

The IPSI BgD Transactions

on

Internet Research

Multi-, Inter-, and Trans-disciplinary Issues in Computer Science and Engineering

A publication of IPSI Bgd Internet Research Society, New York, Frankfurt, Tokyo, Belgrade

July 2018 Volume 14 Number 2 (ISSN 1820-4503)

Special issue: „Recent Advances in DRAM and Flash Memory Architectures“

Guest Editors: Onur Mutlu, Saugata Ghose, and Rachata Ausavarungnirun

Table of Contents:

Guest Editor Introduction
Mutlu, Onur; Ghose, Saugata; and Ausavarungnirun, Rachata..1

Tiered-Latency DRAM: Enabling Low-Latency Main Memory at Low Cost
Lee, Donghyuk; Kim, Yoongu; Seshadri, Vivek; Liu, Jamie; Subramanian, Lavanya;
 and Mutlu, Onur..5

Adaptive-Latency DRAM: Reducing DRAM Latency by Exploiting Timing Margins
Lee, Donghyuk; Kim, Yoongu; Pekhimenko, Gennady; Khan, Samira; Seshadri, Vivek; Chang, Kevin;
 and Mutlu, Onur..13

Flexible-Latency DRAM: Understanding and Exploiting Latency Variation
 in Modern DRAM Chips
Chang, Kevin K.; Kashyap, Abhijith; Hassan, Hasan; Ghose, Saugata; Hsieh, Kevin;
 Lee, Donghyuk; Li, Tianshi; Pekhimenko, Gennady; Khan, Samira; and Mutlu, Onur.............23

Voltron: Understanding and Exploiting Voltage–Latency–Reliability Trade-Offs
 in Modern DRAM Chips to Improve Energy Effciency
Chang, Kevin K.; Yağlıkçı, Abdullah Giray; Ghose, Saugata; Agrawal, Aditya;
 Chatterjee, Niladrish; Kashyap, Abhijith; Lee, Donghyuk; O’Connor, Mike;
 Hassan, Hasan; and Mutlu, Onur ...32

SoftMC: Practical DRAM Characterization Using an FPGA-Based Infrastructure
Hassan, Hasan; Vijaykumar, Nandita; Khan, Samira; Ghose, Saugata; Chang, Kevin;
 Pekhimenko, Gennady; Lee, Donghyuk; Ergin, Oguz; and Mutlu, Onur41

RowClone: Accelerating Data Movement and Initialization Using DRAM
Seshadri, Vivek; Kim, Yoongu; Fallin, Chris; Lee, Donghyuk; Ausavarungnirun, Rachata;
 Pekhimenko, Gennady; Luo, Yixin; Mutlu, Onur; Gibbons, Phillip B.; Kozuch, Michael A.;
 and Mowry, Todd C. ...53

LISA: Increasing Internal Connectivity in DRAM for Fast Data Movement
 and Low Latency
Chang, Kevin K.; Nair, Prashant J.; Ghose, Saugata; Lee, Donghyuk; Qureshi, Moinuddin K.;
 and Mutlu, Onur..63

Experimental Characterization, Optimization, and Recovery of Data Retention Errors
 in MLC NAND Flash Memory
Cai, Yu; Luo, Yixin; Haratsch, Erich F.; Mai, Ken; Ghose, Saugata; and Mutlu, Onur71

Read Disturb Errors in MLC NAND Flash Memory
Cai, Yu; Luo, Yixin; Ghose, Saugata; Haratsch, Erich F.; Mai, Ken; and Mutlu, Onur82

Characterizing, Exploiting, and Mitigating Vulnerabilities in MLC NAND
 Flash Memory Programming
Cai, Yu; Ghose, Saugata; Luo, Yixin; Mai, Ken; Mutlu, Onur; and Haratsch, Erich F.94

The IPSI BgD Internet Research Society
The Internet Research Society is an association of people with professional interest in the field of the Internet.

All members will receive these TRANSACTIONS upon payment of the annual Society membership fee of €500
(air mail printed matters delivery).

 Member copies of Transactions are for personal use only

IPSI BGD TRANSACTIONS ON INTERNET RESEARCH
www.internetjournals.net

STAFF
Veljko Milutinovic,

Co-Editor-in-Chief
 Jakob Salom,
 Co-Editor-in-Chief

Nenad Korolija,

Journal Manager

Department of Computer Engineering

ETF

University of Belgrade
POB 35-54

Belgrade, Serbia
Tel: (381) 64-1389281

 Department of Computer Science

 Mathematical Institute of SANU

 University of Belgrade
 POB 367

 Belgrade, Serbia
 Tel: (381) 64-8183030

Department of Computer Engineering

ETF
University of Belgrade
POB 35-54
Belgrade, Serbia
Tel: (381) 65-6725938

vm@eft.rs jakob.salom@yahoo.com nenadko@gmail.com
EDITORIAL BOARD

Lipkovski, Aleksandar Gonzalez, Victor Milligan, Charles
The Faculty of Mathematics,
Belgrade,

University of Oviedo,
Gijon,

Sun Microsystems,
Colorado

Serbia Spain USA
Blaisten-Barojas, Estela Janicic, Predrag Kovacevic, Milos
George Mason University,
Fairfax, Virginia

The Faculty of Mathematics,
Belgrade

School of Civil Engineering,
Belgrade

USA Serbia Serbia
Crisp, Bob Jutla, Dawn Neuhold, Erich
University of Arkansas,
Fayetteville, Arkansas

Sant Marry's University,
Halifax

Research Studios Austria,
Vienna

USA Canada Austria
Domenici, Andrea Karabeg, Dino Piccardi, Massimo
University of Pisa,
Pisa

Oslo University,
Oslo

Sydney University of Technology,
Sydney

Italy Norway Australia
Flynn, Michael Kiong, Tan Kok Radenkovic, Bozidar
Stanford University,
Palo Alto, California

National University
of Singapore

Faculty of Organizational Sciences,
Belgrade

USA Singapore Serbia
Fujii, Hironori Kovacevic, Branko Rutledge, Chip
Fujii Labs, M.I.T.,
Tokyo

School of Electrical Engineering,
Belgrade

Purdue Discovery Park,
Indiana

Japan Serbia USA
Ganascia, Jean-Luc Patricelli, Frederic Mester, Gyula
Paris University,
Paris

ICTEK Worldwide
L'Aquila

University of Szeged,
Szeged

France Italy Hungary

Guest Editor Introduction:
Recent Advances in DRAM and Flash Memory Architectures

Onur Mutlu1,2 Saugata Ghose2 Rachata Ausavarungnirun2

1ETH Zürich 2Carnegie Mellon University

Memory and storage systems are a fundamental system
performance, energy, and reliability bottleneck in modern
systems [1, 2, 3, 34, 35, 36]. This bottleneck is becoming incre-
asingly severe due to (1) the very limited latency reductions
in memory and storage devices over the last several years;
(2) aggressive manufacturing process technology scaling and
other techniques to improve memory density, such as multi-
level cell technology, which increase the storage capacity of
these devices, but introduce more raw bit errors and increase
manufacturing process variation; (3) limited pin counts in
chip packages, which prevent system designers from adding
more and/or wider buses to increase bandwidth; (4) overw-
helmingly data-intensive applications, which require high-
bandwidth access to very large amounts of data; and (5) the
increasing fraction of overall system energy consumed by me-
mory systems and data movement. To make matters worse,
it is becoming increasingly di�cult to continue scaling these
devices to smaller process technology nodes, and even though
alternative emerging memory and storage technologies can
potentially alleviate some of the shortcomings of existing
memory and storage technologies, they also introduce new
shortcomings that were previously absent. Therefore, there is
a pressing need to comprehensively understand and mitigate
these bottlenecks in both existing and emerging memory and
storage systems and technologies.

This issue features extended summaries and retrospecti-
ves of some of the recent research done by our group, SA-
FARI [41, 43], on (1) understanding, characterizing, and mo-
deling various critical properties of modern DRAM and
NAND �ash memory, the dominant memory and storage
technologies, respectively; and (2) several new mechanisms
we have proposed based on our observations from these ana-
lyses, characterization, and modeling, to tackle various key
challenges in memory and storage scaling. In order to un-
derstand the sources of various bottlenecks of the dominant
memory and storage technologies, these works perform ri-
gorous studies of device-level and application-level behavior,
using a combination of detailed simulation and experimental
characterization of real memory and storage devices.

The works that perform real device characterization make
use of custom FPGA-based platforms that we build to pro-
vide us with �ne-grained control over the devices. We de-
vise speci�c tests that perform a controlled measurement of
each phenomenon that we aim to explore. Our experimental
characterizations have often discovered many unexpected
types of behavior in real state-of-the-art devices, and have

inspired the research community to pursue further investiga-
tions (e.g., on the RowHammer phenomenon [21, 34], DRAM
retention behavior [20, 30, 39], NAND �ash memory error
patterns [1, 2, 3, 5, 6, 7, 8, 9, 11]). In order to aid future research,
we have released much of our experimental characterization
data online [43, 45], and have open-sourced our DRAM cha-
racterization platform, SoftMC [19, 44].

The works that perform application and architectural ana-
lyses rely on real system characterizations and simulation
to develop a rigorous understanding of the bottlenecks and
to provide solutions. Our analyses have shown key scaling
bottlenecks, proposed new solutions, and have inspired the re-
search community to develop further investigations (e.g., on
DRAM refresh [12, 30, 31], DRAM latency reduction [28, 29],
the RowHammer phenomenon [21, 34], and in-memory data
movement and computation [16, 47, 49, 50]). In order to aid
future research, we have released our �exible and extensi-
ble memory system simulator, Ramulator, as open-source
software [22, 42].

In each work that is featured in this issue, based on our
observations and analyses from our experimental studies of
real systems and applications as well as future trends and
problems, we propose novel solutions that overcome many
of the scaling bottlenecks that memory and storage systems
face. For each of the works presented in this special issue,
its corresponding article examines the work’s signi�cance
in the context of modern computer systems, and discusses
several new research questions and directions that each work
motivates.

We start with �ve of our works that explore new opportu-
nities in DRAM systems to reduce latency and/or energy con-
sumption. As we mentioned earlier, the latency and energy
consumption of DRAM have not reduced signi�cantly in the
last several years. We �nd that by introducing heterogeneity
into DRAM architectures, or by taking advantage of the ex-
isting variation within and across DRAM modules, we can
develop new mechanisms that improve DRAM access latency
and/or energy e�ciency.

The �rst paper in the issue describes Tiered-Latency DRAM
(TL-DRAM), which originally appeared in HPCA 2013 [29].
This work (1) proposes a new DRAM architecture that can
provide us with the performance bene�ts of costly reduced-
latency DRAM products in a cost-e�ective manner, by isola-
ting a small portion of a DRAM array so that it can behave as
a low-latency DRAM bu�er; and (2) exploits the low-latency

1

in-DRAM bu�er using various hardware or software mecha-
nisms to improve overall system performance.

