
Analysis of Maze Generating Algorithms
Gabrovšek, Peter

Abstract: In this paper our main goal is
to rank different maze generating algorithms
according to the difficulty of the generated
mazes. Following our main goal we implement
and analyse six algorithms. For the purpose of
evaluating and ranking maze generating algo-
rithms we devise four agents which solve mazes
and report the results. To assess the level of
difficulty of a maze we inspect several features
such as number of visited intersections, dead
ends, and overall steps of the agents. Accord-
ing to agents performances we rank maze gen-
erating algorithms. The best performing algo-
rithms are derived from algorithms for finding
uniform spanning trees in graphs.

Index Terms: assessment, difficulty , gener-
ator , labyrinth, maze.

1. Introduction

Mazes are closely related to labyrinths which
have been known since ancient times. Usually
they were build with naturally occurring materi-
als. Originally they have had spiritual connota-
tion [8]. Their later purpose was mainly amuse-
ment. In the modern times mazes became in-
triguing for scientists, especially for mathemati-
cians.

Mazes are used in various fields. Besides
entertainment purposes, mazes are also used in
psychology studies [9, 13] of human and an-
imal behaviour to determine space awareness
and also intelligence. Among others, mazes can
be used in physics, for example in study of crys-
tal structures [4].

There are many maze generating algorithms
[2, 7] but hardly anyone considered checking
their level of difficulty and complexity.

Manuscript received Dec, 2017.
The author is with the Faculty of Computer and

Information Science, University of Ljubljana, Slovenia
(e-mail: peter.gabrovsek@fri.uni-lj.si).

We describe and analyse six maze generat-
ing algorithms. Our algorithms are originally
used in graph theory [14, 15]. By using spe-
cialisation method [3] we implemented them
to generate mazes. We generate mazes which
are represented as trees only. Our focus is on
2D and planar mazes that do not contain over-
passes.

We devise four different agents that walk
across the mazes to help us analyse the diffi-
culty of each maze type. They tell us the num-
ber of steps they make from the beginning to
the end as well as the number of visited inter-
sections and dead ends.

Finally, we analyse the relation between
properties of mazes and attributes that agents
provide us with. Final goal is to determine
which algorithms are giving us the most difficult
mazes.

In entertainment as well as psychology the
levels of difficulty can be used for generating
mazes for different user groups.

In the next section we describe six maze
generating algorithms. In section 3 we establish
the maze solving agents and their properties.
In section 4 we analyse mazes and present the
results. In section 5 we conclude the paper.

2. Generating Mazes

Let us first explain the data structure that we
are using to represent maze. We start with the
square1 grid graph. Initially, all the edges (con-
nections) represent walls. The algorithms con-
vert specific walls into passages. After the algo-
rithms do their job, the subgraph made out of
passages represent a tree-like structured maze.
In general mazes can contain loops, overpasses,
etc., but we focused on simple ones.

1All analysed mazes that are square, but for the space
saving and aesthetic reasons figures show rectangular
mazes.



Every maze has properties which we use
in the analysis, such as size, number of inter-
sections, number of branches, average branch
length and length of the dead ends (branches
that do not split further).

2.1 Recursive Backtracking (RB)

Firstly, we implement depth-first search (DFS)
algorithm also called backtracking [12]. Main
idea of DFS is to go forward as much as pos-
sible, then backtrack to the first branch that
has unvisited paths and repeat until everything
is searched. We use randomised DFS to ob-
tain random (non-trivial) mazes. Basic imple-
mentation of DFS uses recursion. However, we
implemented it using an explicit stack to avoid
stack overflow error caused by large mazes hav-
ing long paths.

To generate the maze we mark the starting
vertex v as visited, push it on the stack and
then repeat the following until the stack is not
empty:

1. Pop the vertex v from the stack.

2. Choose random unvisited neighbour u of
v.

3. Visit u.

4. Connect u and v.

5. Push u on the stack.

The maze generated with RB is shown in
Figure 1.

Figure 1: A maze generated with Recursive
backtracking algorithm.

2.2 Aldous-Broder Algorithm (AB)

Aldous-Broder [14] uses random walk until all
vertices are visited. During the walk, suitable
connections between the vertices are created
(under certain criteria). This algorithm is orig-
inally used to find uniform spanning tree [1] in
the graph.

