semantic Technologies for
Computer Science Education. In Informatics’2019, 2019
IEEE 15th International Scientific Conference on Infor-
matics (Poprad, Slovakia, November 20–22, 2019), IEEE,
pp. 7–12. To appear.

[15] SCHREINER, W. Theorem and Algorithm Checking
for Courses on Logic and Formal Methods. In Post-
Proceedings ThEdu’18, Theorem proving components for
Educational software, Oxford, United Kingdom, July 18,
2018 (2019), P. Quaresma and W. Neuper, Eds., vol. 290
of EPTCS, pp. 56–75. doi:10.4204/EPTCS.290.5.

[16] SCHREINER, W., BRUNHUEMER, A., AND FÜRST, C.
Teaching the Formalization of Mathematical Theories
and Algorithms via the Automatic Checking of Finite
Models. In Post-Proceedings ThEdu’17, Theorem prov-
ing components for Educational software, Gothenburg,
Sweden, August 6, 2017 (2018), P. Quaresma and
W. Neuper, Eds., vol. 267 of EPTCS, pp. 120–139.
doi:10.4204/EPTCS.267.8.

[17] SEMTECH. SemTech — Semantic Technologies for Com-
puter Science Education, January 2018. https://www.risc.
jku.at/projects/SemTech.

[18] STEINGARTNER, W., ELDOJALI, M. A. M., RADAKOVIC,
D., AND DOSTÁL, J. Software support for course
in Semantics of programming languages. In IEEE
14th International Scientific Conference on Informatics
(Poprad, Slovakia, November 14–16, 2017), pp. 359–364.
doi:10.1109/INFORMATICS.2017.8327275.

[19] STEINGARTNER, W., AND NOVITZKÁ, V. Learning tools
in course on semantics of programming languages. In
MMFT 2017 — Mathematical Modelling in Physics and
Engineering (Czestochowa, Poland, September 18–21,
2017), pp. 137–142. http://im.pcz.pl/konferencja/get.php?
doc=MMFT2017_streszczenia_wykladow.pdf.

[20] THIÉBAUT, D. Automatic Evaluation of Computer Pro-
grams Using Moodle’s Virtual Programming Lab (VPL)
Plug-in. Journal of Computing Sciences in Colleges 30,
6 (June 2015), 145–151. http://dl.acm.org/citation.cfm?
id=2753024.2753053.

13