The second paper in the issue describes Adaptive-Latency
DRAM (AL-DRAM), which originally appeared in HPCA
2015 [28]. This work experimentally characterizes (1) the
large latency variation across DRAM modules and (2) the
large timing margins designed to account for worst-case va-
riation and operating conditions. Based on the �ndings from
the characterization, the work proposes a new mechanism
that can identify and safely reduce the timing margin to speed
up DRAM accesses, and thus improve overall system perfor-
mance and energy consumption.

The third paper in the issue describes Flexible-Latency
DRAM (FLY-DRAM), which originally appeared in SIGME-
TRICS 2016 [15]. This work experimentally characterizes
the latency variation that exists within each DRAM module,
showing that there are regions of fast cells and regions of
slow cells that exist in real DRAM modules. Based on these
�ndings, the work proposes a new mechanism that identi-
�es regions of fast cells and reduces the latency of DRAM
operations to these regions.

The fourth paper in the issue describes Voltron, which
originally appeared in SIGMETRICS 2017 [13]. This work
experimentally characterizes the relationship between DRAM
latency, reliability, and supply voltage, showing that these
three can be traded o� intelligently for various purposes. The
work proposes a new mechanism that uses this relationship
to dynamically reduce DRAM energy consumption within a
bounded performance loss target.

The �fth paper in the issue describes SoftMC, which ori-
ginally appeared in HPCA 2017 [19]. This work describes
our open-source DRAM characterization infrastructure, and
demonstrates its versatility for use in a wide range of DRAM
research topics. SoftMC is a result of 6+ years of e�ort, which
led to at least 11 works at top conferences, and we hope it
will enable other researchers to explore the detailed behavior
of existing and emerging memory architectures and develop
new mechanisms and memory architectures.

Next, we look at a couple of our works that reduce data
movement between the CPU and DRAM, as this movement
consumes (1) a large fraction of DRAM energy and (2) much
of the limited available DRAM bandwidth. We �nd that a
large portion of DRAM bandwidth is consumed by the mo-
vement of data between DRAM and the CPU to perform
simple operations such as data copy and initialization. We
can instead take advantage of the underlying DRAM archi-
tecture to e�ciently perform these simple operations directly
within DRAM, eliminating the need to move the data to/from
the CPU.

The sixth paper in the issue describes RowClone, which
originally appeared in MICRO 2013 [50]. Many applications
perform data copy and initialization operations, requiring
only simple computation, but these operations require expen-
sive data movement between the CPU and DRAM. This work

proposes a new DRAM architecture that can internally per-
form bulk data copy and initialization operations at very low
hardware cost, avoiding the costly data movement, and shows
that doing so provides 1–2 orders of magnitude speedup and
energy reduction for such operations.

The seventh paper in the issue describes low-cost interlin-
ked subarrays (LISA), which originally appeared in HPCA
2016 [16]. This work (1) builds a general substrate that facili-
tates the bulk movement of data between two di�erent rows
in memory by improving the interconnectivity of DRAM
arrays, and (2) demonstrates that LISA can be used to e�-
ciently implement a number of mechanisms, such as bulk
data copy/initialization, latency reduction, and fast in-DRAM
caching. Each of these mechanisms provides signi�cant per-
formance and energy improvements.

Finally, we investigate the reliability of NAND �ash me-
mory. As NAND �ash memory based solid-state drives (SSDs)
are now widely-used in a large variety of modern systems
(e.g., data centers [33,38,46], smartphones), there is continued
demand to increase the density of SSDs while lowering the
cost per bit. While manufacturers have employed several
methods (e.g., aggressive manufacturing process technology
scaling and multi-level cell technology), these methods have
exacerbated a number of sources of raw bit errors. Due to
limitations to the number of errors that can be corrected by
error-correcting codes (ECC), SSDs have a limited lifetime,
after which manufacturers cannot reliably retain data for a
minimum guaranteed time without data loss [1, 2, 3]. Over
the last decade, as a result of aggressive density scaling, the
typical lifetime of an SSD has dropped by 1–2 orders of mag-
nitude, and the various sources of raw bit errors now pose a
key scaling challenge for storage [1,2,3]. As a sampling of our
7+ years of research into NAND �ash memory reliability, we
feature three papers that design mechanisms to signi�cantly
mitigate reliability issues and extend the limited lifetime of
NAND �ash memory based devices.

The eighth paper in the issue describes a new data retention
study in NAND �ash memory, which originally appeared in
HPCA 2015 [7]. This work experimentally characterizes the
susceptibility of state-of-the-art NAND �ash memory to data
retention errors using our FPGA-based �ash memory testing
infrastructure [1, 2, 3, 5], and proposes (1) a new mechanism
that mitigates the impact of retention errors at runtime, which
increases the lifetime of the SSD; and (2) a new mechanism
that exploits retention behavior to recover data in the event
of data loss, thereby improving SSD robustness.

The ninth paper in the issue describes a new read disturb
study in NAND �ash memory, which originally appeared in
DSN 2015 [6]. This work experimentally characterizes read
disturb errors in NAND �ash memory, where a read operation
introduces errors in unread parts of the memory. Based on
the characterization, the work proposes (1) a new mechanism
that mitigates read disturb errors, thereby improving the SSD
lifetime; and (2) a new mechanism that exploits read disturb

2

2

behavior to recover data in the event of data loss, thereby
improving SSD robustness.

The last paper in the issue describes a new study on two-
step programming in NAND �ash memory, which originally
appeared in HPCA 2017 [4]. This work demonstrates that the
programming algorithm used in many state-of-the-art NAND
�ash memory devices can introduce previously-unknown
data vulnerabilities, which can be exploited by malicious ap-
plications to perform security attacks. The work proposes
three mechanisms to eliminate or mitigate these vulnerabili-
ties, thereby improving both reliability and security.

Throughout all of these works, we �nd that by understan-
ding and taking advantage of the behavior and architecture
of memory and storage devices and appropriately modifying
them at low cost and low overhead, we can successfully miti-
gate many of the scalability challenges in memory and storage
devices. Even though the works presented are described in
the context of DRAM and NAND �ash memory, the two domi-
nant memory and storage technologies of today, we believe
many of the basic ideas and concepts can be applied or adap-
ted to emerging memory technologies [32], e.g., phase-change
memory [24, 25, 26, 40, 53, 54, 55], STT-MRAM [18, 23, 37], and
memristors/RRAM [17, 51, 52]. We hope that the works featu-
red in this special issue inspire readers to explore the presen-
ted challenges, and to develop new solutions that can enable
high-performance, low-energy, low-latency, high-reliability
memory and storage systems, and thus the computing sys-
tems, of the future.

Acknowledgments

The works featured in this issue, along with our related
works that we reference in each featured work, are a result
of the research done together with many students and col-
laborators over the course of the past 10+ years, whose con-
tributions we acknowledge. In particular, we acknowledge
and appreciate the dedicated e�ort of current and former
students and postdocs in our research group, SAFARI [41,43],
who contributed to the ten featured works, including Yu Cai,
Kevin Chang, Chris Fallin, Hasan Hassan, Kevin Hsieh, Ben
Jaiyen, Abhijith Kashyap, Samira Khan, Yoongu Kim, Tianshi
Li, Jamie Liu, Donghyuk Lee, Yixin Luo, Justin Meza, Gen-
nady Pekhimenko, Vivek Seshadri, Lavanya Subramanian,
Nandita Vijaykumar, and Abdullah Giray Yağlıkçı.

Aside from our featured works and other referenced papers
from our group, where a wealth of information on modern
memory and storage systems can be found, at least four Ph.D.
dissertations have shaped the works that we feature in this
special issue:
• Yu Cai’s thesis entitled “NAND Flash Memory: Characte-

rization, Analysis, Modeling and Mechanisms” [10],
• Donghyuk Lee’s thesis entitled “Reducing DRAM Latency

at Low Cost by Exploiting Heterogeneity” [27],

• Vivek Seshadri’s thesis entitled “Simple DRAM and Vir-
tual Memory Abstractions to Enable Highly E�cient Me-
mory Subsystems” [48], and

• Kevin Chang’s thesis entitled “Understanding and Impro-
ving the Latency of DRAM-Based Memory Systems” [14].

We also acknowledge various funding agencies (the Nati-
onal Science Foundation, the Semiconductor Research Cor-
poration, the Intel Science and Technology Center on Cloud
Computing, CyLab, the CMU Data Storage Systems Center,
and the NIH) and industrial partners (AMD, Facebook, Goo-
gle, HP Labs, Huawei, IBM, Intel, Microsoft, NVIDIA, Oracle,
Qualcomm, Rambus, Samsung, Seagate, VMware), and ETH
Zürich, who have supported the featured works in this issue
and other related work in our research group generously over
the years.

References
[1] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,

Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
2017.

[2] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[3] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[4] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[6] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read Disturb Errors
in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery,” in
DSN, 2015.

[7] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC NAND
Flash Memory: Characterization, Optimization, and Recovery,” in HPCA, 2015.

[8] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC NAND
Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD, 2013.

[9] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime,” in
ICCD, 2012.

[10] Y. Cai, “NAND Flash Memory: Characterization, Analysis, Modelling, and Mecha-
nisms,” Ph.D. dissertation, Carnegie Mellon Univ., 2012.

[11] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution in
MLC NAND Flash Memory: Characterization, Analysis, and Modeling,” in DATE,
2013.

[12] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Acces-
ses,” in HPCA, 2014.

[13] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[14] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-
mory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[15] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[16] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[17] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[18] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding the Power Wall

with Low-Leakage, STT-MRAM Based Computing,” in ISCA, 2010.
[19] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. K. Chang, G. Pekhimenko, D. Lee,

O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infrastruc-
ture for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[20] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu, “The E�cacy
of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

3

3

[21] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[22] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” CAL, 2015.

[23] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.

[24] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
as a Scalable DRAM Alternative,” in ISCA, 2009.

[25] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” CACM, 2010.

[26] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, 2010.

[27] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,” Ph.D.
dissertation, Carnegie Mellon Univ., 2016.

[28] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in
HPCA, 2015.

[29] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[30] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[31] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[32] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A Case for E�cient
Hardware-Software Cooperative Management of Storage and Memory,” in WEED,
2013.

[33] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale Study of Flash Memory
Errors in the Field,” in SIGMETRICS, 2015.

[34] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[35] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[36] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[37] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM

Scaling and Retention Failure,” Intel Technology Journal, 2013.
[38] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caul�eld, A. Sivasubramaniam,

B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD Failures in Datacenters: What?