To implement AB we mark starting vertex
v as visited and repeat the following steps:

1. Choose a random neighbour u of v (not
necessarily unvisited).

2. If u is not visited visit it, and connect it
with v.

3. Set v as u.

The Aldous-Broder algorithm is very sim-
ple to implement. The simplicity contributes
to its relatively high running-time performance,
at least for the sizes of the mazes in our anal-
ysis.

The maze generated with AB is shown in
Figure 2.

Figure 2: A maze generated with Aldous-
Broder algorithm.

2.3 Wilson’s Algorithm (W)

Wilson’s algorithm is originally used to find a
uniform spanning tree in the graph [14]. The
algorithm is very similar to Aldous-Broder with
slightly better asymptotic time-complexity in
theory. In practice Wilson turns out to be
slower because it uses dictionaries unlike the
Aldous-Broder, which uses only arrays.



When implementing W, we firstly initialise
dictionary d, choose random vertex v0, visit it,
and repeat the following steps:

1. Choose random unvisited vertex w

2. Repeat until we find a visited vertex:
Choose a random neighbour u of w and
put the following entry in the dictionary:
d[w] = u. Remember u as w (w = u).
NOTE: Do not visit any vertex yet!

3. With the help of d, we visit and connect
vertices from w to v0 (repeat: visit w,
connect w and d[w], w = d[w]).

The last step of the procedure may look con-
fusing, but the dictionary d automatically takes
care of finding the path from w to v0.

The maze generated with W is shown in
Figure 3.

Figure 3: A maze generated with Wilson’s al-
gorithm.

2.4 Prim’s Algorithm (P)

Prim’s algorithm is derived from randomised
breadth-first search (BFS). The basic algorithm
is used to search for a minimum spanning tree
in a graph [5]. This algorithm creates a lot of
short dead ends, which leads to high miss rate
of agents but not for humans.

To implement P we first initialise the set f
(frontier), add a random vertex v from f , and
mark v as visited. While f is not empty, repeat:

1. Choose random vertex v from f and re-
move it from f .

2. Connect v with random visited neigh-
bour.

3. Add unvisited neighbours of v to f .

The maze generated with P is shown in Fig-
ure 4.

Figure 4: A maze generated with Prim’s algo-
rithm.

2.5 Hunt and Kill (HK)

Hunt and Kill algorithm uses the idea of the
recursive backtrack but it starts from a random
unvisited vertex whenever hits the dead end.
It does not backtrack to the last vertex with
unvisited neighbours.

To implement HK we choose random vertex
v, mark it as visited, and repeat the following
steps until all vertices are visited:

1. If v has unvisited neighbours, choose one
(u), visit it and connect v and u.

2. Find and visit unvisited vertex v which
has a visited neighbour u, connect u and
v, and remember u as v (v = u).

The maze generated with HK is shown in
Figure 5.

2.6 Kruskal’s Algorithm (K)

The Kruskal’s algorithm is originally used to
find minimum spanning tree in a graph [15].
This is the most complex algorithm to imple-
ment out of all considered algorithms in this pa-
per thus it leads to high time complexity. With
algorithm optimisation and tuning techniques



Figure 5: A maze generated with Hunt and Kill
algorithm.

we could improve the time-performance of this
algorithm.

To implement K we set unique label to ev-
ery vertex. We get a set E of all possible con-
nections (edges) among neighbouring vertices.
Repeat until E is not empty:

1. Choose random edge e and remove it
from E.

2. If vertices u, v ∈ e have different labels
(lu, lv), connect u and v, and give label
lu to all vertices with label lv.

The maze generated with K is shown in Fig-
ure 6.

Figure 6: A maze generated with Kruskal’s al-
gorithm.

3. Solving Agents

Agents help us understand how difficult a par-
ticular maze is to solve. Agents produce vari-
ous attributes of mazes with which we will later

analyse the difficulty of the mazes. These at-
tributes are:

• number of steps needed from the begin-
ning to the end of the maze,

• number of visited cells,

• number of visited intersections,

• number of visited dead ends.