When? and Why?” in SYSTOR, 2016.
[39] M. Qureshi, D. H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-

Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.
[40] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main

Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.
[41] SAFARI Research Group, http://www.ece.cmu.edu/~safari/.
[42] SAFARI Research Group, “Ramulator – GitHub Repository,” https://github.com/

CMU-SAFARI/ramulator.
[43] SAFARI Research Group, “SAFARI Software Tools – GitHub Repository,” https:

//github.com/CMU-SAFARI/.
[44] SAFARI Research Group, “SoftMC – GitHub Repository,” https://github.com/

CMU-SAFARI/SoftMC.
[45] SAFARI Research Group, “Tools, Software, and Full Data Sets,” http://www.ece.

cmu.edu/~safari/tools.html.
[46] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash Reliability in Production: The

Expected and the Unexpected,” in FAST, 2016.
[47] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,

O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[48] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
E�cient Memory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2016.

[49] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gib-
bons, and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.

[50] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, M. A. Kozuch, P. B. Gibbons, and T. C. Mowry, “RowClone: Fast and
Energy-E�cient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[51] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-
ristor Found,” Nature, 2008.

[52] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, 2012.

[53] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[54] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multi-Level Cell Phase-Change Memories,”
TACO, 2014.

[55] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main
Memory Using Phase Change Memory Technology,” in ISCA, 2009.

4

4

Tiered-Latency DRAM:
Enabling Low-Latency Main Memory at Low Cost

Donghyuk Lee1,2 Yoongu Kim2 Vivek Seshadri3,2

Jamie Liu4,2 Lavanya Subramanian5,2 Onur Mutlu6,2

1NVIDIA Research 2Carnegie Mellon University
3Microsoft Research India 4Google 5Intel Labs 6ETH Zürich

This paper summarizes the idea of Tiered-Latency DRAM
(TL-DRAM), which was published in HPCA 2013 [73], and exa-
mines the work’s signi�cance and future potential. The capacity
and cost-per-bit of DRAM have historically scaled to satisfy
the needs of increasingly large and complex computer systems.
However, DRAM latency has remained almost constant, ma-
king memory latency the performance bottleneck in today’s
systems. We observe that the high access latency is not intrinsic
to DRAM, but a trade-o� is made to decrease the cost per bit. To
mitigate the high area overhead of DRAM sensing structures,
commodity DRAMs connect many DRAM cells to each sense
ampli�er through a wire called a bitline. These bitlines have
a high parasitic capacitance due to their long length, and this
bitline capacitance is the dominant source of DRAM latency.
Specialized low-latency DRAMs use shorter bitlines with fe-
wer cells, but have a higher cost-per-bit due to greater sense
ampli�er area overhead.
To achieve both low latency and low cost per bit, we intro-

duce Tiered-Latency DRAM (TL-DRAM). In TL-DRAM, each
long bitline is split into two shorter segments by an isolation
transistor, allowing one of the two segments to be accessed with
the latency of a short-bitline DRAM without incurring a high
cost per bit. We propose mechanisms that use the low-latency
segment as a hardware-managed or software-managed cache.
Our evaluations show that our proposed mechanisms improve
both performance and energy e�ciency for both single-core and
multiprogrammed workloads.
Tiered-Latency DRAM has inspired several other works on

reducing DRAM latency with little to no architectural modi�-
cation [20, 21, 22, 24, 37, 38, 68, 72, 116, 117, 118].

1. Problem: High DRAM Latency
Primarily due to its low cost per bit, DRAM has long been

the substrate of choice for architecting main memory subsys-
tems. In fact, DRAM’s cost per bit has been decreasing at a
rapid rate as DRAM process technology scales to integrate
ever more DRAM cells into the same die area. As a result,
each successive generation of DRAM has enabled increasingly
larger-capacity main memory subsystems at low cost.

In stark contrast to the continued scaling of cost per bit, the
latency of DRAM has remained almost constant. During the
same 11-year interval in which DRAM’s cost per bit decreased
by a factor of 16, DRAM latency (as measured by the tRCD and

tRC timing constraints)1 decreased by only 30.5% and 26.3% [6,
47], respectively, as shown in Figure 1. From the perspective
of the processor, an access to DRAM takes hundreds of cycles
– time during which the processor may be stalled, waiting for
DRAM [3, 34, 48, 92, 93, 96]. This wasted time due to stalling
on DRAM leads to large performance degradation.

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

SDR-200 DDR-400 DDR2-800 DDR3-1066 DDR3-1333

2000 2003 2006 2008 2011

Capacity Latency (tRCD) Latency (tRC)

C
ap

ac
it

y
(G

b
)

La
te

n
cy

 (
n

s)

2000 2003 2006 2008 2011

Figure 1: Change in DRAM capacity and latency over time [6,
47,100,111]. Reproduced from [73].

2. Key Observations and Our Goal
Bitline: Dominant Source of Latency. In DRAM, each

bit is represented as electrical charge in a capacitor-based
cell. The small size of this capacitor necessitates the use of an
auxiliary structure, called a sense ampli�er, to (1) detect the
small amount of charge held by the cell and (2) amplify it to
a full digital logic value. A sense ampli�er is approximately
one hundred times larger than a cell [107]. To amortize their
large size, each sense ampli�er is connected to many DRAM
cells through a wire called a bitline.2

Every bitline has an associated parasitic capacitance, whose
value is proportional to the length of the bitline. Unfortuna-
tely, the parasitic capacitance slows down DRAM operation
for two reasons. First, it increases the latency of the sense am-
pli�ers. When the parasitic capacitance is large, a cell cannot
quickly create a voltage perturbation on the bitline that can be
easily detected by the sense ampli�er. Second, the capacitance
increases the latency of charging and precharging the bitlines.
Although the cell and the bitline must be restored to their

1The overall DRAM latency can be decomposed into individual DRAM
timing constraints. Two of the most important timing constraints are tRCD
(row-to-column delay) and tRC (row-cycle time).

2We refer the reader to our prior works for a detailed background on
DRAM architecture and operation [21, 22, 23, 24, 37, 38, 54, 56, 57, 58, 59, 60, 68,
69, 71, 72, 73, 75, 76, 99, 103, 116, 117].

5

quiescent voltages during and after an access to a cell, such a
procedure takes much longer when the parasitic capacitance
of the bitline is large. Due to these two reasons, and based on
a detailed latency breakdown discussed in Section 3.1 of our
HPCA 2013 paper [73], we conclude that long bitlines are the
dominant source of DRAM latency [44, 72, 73, 90, 91, 122].

Latency vs. Cost Trade-O�. The bitline length is a key
design parameter that exposes the important trade-o� bet-
ween latency and die size (cost). Short bitlines (i.e., a bitline
connected to only a few cells) constitute a small electrical load
(parasitic capacitance), which leads to low latency. However,
they require more sense ampli�ers for a given DRAM capa-
city (Figure 2a), which leads to a large die size. In contrast,
long bitlines have high latency and a small die size (Figure 2b).
As a result, neither of these two approaches can optimize for
both latency and cost per bit.

sense-amps

cells

sense-amps

cells

b
it
lin
e

(s
h
o
rt
)

b
it
lin
e

(s
h
o
rt
)

(a) Latency-optimized
architecture

sense-amps

cells

b
it
lin
e

(l
o
n
g
)

(b) Cost-optimized archi-
tecture

sense-amps

cellsb
it

lin
e

Isolation TR.

b
it

lin
e

(c) Our proposed archi-
tecture

Figure 2: DRAM latency and cost optimization, and our pro-
posal (TL-DRAM). Reproduced from [73].

Figure 3 shows the trade-o� between DRAM latency and
die size by plotting the latency (tRCD and tRC) and the die size
for di�erent values of cells per bitline. Existing DRAM archi-
tectures are either (1) optimized for die size (e.g., commodity
DDR3 [86, 111]) and are thus low cost but high latency; or
(2) optimized for latency (e.g., RLDRAM [85], FCRAM [112])
and are thus low latency but (very) high cost.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

N
o

rm
al

iz
ed

 D
ie

-S
iz

e
C

h
ea

p
er

Latency (ns)

tRCD tRC

RLDRAM
FCRAM

RLDRAM
FCRAM

DDR3 DDR3

16 : cells-per-bitline
(492mm2): die-size

32 (276)

64 (168)

128 (114)
256 (87)

512 (73.5)

32

16

64

128 256 512

Faster

Figure 3: Bitline length: latency vs. die size. Reproduced
from [73].

The goal of our HPCA 2013 paper [73] is to design a new
DRAM architecture to approximate the best of both worlds
(i.e., low latency and low cost), based on our key observation
that long bitlines are the dominant source of DRAM latency.

3. Tiered-Latency DRAM
To achieve the latency advantage of short bitlines and the

cost advantage of long bitlines, we propose the Tiered-Latency
DRAM (TL-DRAM) architecture, which is shown in Figures 2c
and 4a. The key idea of TL-DRAM is to divide the long bitline
into two shorter segments using an isolation transistor: the
near segment (connected directly to the sense ampli�er) and
the far segment (connected through the isolation transistor).

Far
Segment

Near
Segment

Isolation
Transistor

Sense-
Amps

(a) Organization

C
C
EL
L

b
it

lin
e

C
N
EA

R

Isolation
TR. (off)

C
C
EL
L

C
FA

R

(b) Near segment

C
C
EL
L

b
it

lin
e

C
N
EA

R

Isolation
TR. (on)

C
C
EL
L

C
FA

R

(c) Far segment
Figure 4: TL-DRAM: accessing the near segment and the far
segment. Adapted from [73].

The primary role of the isolation transistor is to electri-
cally decouple the two segments from each other. This chan-
ges the e�ective bitline length (and also the e�ective bitline
capacitance) as seen by the cell and sense ampli�er. Corre-
spondingly, the latency to access a cell also changes, albeit
di�erently depending on whether the cell is in the near or
the far segment.