3.1 Random Walk (RW) Agent

The agent walks randomly from a vertex to its
random neighbour until it gets to the end of
the maze.

In particular, when located in a node, an
agent selects a neighbouring node uniformly at
random and moves into it. It repeats this pro-
cedure until it finds the end.

3.2 Depth First Search (DFS) Agent

This agent walks as far as it can until it hits
a dead end. The agent then backtracks to the
first node with unvisited neighbours. It keeps
repeating the walk, until it comes to the end
of the maze. The precedence of agent’s turns
at intersections are manually predefined: east,
south, west, north.

3.3 Heuristic Depth First Search (HDFS)
Agent

Similar to the DFS agent, but selects the pre-
ferred directions with a simple heuristic. In par-
ticular neighbours with lower Manhattan dis-
tance to the end of the maze are preferred.

3.4 Breadth First Search (BFS) Agent

This agent uses the idea of BFS [6] to solve
the maze but instead of the queue to visit the
nodes the agent first visits the nodes closest to
the end of the maze. This agent resembles a
human solver which can freely jump from one
path to another (at least when solving printed
mazes).



4. Analysis and Results

In this section we analyse the difficulty of the
mazes constructed by the above six generating
algorithms. We analyse properties of mazes and
results of solving agents to determine difficulty
of mazes. For the sake of completeness we also
experimentally analyse the time performance of
algorithms.

4.1 Maze Generating Time

We did not make a formal analysis of time com-
plexity of algorithms but an experimental one.
Our goal was not the perfect implementation
of algorithms but the quality of the results that
they produce. Hence the lack of focus on the
analysis of time complexity.

We analyse the execution time of maze gen-
erating algorithms with respect to the maze
size. We did not bother to consider the num-
ber of nodes of the maze which would be a true
measure. We used only the length of the side of
the square grid graph because we are interested
in relations among performances of different al-
gorithms. The result is shown in Figure 7.

Figure 7: Running time of the maze generating
algorithms with respect to the maze size.

Some algorithms stand out performance-
wise. They are either exceptionally slower or
faster than we would expect:

• Kruskal is the slowest.

• Wilson is very naive with random be-
haviour which makes it slow, again.

• On the other hand we have Aldous-
Broder algorithm which is surprisingly
fast. It is simple and uses primitives in-
stead of higher data structures.

4.2 Maze Properties

To analyse the difficulty of a maze, we consider
the following properties:

• size s,

• number of intersections ni; intersections
are vertices with more than two neigh-
bours,

• number of dead ends nde; dead ends are
vertices with only one neighbour.

The bigger ni the more difficult is the maze.
The same goes for dead ends.

We generated 1000 mazes (of size 100 ×
100) of each type, calculated the number of in-
tersections and dead ends. The average results
are shown in Table 1.

algorithm ni nde rank
Prim 2946 3559 1
Kruskal 2654 3058 2
Aldous-Broder 2577 2933 3
Wilson 2576 2932 4
Hunt and Kill 920 939 5
Recursive Backtrack 869 898 6

Table 1: Average number of intersections and
dead ends of the mazes.

Table 1 indicates that certain mazes gener-
ated with similar algorithms behave similarly.
In particular Aldous-Broder and Wilson have
practically the same number of intersections
and dead ends. They both originate from al-
gorithms for finding uniform spanning tree.

Hunt and Kill and Recursive backtrack also
stand out, they have notably smaller values of
ni and nde than other mazes. These algorithms
originate from DFS.

Another pair of algorithms is Kruskal and
Prim. They originate from minimum spanning
tree algorithms but do not have such distinct
property values as other two groups.

Larger number of intersections and dead
ends means more difficult maze one can deviate



from a correct path easily. Prim and Kruskal
perform best in this case.

4.3 Agent Performance

Maze solving agents give us another set of maze
properties:

• number of steps s that agent needed to
get from the beginning to the end,

• number of visited intersections iv,

• number of visited dead ends dev.

4.3.1 Number of Steps

The basic measure is the number of steps an
agent makes from the start to the end. A step
is defined as a transition from a node to the
adjacent node.

RW DFS HDFS BFS rank
HK 7.3M 5.3k 13.3k 3.5k 1
AB 4.3M 7.1k 12.6k 3.1k 2
W 4.3M 7.2k 12.4k 3.0k 3
RB 9.1M 2.2k 14.7k 2.7k 4
K 4.0M 6.8k 12.5k 2.8k 5
P 2.3M 5.6k 15.4k 1.7k 6

Table 2: Average number of steps needed from
the start to the end.

We ranked maze generating algorithms ac-
cording to the performances of the maze solving
agents. To rank maze generating algorithms we
devised a simple method. For every algorithm
i we calculated score si:

si =
∑

A∈agents

Ai

max(A)

where Ai represents value of score of an agent
A for algorithm i, and max(A) represents the
maximum value that the agent scored among all
generating algorithms. According to the score
si we ranked generating algorithms. Algorithm
with the biggest (best) score has rank 1, etc.

According to this scoring Hunt and Kill per-
forms best, as listed in Table 2. It is interesting
that Recursive Backtrack performed the worst
although it is similar to Hunt and Kill.

4.3.2 Visited Intersections

Next, we analyse how many intersections
agents visit. The more intersections that an
agent visits the better chance to miss the right
path. Hence, the generating algorithm is more
difficult.

RW DFS HDFS BFS rank
AB 1.8M 2.9k 5.1k 850 1
W 1.7M 2.9k 5.0k 844 2
K 1.7M 2.9k 5.2k 800 3
P 1.1M 2.7k 7.3k 567 4
HK 1.0M 750 1.8k 337 5
RB 1.2M 232 2.0k 211 6

Table 3: Average number of visited intersec-
tions of each agent.

We used the same ranking technique as
in section 4.3.1. Unlike the number of steps,
here Hunt and Kill performs badly. The best
performing algorithms are Aldous-Broder and
Wilson, which original idea is finding uniform
spanning trees in graphs. They are followed by
Kruskal and Prim, etc.

4.3.3 Visited Dead Ends

The last property that we analyse is the number
of dead ends that agents visit on average.

RW DFS HDFS BFS rank
AB 0.6M 1023 1863 823 1
W 0.6M 1035 1840 816 2
K 0.6M 1030 1927 769 3
P 0.4M 974 2759 535 4
RB 0.4M 75 681 190 5
HK 0.4M 249 626 307 6

Table 4: Average number of visited dead ends
of each agent.

The ranking in Table 4 is roughly similar to
ranking in Table 3.

5. Discussion

Our goal was to rank the maze generating algo-
rithms from those that generate the most diffi-
cult mazes to those that generate the least dif-
ficult mazes. We did that with the help of sev-



eral criteria: maze properties and solving agents
performances.

We ranked the algorithms according to the
criteria. The final ranking of difficulty level: For
every measure we ranked algorithms. Finally we
calculated average of all the ranks which gives
us the final order in Table 5.

rank algorithm
1 Aldous-Broder
2 Wilson
3 Kruskal
4 Prim
5 Hunt and Kill
6 Recursive Backtracking

Table 5: Ranking of algorithms by the level of
the difficulty.

Having established the ranking of the algo-
rithms we can now find the properties that dis-
tinguish among the various levels of difficulty
of the algorithms.

The number of intersections is correlated
to the difficulty of mazes. More intersections
means that the maze is more difficult, and that
there is more chance to miss the correct path.

The type of the algorithm contributes to the
level of the difficulty:

• Best results are achieved by Aldous-
Broder and Wilson. They originate from
algorithms for finding uniform spanning
trees in graphs. We speculate that agents
have difficulty navigating through the
maze because the paths are unbiased in
any direction.

• Next pair by ranking are Kruskal and
Prim. They originate from algorithms
for finding minimum spanning trees in
graphs. In comparison to the first group
the paths here are not so evenly dis-
tributed which makes the mazes less dif-
ficult.

• The worst performing pair is Recursive
Backtracking, and Hunt and Kill algo-
rithms. They originate from the graph
search algorithms. On the other hand
most solving agents use the same ap-
proach which enables them to solve the

maze easily. Therefore the mazes are
generated in a way that suit the solv-
ing agents. To substantiate this state-
ment we implemented Recursive Back-
tracking maze generator that generates
mazes from the end to the beginning,
the opposite of the original. In this case
the agents performed considerably worse.
The number of steps, visited intersec-
tions, and visited dead ends were 3 to 7
times higher than at the original Recur-
sive Backtracking mazes. An exception
was HDFS agent which improved its per-
formance.