When accessing a cell in the near segment, the isolation
transistor is turned o�, disconnecting the far segment (Fi-
gure 4b). Since the cell and the sense ampli�er see only the
reduced bitline capacitance of the shortened near segment,
they can drive the bitline voltage more easily. As a result, the
bitline voltage is restored more quickly, and, thus, the latency
(tRC) for the near segment is signi�cantly reduced. On the
other hand, when accessing a cell in the far segment, the
isolation transistor is turned on to connect the entire length
of the bitline to the sense ampli�er. In this case, the isolation
transistor acts like a resistor inserted between the two seg-
ments (Figure 4c) and limits how quickly charge �ows to the
far segment. Because the far segment capacitance is charged
more slowly, it takes longer for the far segment voltage to be
restored, and, thus, the latency (tRC) is increased for cells in
the far segment.
Sensitivity to Segment Length. The lengths of the two

segments are determined by where the isolation transistor
is placed on the bitline. Assuming that the number of cells
per bitline is �xed at 512 cells, the near segment length can
range from as short as a single cell to as long as 511 cells.
We perform circuit-level simulations to determine how the
latency of each segment based on the number of cell in the

2

6

0

20

40

60

80

1 2 4 8 16 32 64 128 256 512

Near Segment Length (Cells) Ref.

tRCD tRC

La
te

n
cy

 (
n

s)

(a) Cell in near segment

0

20

40

60

80

511 510 508 504 496 480 448 384 256 512

Far Segment Length (Cells) Ref.

tRCD tRC

La
te

n
cy

 (
n

s)

(b) Cell in far segment
Figure 5: Latency analysis. Reprodu-
ced from [73].

tRCDnear tRASnear

Near Segment (TL-DRAM)
Long Bitline
Short Bitline

VDD

0.75VDD

0.50VDD

5 10 15 20 25 30 35 (ns)0 40

(a) Cell in near segment (128 cells)

tRCDfar tRASfar

Near Segment (TL-DRAM)
Far Segment (TL-DRAM)
Long Bitline
Short Bitline

VDD

0.75VDD

0.50VDD

5 10 15 20 25 30 35 (ns)0 40

(b) Cell in far segment (384 cells)
Figure 6: Activation: bitline voltage. Reproduced
from [73].

tRPnear
Near
Long
Short

VDD

0.75VDD

0.50VDD

5 10 15 200 (ns)

(a) Cell in near segment

tRPfar
Near
Far
Long
Short

VDD

0.75VDD

0.50VDD

5 10 15 200 (ns)

(b) Cell in far segment
Figure 7: Precharging. Re-
produced from [73].

segment. Figures 5a and 5b plot the latencies of the near and
far segments as a function of their length, respectively. For
reference, the rightmost bars in each �gure are the latencies of
an unsegmented long bitline whose length is 512 cells. From
these �gures, we draw three conclusions. First, the shorter
the near segment, the lower its latencies (tRCD and tRC). This
is expected since a shorter near segment has a lower e�ective
bitline capacitance, allowing it to be driven to target voltages
more quickly. Second, the longer the far segment, the lower
the far segment’s tRCD . Recall from our previous discussion
that the far segment’s tRCD depends on how quickly the near
segment (not the far segment) can be driven. A longer far
segment implies a shorter near segment (lower capacitance),
which is why tRCD decreases for the far segment. Third, the
shorter the far segment, the smaller its tRC . The far segment’s
tRC is determined by how quickly it reaches the full voltage
(VDD or 0). Regardless of the length of the far segment or the
near segment, the current that trickles into it through the
isolation transistor does not change signi�cantly. Therefore,
a shorter far segment (lower capacitance) reaches the full
voltage more quickly.

Latency Analysis (Circuit Evaluation). We model TL-
DRAM in detail using SPICE simulations. Simulation parame-
ters are mostly derived from a publicly available 55nm DDR3
2Gb process technology �le [107] which includes information
such as cell and bitline capacitances and resistances, physical
�oorplanning, and transistor dimensions. Transistor device
characteristics were derived from [98] and scaled to agree
with [107]. Figures 6 and 7 show the bitline voltages during
activation and precharging, respectively. The x-axis origin
(time 0) in the two �gures corresponds to when the subarray
receives the ACTIVATE or PRECHARGE command, respecti-
vely. In addition to the voltages of the segmented bitline (near
and far segments), the �gures also show the voltages of two
unsegmented bitlines (short and long) for reference.

First, during an access to a cell in the near segment (Fi-
gure 6a), the far segment is disconnected and is �oating
(hence its voltage is not shown). The bitline starts at 1/2
VDD . Due to the reduced bitline capacitance of the near seg-
ment, its voltage increases almost as quickly as the voltage
of a short bitline (the two curves are overlapped) during sen-
sing & ampli�cation. Since the near segment voltage reaches
0.75VDD and VDD (the threshold and restored states, respecti-
vely) quickly, its tRCD and tRAS , respectively, are signi�cantly
reduced compared to a long bitline. Second, during an access
to a cell in the far segment (Figure 6b), we can indeed verify
that the voltages of the near and the far segments increase at
di�erent rates due to the resistance of the isolation transistor,
as previously explained. Compared to a long bitline, while
the near segment voltage reaches 0.75VDD more quickly, the
far segment voltage reaches VDD more slowly. As a result,
tRCD for the far segment is reduced while its tRAS is increased.

While precharging the bitline after accessing a cell in the
near segment (Figure 7a), the near segment reaches 0.5VDD
quickly due to the smaller capacitance, almost as quickly as
the short bitline (the two curves are overlapped). On the other
hand, precharging the bitline after accessing a cell in the far
segment (Figure 7b) takes longer compared to the long-bitline
baseline. As a result, tRP is reduced for the near segment and
increased for the far segment.
Summary (Latency, Power, and Die-Area). Table 1

summarizes the latency, power, and die area characteristics of
TL-DRAM compared to short-bitline and long-bitline DRAMs,
estimated using circuit-level SPICE simulation [98] and po-
wer/area models from Rambus [107]. Compared to commo-
dity DRAM (long bitlines), which incurs high latency (tRC) for
all cells, TL-DRAM o�ers signi�cantly reduced latency (tRC)
for cells in the near segment, while increasing the latency
for cells in the far segment due to the additional resistance
of the isolation transistor. In DRAM, a large fraction of the
power is consumed by the bitlines. Since the near segment

3

7

in TL-DRAM has a lower capacitance, it also consumes less
power. On the other hand, accessing the far segment requires
toggling the isolation transistors, leading to increased power
consumption. Mainly due to additional isolation transistors,
TL-DRAM increases die area by 3% compared to commodity
DRAM. Section 4 of our HPCA 2013 paper [73] includes de-
tailed circuit-level analyses of TL-DRAM, along with detailed
area, latency, and power estimations.

Short Bitline Long Bitline Segmented Bitline
(Figure 2a) (Figure 2b) (Figure 2c)

Unsegmented Unsegmented Near Far

Length (Cells) 32 512 32 480

Latency Low High Low Higher
(tRC) (23.1ns) (52.5ns) (23.1ns) (65.8ns)

Normalized Low High Low Higher
Power (0.51) (1.00) (0.51) (1.49)

Normalized High Lower Low
Die-Size (Cost) (3.76) (1.00) (1.03)

Table 1: Latency, power, and die area comparison. Adapted
from [73].

4. Leveraging TL-DRAM
TL-DRAM enables the design of many new memory ma-

nagement policies that exploit the asymmetric latency cha-
racteristics of the near and the far segments. Section 5 of our
HPCA 2013 paper [73] describes four mechanisms that take
advantage of TL-DRAM. Here, we describe two approaches
in particular.

In the �rst approach, the memory controller uses the near
segment as a hardware-managed cache for the far segment.
In our HPCA 2013 paper [73], we discuss three policies for
managing the near segment cache. The three policies di�er
in deciding when a row in the far segment is cached into the
near segment and when the row is evicted. In addition, we
propose a new data transfer mechanism (Inter-Segment Data
Transfer) that e�ciently migrates data between the segments
by taking advantage of the fact that the bitline is a bus con-
nected to the cells in both segments. By using this technique,
the data from the source row can be transferred to the destina-
tion row over the bitlines at very low latency (additional 4ns
over tRC).3 Furthermore, this Inter-Segment Data Transfer
happens exclusively within a DRAM bank without utilizing
the DRAM channel, allowing concurrent accesses to other
banks.

In the second approach, the near segment capacity is expo-
sed to the OS, enabling the OS to use the full DRAM capacity.
We propose two concrete mechanisms, one where the me-
mory controller uses an additional layer of indirection to map
frequently-accessed pages to the near segment, and another
where the OS uses static/dynamic pro�ling to directly map

3A later work, RowClone [116], takes advantage of this property to
enable bulk copy and initialization completely within DRAM.

frequently-accessed pages to the near segment. In both ap-
proaches, the accesses to pages that are mapped to the near
segment are served faster and with lower power than in con-
ventional DRAM, resulting in improved system performance
and energy e�ciency.

We refer the reader to Section 5 of our HPCA 2013 pa-
per [73] for a full description of use cases for TL-DRAM. Note
that a very wide variety of techniques developed for cache
management [105,115,119,120,132] can be adopted to manage
the near segment in TL-DRAM.

5. Performance and Power Evaluation
Section 8 of our HPCA 2013 paper [73] provides a de-

tailed evaluation of all of the above approaches to leverage
TL-DRAM. Here, we present the evaluation results for only
the �rst approach, in which the near segment is used as a
hardware-managed cache managed under our best policy
(Bene�t-Based Caching), to demonstrate the advantages of
our TL-DRAM substrate.
Methodology. To evaluate our mechanism, we use Ra-

mulator [56, 110], an open-source DRAM simulator, which is
integrated into an in-house processor simulator. The released
version of Ramulator [110] provides a model for TL-DRAM,
which we hope future works use and build upon. A detailed
methodology can be found in Section 7 of our HPCA 2013
paper [73].
Performance & Power Analysis. Figure 8 shows the

average performance improvement and power e�ciency of
our proposed mechanism over the baseline with conventional
DRAM, on 1-, 2- and 4-core systems. As described in Section 3,
the access latency and power consumption are signi�cantly
lower for near segment accesses, but higher for far segment
accesses, compared to accesses in a conventional DRAM. We
observe that a large fraction (over 90% on average) of requests
hit in the rows cached in the near segment, thereby accessing
the near segment with low latency and low power consump-
tion. As a result, TL-DRAM achieves signi�cant performance
improvements of 12.8%/12.3%/11.0%, and power savings of
23.6%/26.4%/28.6% in 1-/2-/4-core systems, respectively.

0%

5%

10%

15%

1 (1-ch) 2 (2-ch) 4 (4-ch)

P
er

f.
 Im

p
ro

ve
m

en
t

 Core-count (# of channels)

(a) IPC improvement

0%
5%

10%
15%
20%
25%
30%

1 (1-ch) 2 (2-ch) 4 (4-ch)

P
o

w
er

 R
ed

u
ct

io
n

 Core-count (# of channels)

(b) Power consumption
Figure 8: IPC improvement and power consumption of TL-
DRAM. Adapted from [73].

Sensitivity to Near Segment Capacity. The number of
rows in the near segment presents a trade-o�, since increa-
sing the near segment’s size increases its capacity but also
increases its access latency. Figure 9 shows the performance
improvement of our proposed mechanisms over the base-

4

8

line as we vary the near segment size. Initially, performance
improves as the number of rows in the near segment incre-
ases, since more data can be cached. However, increasing
the number of rows in the near segment beyond 32 reduces
the performance bene�t due to the increased capacitance and
hence the higher near segment access latencies.

Figure 9: E�ect of varying near segment capacity. Reprodu-
ced from [73].

Other Results. In our HPCA 2013 paper [73], we pro-
vide a detailed analysis of how timing parameters and power
consumption vary when varying the near segment length
(Sections 4 and 6.3 of [73], respectively). We also provide a
comprehensive evaluation of the mechanisms we build on
top of the TL-DRAM substrate for both single- and multi-core
systems (Section 8 of [73]).

6. Related Work
To our knowledge, our HPCA 2013 paper [73] is the �rst

to i) enable latency heterogeneity in DRAM without signi-
�cantly increasing the DRAM cost per bit, and ii) propose
hardware/software mechanisms that leverage this latency
heterogeneity to improve system performance. We make the
following major contributions.
ACost-E�cient Low-LatencyDRAM. Based on the key

observation that long internal wires (bitlines) are the domi-
nant source of DRAM latency, our HPCA 2013 paper [73]
proposes a new DRAM architecture called Tiered-Latency
DRAM (TL-DRAM). To our knowledge this is the �rst work
to enable low-latency DRAM without signi�cantly increasing
the DRAM cost per bit. By adding a single isolation transistor
to each bitline, we carve out a region within a DRAM chip,
called the near segment, which is fast and energy-e�cient.
This comes at a modest overhead of 3% increase in DRAM die-
area. While there are two prior approaches to reduce DRAM
latency (using short bitlines [85, 112], adding an SRAM cache
in DRAM [32, 36, 39, 142]), both of these approaches signi�-
cantly increase die-area due to additional sense ampli�ers or
additional area for an SRAM cache, as we evaluate in our full
paper [73]. Compared to these prior approaches, TL-DRAM
is a much more cost-e�ective architecture for achieving low
latency.

There are many recent works that reduce overall memory
access latency by modifying DRAM, the DRAM-controller
interface, and DRAM controllers. These works enable more
parallelism and bandwidth [22, 60, 71, 116], reduce refresh
counts [50, 51, 52, 53, 75, 76, 103, 134], accelerate bulk operati-
ons [23,114,116,117,118], accelerate computation in the logic
layer of 3D-stacked DRAM [1,2,7,8,33,35,40,41,55,77,101,141],

enable better communication between CPU and other devices
through DRAM [69], leverage process variation and tempera-
ture dependency in DRAM [20, 21, 24, 70, 72], leverage design-
induced variation in DRAM [68], leverage DRAM access pat-
terns [37, 38, 123], reduce write-related latencies by better
designing DRAM and DRAM control policies [26, 66, 113],
and reduce overall queuing latencies in DRAM by better sche-
duling memory requests [29, 30, 31, 34, 42, 43, 49, 58, 59, 65, 87,
88, 89, 94, 95, 121, 126, 127, 133]. Our proposal is orthogonal
to all of these approaches and can be applied in conjunction
with them to achieve higher latency and energy bene�ts.

Inter-Segment Data Transfer. By implementing latency
heterogeneity within a DRAM subarray, TL-DRAM enables
e�cient data transfer between the fast and slow segments
by utilizing the bitlines as a wide bus. This mechanism takes
advantage of the fact that both the source and destination
cells share the same bitlines. Furthermore, this inter-segment
migration happens only within a DRAM bank and does not
utilize the DRAM channel, thereby allowing concurrent acces-
ses to other banks over the channel. This inter-segment data
transfer enables fast and e�cient movement of data within
DRAM, which in turn enables e�cient ways of taking advan-
tage of latency heterogeneity.

Other works that leverage latency heterogeneity in DRAM
do not usually provide any e�cient mechanism of inter-
segment data migration between di�erent latency segments.
For example, Son et al. [124] propose a low-latency DRAM
architecture that has di�erent, fast (long bitline) and slow
(short bitline) subarrays in DRAM. This approach provides
the signi�cant bene�t only if latency-critical data is already
allocated to the low-latency regions (the low latency subar-
rays). Therefore, the overall memory system performance
is very sensitive to the page placement policy, and the sy-
stem cannot easily adopt to changes in the access latency
of pages. In contrast, our new inter-segment data transfer
mechanism enables e�cient relocation of pages, leading to
e�cient dynamic page placement and relocation based on
the dynamically determined latency criticality of each page.
Several more recent works [23, 114, 116, 117] take advantage
of our concept of inter-segment data transfer mechanism to
perform page copy/initialization and bulk bitwise operations
completely within a DRAM chip.

7. Potential Long-Term Impact
Tolerating High DRAM Latency by Enabling New

Layers in the Memory Hierarchy. Today, there is a large
latency cli� between the on-chip last level cache and o�-chip
DRAM, leading to a large performance fall-o� when appli-
cations start missing in the last level cache. By introducing
an additional fast layer (the near segment) within the DRAM
itself, TL-DRAM smoothens this latency cli�.

Note that many recent works add a DRAM cache or
create heterogeneous main memories [25, 28, 62, 63, 74, 81,
82, 83, 102, 106, 108, 109, 138, 140] to smooth the latency

5

9

cli� between the last level cache and a longer-latency non-
volatile main memory, e.g., phase-change memory [62, 63,
64, 83, 84, 104, 106, 137, 139], STT-MRAM [61, 83, 97, 135], or
RRAM/memristors [27, 125, 136], or to take advantage of the
advantages of multiple di�erent types of memories to op-
timize for multiple metrics. Our approach is similar at the
high-level (i.e., to reduce the latency cli� at low cost by ta-
king advantage of heterogeneity), yet we introduce the new
low-latency layer within DRAM itself instead of adding a com-
pletely separate device. Tiered-Latency DRAM can also be
used as a fast DRAM cache.

Applicability to FutureMemoryDevices. We show the
bene�ts of TL-DRAM’s asymmetric latencies. Considering
that most memory devices adopt a similar cell organization
(i.e., a two-dimensional cell array and row/column bus con-
nections), our approach of reducing the electrical load of
connecting to a bus (bitline) to achieve low access latency can
be applicable to other memory devices. Furthermore, the idea
of performing inter-segment data transfer can also potentially
be applied to other memory devices, regardless of the memory
technology. For example, we believe it is promising to exa-
mine similar approaches for emerging memory technologies
like phase-change memory [62,63,64,83,84,104,106,137,139],
STT-MRAM [61, 83, 97, 135], or RRAM/memristors [27, 125,
136], as well as NAND �ash memory technology [9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 78, 79, 80, 81].

New Research Opportunities. The TL-DRAM substrate
creates new opportunities by enabling mechanisms that can
leverage the latency heterogeneity o�ered by the substrate.
We brie�y describe three directions, but we believe that there
are many new possibilities.

• New ways of leveraging TL-DRAM: TL-DRAM is a substrate
that can be utilized for many applications. Although we
describe two major ways of leveraging TL-DRAM in our
HPCA 2013 paper [73], we believe there are more ways
to leverage the TL-DRAM substrate both in hardware and
software. For instance, new mechanisms could be devised
to detect data that is latency critical (e.g., data that causes
many threads to become serialized [31, 45, 46, 130, 131] or
data that belongs to threads that are more latency-sensitive
or important [4, 5, 29, 58, 59, 65, 67, 126, 127, 128, 129, 133])
or could become latency critical in the near future and
allocate/prefetch such data into the near segment.

• Opening up new design spaces with multiple tiers: TL-DRAM
can be easily extended to have multiple latency tiers by
adding more isolation transistors to the bitlines, providing
more latency asymmetry. Our HPCA 2013 paper [73] pro-
vides an analysis of the latency of a TL-DRAM design with
three tiers, showing the spread in latency for three tiers.
This enables new mechanisms both in hardware and soft-
ware that can allocate data appropriately to di�erent tiers
based on their access characteristics such as locality, criti-
cality, priority, etc.

• Inspiring new ways of architecting latency heterogeneity
within DRAM: To our knowledge, TL-DRAM is the �rst
to enable latency heterogeneity within DRAM, which is
signi�cantly modifying the existing DRAM architecture.
We believe that this could inspire research on other pos-
sible ways of architecting latency heterogeneity within
DRAM [20,21,24,37,38,68,70,72] or other memory devices.
Note that recent works that are after our HPCA 2013 paper
clearly exploit this promising direction proposed by our
paper [20, 21, 24, 37, 38, 68, 70, 72, 116].

Acknowledgments
We thank Saugata Ghose for his dedicated e�ort in the

preparation of this article. Many thanks to Uksong Kang, Hak-
soo Yu, Churoo Park, Jung-Bae Lee, and Joo Sun Choi from
Samsung, and Brian Hirano from Oracle, for their helpful
comments. We thank the reviewers for their feedback. We
acknowledge the support of our industrial partners: AMD,
HP Labs, IBM, Intel, Oracle, Qualcomm, and Samsung. This
research was also partially supported by grants from the
NSF (grants 0953246 and 1212962), GSRC, and the Intel URO
Memory Hierarchy Program.

References
[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing,” in ISCA, 2015.
[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-

Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a Modern

Processor: Where Does Time Go?” in VLDB, 1999.
[4] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu,

“Staged memory scheduling: achieving high performance and scalability in he-
terogeneous systems,” in ISCA, 2012.

[5] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir,
and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to Improve GPGPU Perfor-
mance,” in PACT, 2015.

[6] S. Borkar and A. A. Chien, “The future of microprocessors,” in CACM, 2011.
[7] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data

Movement Bottlenecks,” in ASPLOS, 2018.
[8] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and

O. Mutlu, “LazyPIM: An E�cient Cache Coherence Mechanism for Processing-
in-Memory,” in IEEE CAL, 2016.

[9] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” in Procee-
dings of the IEEE, 2017.

[10] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[11] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[12] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[13] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC NAND �ash
memory: Measurement, characterization, and analysis,” in DATE, 2012.

[14] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai,
“Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime,” in ICCD, 2012.

[15] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution in
MLC NAND Flash Memory: Characterization, Analysis, and Modeling,” inDATE,
2013.

[16] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND Flash
Memory: Characterization, Mitigation, and Recovery,” in DSN, 2015.

[17] Y. Cai, Y. Luo, E. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC NAND
Flash Memory: Characterization, Optimization, and Recovery,” in HPCA, 2015.

[18] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

6

10

[19] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
“Neighbor-cell Assisted Error Correction for MLC NAND Flash Memories,” in
SIGMETRICS, 2014.

[20] K. K. Chang, “Understanding and Improving Latency of DRAM-Based Memory
Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[21] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[22] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Acces-
ses,” in HPCA, 2014.

[23] K. K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[24] K. K. Chang, A. G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose, A. Kashyap,
H. Hassan, D. Lee, M. O’Connor, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[25] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal,
and R. Iyer, “Leveraging Heterogeneity in DRAM Main Memories to Accelerate
Critical Word Access,” in MICRO, 2012.