6. Conclusion

In our paper we studied and analysed three dif-
ferent approaches of generating mazes and were
able to rank them by levels of difficulty. Nev-
ertheless all three considered types were some-
how kindred since they are used for finding trees
in graphs. In the future it would be useful
to take into the consideration algorithms with
completely different approach [10, 11] and then
compare the results.

As a continuation of our work it would be
worthwhile looking into more complex mazes
such as spatial, braided, overlapping, etc.

References

[1] David J Aldous. The random walk construction of
uniform spanning trees and uniform labelled trees.
SIAM Journal on Discrete Mathematics, 3(4):450–
465, 1990.

[2] Daniel Ashlock, Colin Lee, and Cameron McGuin-
ness. Search-based procedural generation of maze-
like levels. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):260–273, 2011.

[3] V. Blagojević, D. Bojić, M. Bojović, M. Cve-
tanović, J. Dordević, D. Durdević, B. Furlan,
S. Gajin, Z. Jovanović, D. Milićev, V. Miluti-
nović, B. Nikolić, J. Protić, M. Punt, Z. Radivo-
jević, Ž. Stanisavljević, S. Stojanović, I. Tartalja,
M. Tomašević, and P. Vuletić. Chapter one - a
systematic approach to generation of new ideas for
phd research in computing. In Ali R. Hurson and
Veljko Milutinović, editors, Creativity in Comput-
ing and DataFlow SuperComputing, volume 104
of Advances in Computers, pages 1 – 31. Elsevier,
2017.

[4] Simon R Broadbent and John M Hammersley. Per-
colation processes: I. crystals and mazes. In Math-



ematical Proceedings of the Cambridge Philosophi-
cal Society, volume 53, pages 629–641. Cambridge
University Press, 1957.

[5] John C Gower and Gavin JS Ross. Minimum span-
ning trees and single linkage cluster analysis. Ap-
plied statistics, pages 54–64, 1969.

[6] M Tim Jones. Artificial Intelligence: A Systems
Approach: A Systems Approach. Jones & Bartlett
Learning, 2015.

[7] Aliona Kozlova, Joseph Alexander Brown, and Eliz-
abeth Reading. Examination of representational
expression in maze generation algorithms. In Com-
putational Intelligence and Games (CIG), 2015
IEEE Conference on, pages 532–533. IEEE, 2015.

[8] Gailand Macqueen. The spirituality of mazes and
labyrinths. Wood Lake Publishing Inc., 2005.

[9] David S Olton. Mazes, maps, and memory. Amer-
ican psychologist, 34(7):583, 1979.

[10] Andrew Pech, Philip Hingston, Martin Masek,
and Chiou Peng Lam. Evolving cellular automata
for maze generation. In Australasian Conference
on Artificial Life and Computational Intelligence,
pages 112–124. Springer, 2015.

[11] AM Reynolds. Maze-solving by chemotaxis. Phys-
ical Review E, 81(6):062901, 2010.

[12] Robert Tarjan. Depth-first search and linear graph

algorithms. SIAM journal on computing, 1(2):146–
160, 1972.

[13] Ian Q Whishaw and Jo-Anne Tomie. Of mice and
mazes: similarities between mice and rats on dry
land but not water mazes. Physiology & behavior,
60(5):1191–1197, 1996.

[14] David Bruce Wilson. Generating random spanning
trees more quickly than the cover time. In Proceed-
ings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 296–303. ACM,
1996.

[15] Hande Yaman, Oya Ekin KaraşAn, and Mustafa Ç
PıNar. The robust spanning tree problem with in-
terval data. Operations research letters, 29(1):31–
40, 2001.

Peter Gabrovšek received his master degree in
Computer Science from the University of Ljubl-
jana in 2017. Currently, he is with the Lab-
oratory of Algorithmics, Faculty of Computer
and Information Science, University of Ljubl-
jana, Slovenia, as an assistant and PhD stu-
dent. His research interests include algorith-
mics, mathematics, and neural networks.