[26] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi,
“Staged Reads: Mitigating the Impact of DRAM Writes on DRAM Reads,” in
HPCA, 2012.

[27] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[28] G. Dhiman et al., “PDRAM: A hybrid PRAM and DRAM main memory system,”

in DAC, 2009.
[29] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source Throttling: A

Con�gurable and High-performance Fairness Substrate for Multi-core Memory
Systems,” in ASPLOS, 2010.

[30] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared resource
management for multi-core systems,” in ISCA, 2011.

[31] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.
Patt, “Parallel Application Memory Scheduling,” in MICRO, 2011.

[32] Enhanced Memory Systems, “Enhanced SDRAM SM2604,” 2002.
[33] M. Gao and C. Kozyrakis, “HRL: E�cient and �exible recon�gurable logic for

near-data processing,” in HPCA, 2016.
[34] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via

Processor-Side Load Criticality Information,” in ISCA, 2013.
[35] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System

Design,” in WoNDP, 2013.
[36] C. A. Hart, “CDRAM in a Uni�ed Memory Architecture,” in Compcon, 1994.
[37] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and

O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[38] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[39] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima, “The Cache DRAM Archi-
tecture: A DRAM with an On-Chip Cache Memory,” in IEEE Micro, 1990.

[40] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[41] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent O�oading and Mapping (TOM): Ena-
bling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[42] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” inMICRO, 2004.
[43] E. Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.
[44] JEDEC, “DDR3 SDRAM STANDARD,” http://www.jedec.org/

standards-documents/docs/jesd-79-3d, 2010.
[45] J. A. Joao et al., “Utility-Based Acceleration of Multithreaded Applications on

Asymmetric CMPs,” in ISCA, 2013.
[46] J. A. Joao, M. A. Suleman et al., “Bottleneck identi�cation and scheduling in mul-

tithreaded applications,” in ASPLOS, 2012.
[47] T. S. Jung, “Memory technology and solutions roadmap,” http://www.sec.co.kr/

images/corp/ir/irevent/techforum_01.pdf, 2005.
[48] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and

D. Brooks, “Pro�ling a Warehouse-Scale Computer,” in ISCA, 2015.
[49] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM Page-

Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.
[50] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by

Exploiting Current Memory Content,” in MICRO, 2017.
[51] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level Technique

to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.
[52] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The

E�cacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[53] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” in IEEE CAL, 2016.

[54] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[55] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin, C. Al-
kan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Map-
ping Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[56] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” in IEEE CAL, 2015.

[57] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[58] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in HPCA,
2010.

[59] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Me-
mory Scheduling: Exploiting Di�erences in Memory Access Behavior,” in MI-
CRO, 2010.

[60] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[61] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an energy-e�cient main memory alternative,” in ISPASS, 2013.

[62] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” in IEEEMicro, 2010.

[63] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
As a Scalable DRAM Alternative,” in ISCA, 2009.

[64] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” in CACM, 2010.

[65] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-
trollers,” in MICRO, 2008.

[66] C. J. Lee, E. Ebrahimi, V. Narasiman, O. Mutlu, and Y. N. Patt, “DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory
Systems,” Univ. of Texas at Austin, High Performance Systems Group, Tech. Rep.
TR-HPS-2010-002, 2010.

[67] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[68] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[69] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Tra�c by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[70] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon University, 2016.

[71] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” in ACM
TACO, 2016.

[72] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[73] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[74] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-Based Hybrid
Memory Management,” in CLUSTER, 2017.

[75] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[76] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[77] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent Data Structures for Near-
Memory Computing,” in SPAA, 2017.

[78] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” JSAC, 2016.

[79] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND �ash
memory lifetime with write-hotness aware retention management,” in MSST,
2015.

[80] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 3D
NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Tem-
perature Awareness,” in HPCA, 2018.

[81] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khes-
sib, K. Vaid, and O. Mutlu, “Characterizing Application Memory Error Vulnera-
bility to Optimize Datacenter Cost via Heterogeneous-Reliability Memory,” in
DSN, 2014.

[82] J. Meza et al., “Enabling E�cient and Scalable Hybrid Memories Using Fine-
Granularity DRAM Cache Management,” in IEEE CAL, 2012.

[83] J. Meza et al., “A Case for E�cient Hardware-Software Cooperative Management
of Storage and Memory,” in WEED, 2013.

7

11

[84] J. Meza, J. Li, and O. Mutlu, “A case for small row bu�ers in non-volatile main
memories,” in ICCD, 2012.

[85] Micron, “RLDRAM 2 and 3 Speci�cations,” http://www.micron.com/products/
dram/rldram-memory.

[86] Y. Moon et al., “1.2V 1.6Gb/s 56nm 6F2 4Gb DDR3 SDRAM with hybrid-I/O sense
ampli�er and segmented sub-array architecture,” ISSCC, 2009.

[87] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-Core Systems,” in USENIX Security, 2007.

[88] J. Mukundan and J. F. Martínez, “MORSE: Multi-Objective Recon�gurable Self-
Optimizing Memory Scheduler,” in HPCA, 2012.

[89] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,
“Reducing Memory Interference in Multicore Systems via Application-aware Me-
mory Channel Partitioning,” in MICRO, 2011.

[90] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[91] O. Mutlu, “Main Memory Scaling: Challenges and Solution Directions,” in More

than Moore Technologies for Next Generation Computer Design. Springer, 2015.
[92] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An ef-

fective alternative to large instruction windows,” in IEEE Micro, 2003.
[93] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for E�cient Processing in Runa-

head Execution Engines,” in ISCA, 2005.
[94] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[95] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[96] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Al-

ternative to Very Large Instruction Windows for Out-of-Order Processors,” in
HPCA, 2003.

[97] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM
Scaling and Retention Failure,” Intel Technology Journal, 2013.

[98] S. Narasimha et al., “High performance 45-nm SOI technology with enhanced
strain, porous low-k BEOL, and immersion lithography,” in IEDM, 2006.

[99] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,”
in ISCA, 2017.

[100] D. A. Patterson, “Latency lags bandwith,” in Commun. ACM, 2004.
[101] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,

and C. R. Das, “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[102] S. Phadke and S. Narayanasamy, “MLP aware heterogeneous memory system,”
in DATE, 2011.

[103] M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[104] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing Lifetime and Security of PCM-based Main Memory with Start-gap
Wear Leveling,” in MICRO, 2009.

[105] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for MLP-aware
cache replacement,” in ISCA, 2006.

[106] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-change Memory Technology,” in ISCA, 2009.

[107] Rambus, “DRAM Power Model,” http://www.rambus.com/energy, 2010.
[108] L. E. Ramos et al., “Page placement in hybrid memory systems,” in ICS, 2011.
[109] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM: Enabling

Software-Transparent Crash Consistency in Persistent Memory Systems,” in MI-
CRO, 2015.

[110] SAFARI Research Group, “Ramulator – GitHub Repository,” https://github.com/
CMU-SAFARI/ramulator.

[111] Samsung, “DRAM Data Sheet,” http://www.samsung.com/global/business/
semiconductor/product.

[112] Y. Sato et al., “Fast Cycle RAM (FCRAM); a 20-ns random row access, pipe-lined
operating DRAM,” in VLSIC, 1998.

[113] V. Seshadri, A. Bhowmick, O. Mutlu, P. Gibbons, M. Kozuch, and T. Mowry, “The
Dirty-Block Index,” in ISCA, 2014.

[114] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. Kozuch, O. Mutlu, P. Gibbons,
and T. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in IEEE CAL, 2015.

[115] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address �lter:
A uni�ed mechanism to address both cache pollution and thrashing,” in PACT,

2012.
[116] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[117] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,

O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[118] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[119] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Mitigating Prefetcher-Caused Pollution Using Informed Caching Poli-
cies for Prefetched Blocks,” TACO, 2015.

[120] A. Seznec, “A Case for Two-Way Skewed-Associative Caches,” in ISCA, 1993.
[121] J. Shao and B. T. Davis, “A Burst Scheduling Access Reordering Mechanism,” in

HPCA, 2007.
[122] S. M. Sharroush et al., “Dynamic random-access memories without sense ampli-

�ers,” in Elektrotechnik & Informationstechnik, 2012.
[123] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access Time

Memory Controller,” in HPCA, 2014.
[124] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory Access

Latency with Asymmetric DRAM Bank Organizations,” in ISCA, 2013.
[125] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-

ristor Found,” Nature, 2008.
[126] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting

Memory Scheduler: Achieving high performance and fairness at low cost,” in
ICCD, 2014.

[127] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” in TPDS,
2016.

[128] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-Application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[129] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing
Performance Predictability and Improving Fairness in Shared Main Memory Sy-
stems,” in HPCA, 2013.

[130] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating critical
section execution with asymmetric multi-core architectures,” in ASPLOS, 2009.

[131] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt, “Data Marshaling
for Multi-core Architectures,” in ISCA, 2010.

[132] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A Modi�ed Approach to
Data Cache Management,” in MICRO, 1995.

[133] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu, “DASH: Deadline-Aware
High-Performance Memory Scheduler for Heterogeneous Systems with Har-
dware Accelerators,” in ACM TACO, 2016.

[134] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware placement in DRAM
(RAPID): software methods for quasi-non-volatile DRAM,” in HPCA, 2006.

[135] J. Wang, X. Dong, and Y. Xie, “Enabling High-performance LPDDRx-compatible
MRAM,” in ISLPED, 2014.

[136] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen,
and M. J. Tsai, “Metal–Oxide RRAM,” in Proceedings of the IEEE, 2012.

[137] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[138] H. Yoon et al., “Row Bu�er Locality Aware Caching Policies for Hybrid Memo-
ries,” in ICCD, 2012.

[139] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multilevel Cell Phase-Change Memories,”
in ACM TACO, 2014.

[140] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
e�cient DRAM Caching via Software/Hardware Cooperation,” in MICRO, 2017.

[141] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatow-
ski, “TOP-PIM: Throughput-oriented Programmable Processing in Memory,” in
HPCA, 2014.

[142] Z. Zhang, Z. Zhu, and X. Zhang, “Cached DRAM for ILP Processor Memory
Access Latency Reduction,” in IEEE Micro, 2001.

8

12

Adaptive-Latency DRAM:
Reducing DRAM Latency by Exploiting Timing Margins

Donghyuk Lee1,2 Yoongu Kim2 Gennady Pekhimenko3,2

Samira Khan4,2 Vivek Seshadri5,2 Kevin Chang6,2 Onur Mutlu7,2

1NVIDIA Research 2Carnegie Mellon University 3University of Toronto
4University of Virginia 5Microsoft Research India 6Facebook 7ETH Zürich

This paper summarizes the idea of Adaptive-Latency DRAM
(AL-DRAM), which was published in HPCA 2015 [90], and
examines the work’s signi�cance and future potential. AL-
DRAM is a mechanism that optimizes DRAM latency based on
the DRAMmodule and the operating temperature, by exploiting
the extra margin that is built into the DRAM timing parameters.
DRAM manufacturers provide a large margin for the timing
parameters as a provision against two worst-case scenarios.
First, due to process variation, some outlier DRAM chips are
much slower than others. Second, chips become slower at higher
temperatures. The timing parameter margin ensures that the
slow outlier chips operate reliably at the worst-case temperature,
and hence leads to a high access latency.
Using an FPGA-based DRAM testing platform, our work

�rst characterizes the extra margin for 115 DRAM modules
from three major manufacturers. The experimental results de-
monstrate that it is possible to reduce four of the most critical
timing parameters by a minimum/maximum of 17.3%/54.8% at
55℃while maintaining reliable operation. AL-DRAM uses these
observations to adaptively select reliable DRAM timing para-
meters for each DRAM module based on the module’s current
operating conditions. AL-DRAM does not require any changes
to the DRAM chip or its interface; it only requires multiple
di�erent timing parameters to be speci�ed and supported by
the memory controller. Our real system evaluations show that
AL-DRAM improves the performance of memory-intensive wor-
kloads by an average of 14% without introducing any errors.

Our characterization and proposed techniques have inspired
several other works on analyzing and/or exploiting di�erent
sources of latency and performance variation within DRAM
chips [30, 34, 51, 71, 89, 127].

1. Problem: High DRAM Latency
A DRAM chip is made of capacitor-based cells that repre-

sent data in the form of electrical charge. To store data in
a cell, charge is injected, whereas to retrieve data from a
cell, charge is extracted. Such movement of charge happens
through a wire called bitline. Due to the large resistance and
the large capacitance of the bitline, it takes a long time to
access DRAM cells. To guarantee correct operation for every
module sold, DRAM manufacturers impose a set of minimum
latency restrictions on DRAM accesses, called timing para-
meters [60]. Ideally, timing parameters should provide just

enough time for a DRAM chip to operate correctly. In practice,
however, there is a very large margin in the timing parame-
ters to ensure correct operation under worst-case conditions
with respect to two aspects. First, due to process variation,
some outlier cells su�er from a larger RC-delay than other
cells [64, 94], and require more time to be accessed. Second,
due to temperature dependence, DRAM cells lose more charge
at high temperature [97,171], and therefore require more time
to be accessed. Due to the worst-case provisioning of the �xed
timing parameters, which ensure reliable operation up to a
temperature of 85℃, it takes a longer time to access most
of DRAM under most operating conditions than is actually
necessary for correct operation.

2. Key Observations and Our Goal
First, we observe that most DRAM chips do not con-

tain the worst-case cells that require the largest access
latency. Using an FPGA-based testing platform [52], we pro-
�le 115 real DRAM modules and observe that the slowest
cell (i.e., the cell that stores the smallest amount of charge)
for a typical chip is still signi�cantly faster than the slowest
cell of the worst-case chip. Our pro�ling exposes the large
margin built into DRAM timing parameters. In particular,
we identify four timing parameters that are the most critical
during a DRAM access: tRCD, tRAS, tWR, and tRP.1 At 55℃,
we demonstrate that the parameters can be reduced by an
average of 17.3%, 37.7%, 54.8%, and 35.2%, respectively, while
still maintaining correctness.

Second, we observe that most DRAM chips are not ex-
posed to theworst-case temperature of 85℃.We measure
the DRAM ambient temperature in a server cluster running a
very memory-intensive benchmark, and �nd that the tempe-
rature never exceeds 34℃, and never changes by more than
0.1℃ per second. Other works [48,99] also observe that worst-
case DRAM temperatures are not common, and that servers
typically operate at much lower temperatures [48, 99].

Based on these two observations, we show that typical
DRAM chips operating at typical temperatures (e.g., 55℃) are
capable of operating correctly when accessed with a much
smaller access latency, but are nevertheless forced to operate
1For a detailed background on the operation of DRAM, and an explanation
of each timing parameter, we refer the reader to our prior works [30, 31, 32,
34, 51, 52, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 88, 89, 90, 92, 93, 97, 98, 127, 146, 147].

13

at the largest latency of the worst-case module and operating
conditions. Modules in existing systems use these worst-case
latencies because existing memory controllers are equipped
with only a single set of timing parameters that are dictated
by the worst case.
Our goal in our HPCA 2015 paper [90] is to exploit the

extra margin that is built into the DRAM timing parameters
to reduce DRAM latency, and thus improve performance as
well as energy consumption. To this end, we �rst provide a
detailed analysis of why we can reduce DRAM timing para-
meters without sacri�cing reliability.

3. Charge & Latency Interdependence
The operation of a DRAM cell is governed by two impor-

tant parameters: i) the quantity of charge and ii) the latency
it takes to move charge. These two parameters are closely
related to each other. Based on SPICE simulations with a de-
tailed DRAM model, we identify the quantitative relationship
between charge and latency [90]. We brie�y summarize our
three key observations from these analyses here. Section 7
of our HPCA 2015 paper [90] provides a detailed analysis of
our observations.

First, having more charge in a DRAM cell accelerates the
sensing operation in the cell, especially at the beginning of
sensing, enabling the opportunity to shorten the timing para-
meters that correspond to sensing (tRCD and tRAS). Second,
when restoring the charge in a DRAM cell, a large amount of
the time is spent on injecting the �nal small amount of charge
into the cell. If there is already enough charge in the cell for
the next access, the cell does not need to be fully restored. In
this case, it is possible to shorten the latter part of the resto-
ration time, creating the opportunity to shorten the timing
parameters that correspond to restoration (tRAS and tWR).
Third, at the end of precharging, i.e., setting the bitline into
the initial voltage level (before accessing a cell) for the next
access, a large amount of the time is spent on precharging
the �nal small amount of bitline voltage di�erence from the
initial level. When there is already enough charge in the cell
to overcome the voltage di�erence in the bitline, the bitline
does not need to be fully precharged. Thus, it is possible to
shorten the �nal part of the precharge time, creating the op-
portunity to shorten the timing parameter that corresponds
to precharge (tRP). Based on these three observations, we
conclude that timing parameters can be shortened if DRAM
cells have enough charge.

4. Adaptive-Latency DRAM
As explained in Section 3, the amount of charge in the

cell right before an access to it plays a critical role in how
long it takes to retrieve the correct data from the cell. In
Figure 1, we illustrate the impact of process variation using
two di�erent cells: one is a typical cell (left column) and the
other is the worst-case cell that deviates the most from the
typical (right column). The worst-case cell initially contains

less charge than the typical cell for two reasons. First, due to
its large resistance, the worst-case cell cannot allow charge to
�ow inside quickly. Second, due to its small capacitance, the
worst-case cell cannot store much charge even when it is fully
charged. To accommodate such a worst-case cell, existing
timing parameters are conservatively set to large values.

large
leakage

Typical Cell

small
leakage

small
leakage

large
leakage

Te
m

pe
ra

tu
re

Worst Cell

Te
m

pe
ra

tu
re

Rlow Rhigh

RhighRlow

unfilled
(Rhigh)

unfilled
(Rhigh)

unfilled
(by design)

unfilled
(by design)

unfilled
(by design)

Ty
pi

ca
l

W
or

st

leakage leakage

leakage

Figure 1: E�ect of reduced latency: typical vs. worst-case. Re-
produced from [90].

In Figure 1, we also illustrate the impact of temperature
dependence using two cells at two di�erent operating tempe-
ratures: i) a typical temperature (55℃, bottom row), and ii) the
worst-case temperature (85℃, top row) supported by DRAM
standards. Both typical and worst-case cells leak charge at
a faster rate at the worst-case temperature. Therefore, not
only does the worst-case cell have less charge to begin with,
but it is left with even less charge at the worst temperature
because it leaks charge at a faster rate (top-right in Figure 1).
To accommodate the combined e�ect of process variation and
temperature dependence, existing timing parameters are set
to very large values. That is why the worst-case condition
for correctness is speci�ed by the top-right of Figure 1, which
shows the least amount of charge stored in the worst-case cell
at the worst-case temperature in its initial state. On top of
this, DRAM manufacturers add an extra latency margin to
the access time under worst-case conditions. In other words,
the amount of charge in a cell under worst-case conditions
is still greater than the minimum amount of charge required
for correctness.

If we were to reduce the timing parameters, we would
also reduce the amount of charge stored in the cells. It is
important to note, however, that we are proposing to exploit
only the additional slack (in terms of charge) compared to the
worst case. This allows us to provide as strong of a reliability
guarantee as manufacturers currently do for worst-case cells
and operating conditions. In Figure 1, we illustrate the impact
of reducing the timing parameters. The lightened portions
inside the cells represent the amount of charge that we are
giving up by using reduced timing parameters. Note that
we are not giving up any charge for the worst-case cell at
the worst-case temperature. Although the other three cells
are not fully charged in their initial state, w propose to give
up just enough charge from them such that they are left

2

14

with a similar amount of charge as the worst case (top-right).
This is because these cells are capable of either holding more
charge to begin with (typical cell, left column) or holding
their charge for longer (typical temperature, bottom row).
Therefore, optimizing the timing parameters (based on the
amount of existing charge slack) provides the opportunity to
reduce overall DRAM latency while still maintaining the same
reliability guarantees provided by DRAM manufacturers.

Based on these observations, we propose Adaptive-Latency
DRAM (AL-DRAM), a mechanism that dynamically optimi-
zes the timing parameters for di�erent modules at di�erent
temperatures. AL-DRAM exploits the additional charge slack
present in the common-case compared to the worst-case, the-
reby preserving the level of reliability (at least as high as the
worst-case) provided by DRAM manufacturers.

5. DRAM Latency Pro�ling:
Experimental Analysis of 115 Modules

We present and analyze the results of our DRAM pro�ling
experiments, performed on our FPGA-based DRAM testing
infrastructure, SoftMC [52], which is also used in our various
past works analyzing various DRAM characteristics [30,34,68,
69,75,89,90,97,136]. In total, we analyze 115 DRAM modules
from three major manufacturers, comprising 920 total DRAM
chips. Our full methodology is explained in Section 6 of our
HPCA 2015 paper [90].

5.1. Analysis of a Representative DRAMModule
We study the possible timing parameter reductions of a

DRAM module while still maintaining correctness. To guaran-
tee reliable DRAM operation, DRAM manufacturers provide
a built-in safety margin in retention time, also referred to
as a guardband [2, 68, 97, 127, 166]. This way, DRAM manu-
facturers are able to guarantee that even the weakest cell
is insured against various other modes of failure. We �rst
measure the safety margin of a DRAM module by sweeping
the refresh interval at the worst-case operating temperature
(85℃), using the standard timing parameters. Figure 2a plots
the maximum refresh intervals of each bank and each chip in
a DRAM module for both read and write operations. We make
several observations. First, the maximum error-free refresh
intervals of both read and write operations are much larger
than the DRAM standard (208 ms for the read and 160 ms for
the write operations vs. the 64 ms standard). Second, for the
smaller architectural units (banks and chips in the DRAM mo-
dule), some of them operate without incurring errors even at
much higher refresh intervals than others (as high as 352 ms
for the read operations and 256 ms for the write operations).
This is because the error-free retention time is determined
by the worst single cell in each architectural component (i.e.,
bank/chip/module).

Based on this experiment, we de�ne the safe refresh interval
for a DRAM module as the maximum refresh interval that
leads to no errors, minus an additional margin of 8 ms, which

(a) Maximum error-free refresh interval at 85℃ (bank/chip/module)

(b) Read latency (refresh Iinterval: 200 ms)

(c) Write latency (refresh interval: 152 ms)

Figure 2: Latency reductions while maintaining the safety
margin of DRAM. Reproduced from [90].

is the increment at which we sweep the refresh interval. The
safe refresh interval for the read and write operations are 200
ms and 152 ms, respectively. We then use the safe refresh
intervals to run the tests with all possible combinations of
timing parameters. For each combination, we run our tests
at two temperatures: 85℃ and 55℃.

Figure 2b plots the error-free timing parameter combinati-
ons (tRCD, tRAS, and tRP) in the read operation test. For each
combination, there are two stacked bars — the left bar for the
test at 55℃ and the right bar for the test at 85℃. Missing bars
indicate that the test (with that timing parameter combina-
tion at that temperature) causes errors. Figure 2c plots same
data for the write operation test (tRCD, tWR, and tRP).

We make two observations. First, even at the highest tem-
perature of 85℃, the DRAM module reliably operates with
reduced timing parameters (24% reduction for read, and 35%
reduction for write operations). Second, at the lower tempe-
rature of 55℃, the potential latency reduction is even higher
(36% for read, and 47% for write operations). These latency
reductions are possible while maintaining the safety margin
of the DRAM module. From these two observations, we con-
clude that there is signi�cant opportunity to reduce DRAM
timing parameters without compromising reliability.

5.2. Analysis of 115 DRAMModules
We have studied the e�ect of temperature and the potential

to reduce various timing parameters at di�erent temperatures
for a single DRAM module. The same trends and observati-
ons also hold true for all of the other modules we studied. In

3

15

this section, we analyze the e�ect of process variation by stu-
dying the results of our pro�ling experiments on 115 DIMMs.
We also present results for intra-chip process variation by
studying the process variation across di�erent banks within
each DIMM.

Figure 3a (solid line) plots the highest refresh interval that
leads to correct operation across all cells at 85℃ within each
DIMM for the read operation test. The red dots on top show
the highest refresh interval that leads to correct operation
across all cells within each bank for all 8 banks. Figure 3b
plots the same data for the write operation test.

(a) Read retention time (b) Write retention time

(c) Read latency (d) Write latency

Figure 3: Analysis of 115 modules. Reproduced from [90].

We draw two conclusions. First, although there exist a
few modules which just meet the timing parameters (with
a low safety margin), a vast majority of the modules very
comfortably meet the standard timing parameters (with a
high safety margin). This indicates that a majority of the
DIMMs have signi�cantly higher safety margins than the
worst-case module even at the highest-acceptable operating
temperature of 85℃. Second, the e�ect of process variation is
even higher for banks within the same DIMM, explained by
the large spread in the red dots for each DIMM. Since banks
within a DIMM can be accessed independently with di�erent
timing parameters, one can potentially imagine a mechanism
that more aggressively reduces timing parameters at a bank
granularity and not just the DIMM granularity. We leave this
for future work.2

To study the potential of reducing timing parameters for
each DIMM, we sweep all possible combinations of timing
2Note that our future works [30, 33, 34, 87, 89] explain this observation of
latency heterogeneity within a DRAM chip.

parameters (tRCD/tRAS/tWR/tRP) for all the DIMMs at both
the highest acceptable operating temperature (85℃) and a
more typical operating temperature (55℃). We then determine
the acceptable DRAM timing parameters for each DIMM for
both temperatures while maintaining its safety margin.

Figures 3c and 3d show the results of this experiment for
the DRAM read and DRAM write, respectively. The y-axis
plots the sum of the relevant timing parameters (tRCD, tRAS,
and tRP for the DRAM read and tRCD, tWR, and tRP for the
DRAM write). The solid black line shows the latency sum of
the standard timing parameters (DDR3 DRAM speci�cation).
The dotted red line and the dotted blue line show the most
acceptable latency parameters for each DIMM at 85℃ and
55℃, respectively. The solid red line and blue line show the
average acceptable latency across all DIMMs.

We make two observations. First, even at the highest tem-
perature of 85℃, DIMMs can reliably operate at reduced
access latencies: 21.1% on average for read, and 34.4% on
average for write operations. This is a direct result of the pos-
sible reductions in timing parameters tRCD/tRAS/tWR/ tRP —
15.6%/20.4%/20.6%/28.5% on average across all the DIMMs.3
As a result, we conclude that process variation and lower
temperatures enable a signi�cant potential to reduce DRAM
access latencies. Second, we observe that at lower tempera-
tures (e.g., 55℃) the potential for latency reduction is even
greater (32.7% on average for read, and 55.1% on average
for write operations), where the corresponding reduction
in timing parameters tRCD/tRAS/tWR/ tRP are 17.3%/37.7%/
54.8%/35.2% on average across all the DIMMs.

We conclude that existing DRAM modules can be acces-
sed reliably with lower access latencies, especially at lower
temperatures than the worst-case temperature speci�ed by
DRAM manufacturers.

6. Real-System Evaluation
We evaluate AL-DRAM on a real system that o�ers dyna-

mic software-based control over DRAM timing parameters at
runtime [10,11]. We use the minimum values of the timing pa-
rameters that do not introduce any errors at 55℃ for any mo-
dule to determine the latency reduction at 55℃. Thus, the la-
tency is reduced by 27%/32%/33%/18% for tRCD/tRAS/tWR/tRP,
respectively. Our full methodology is described in Section 8
of our HPCA 2015 paper [90].

Figure 4 shows the performance improvement of reducing
the timing parameters in the evaluated memory system with
one rank and one memory channel at a 55℃ operating tem-
perature. We run a variety of di�erent applications in two
di�erent con�gurations. The �rst one (single-core) runs only
one thread, and the second one (multi-core) runs multiple
applications/threads. We run each con�guration 30 times
(only SPEC benchmarks are executed 3 times due to their
3Due to space constraints, we present only the average potential reduction
for each timing parameter. However, detailed characterization of each DIMM
can be found online at the SAFARI Research Group website [91].

4

16

large execution times), and present the average performance
improvement across all the runs and their standard devia-
tion as an error bar. Based on the last-level cache misses
per kilo instructions (MPKI), we categorize our applications
into memory-intensive or non-intensive groups, and report
the geometric mean performance improvement across all
applications from each group.

hm
m

er
na

m
d

ca
lc

ul
ix

gr
om

ac
po

vr
ay

h2
64

bz
ip

2
sj

en
g

to
nt

o
pe

rl
go

bm
k

as
ta

r
xa

la
n

ca
ct

us gc
c

sp
hi

nx
ze

us
de

al
II

bw
av

e
om

ne
t

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
tr

ia
d

ad
d

co
py

sc
al

e
s.

cl
us

te
r

ca
nn

ea
l

m
ca

ch
ed

ap
ac

he
gu

ps
no

n-
in

te
ns

iv
e

in
te

ns
iv

e
al

l-w
or

kl
oa

ds

0

5

10

15

20

25

Pe
rf.

Im
pr

ov
em

en
t(

%
) MEANsingle-core multi-core

Figure 4: Real system performance improvement with AL-
DRAM. Reproduced from [90].

We draw three key conclusions from Figure 4. First, AL-
DRAM provides signi�cant performance improvement over
the baseline (as high as 20.5% for the very memory-bandwidth-
intensive STREAM applications [109]). Second, when the me-
mory system is under higher pressure with multi-core/multi-
threaded applications, we observe signi�cantly higher per-
formance (than in the single-core case) across all applicati-
ons from our workload pool. Third, as expected, memory-
intensive applications bene�t more in performance than non-
memory-intensive workloads (14.0% vs. 2.9% on average).
We conclude that by reducing the DRAM timing parameters
using AL-DRAM, we can speed up a real system by 10.5%
(on average across all 35 workloads on the multi-core/multi-
thread con�guration).

We also conducted reliability stress tests for our mecha-
nism. We ran our workloads for 33 days without interruption
of the lower latencies. We observed no errors and correct
results.

7. Other Results and Analyses in Our Paper
Our HPCA 2015 paper [90] includes signi�cant amount of

DRAM latency analyses and system performance evaluati-
ons. We refer the reader to [90] for detailed evaluations and
analyses.
• E�ect of Changing the Refresh Interval on DRAM

Latency. We evaluate DRAM latency at di�erent re-
fresh intervals. We observe that refreshing DRAM cells
more frequently enables more DRAM latency reduction
(Section 7.1 of our HPCA 2015 paper [90]).

• E�ect ofReducingMultiple TimingParameters. We
study the potential for reducing multiple timing parame-
ters simultaneously. Our key observation is that reducing
one timing parameter leads to decreasing the opportu-
nity to reduce another timing parameter simultaneously
(Section 7.2 of our HPCA 2015 paper [90]).

• Analysis of the Repeatability of Cell Failures. We
perform tests for �ve di�erent scenarios to determine
that a cell failure due to reduced latency is repeatable: i)
same test, ii) test with di�erent data patterns, iii) test with
timing-parameter combinations, iv) test with di�erent
temperatures, and v) DRAM read/write. Most of these
scenarios show that a very high fraction (more than 95%)
of the erroneous cells consistently experience an error
over multiple iterations of the same test (Section 7.6 of
our HPCA 2015 paper [90]).

• Performance Sensitivity Analyses. We analyze the
impact of increasing the number of ranks and channels,
executing heterogeneous workloads, using di�erent row
bu�er policies. We show that AL-DRAM e�ectively im-
proves performance in all cases (Section 8.4 of our HPCA
2015 paper [90]).

• Power Consumption Analysis. We show that AL-
DRAM reduces DRAM power consumption by 5.8%. This
reduced power consumption is due to the reduced DRAM
latencies (Section 8.4 of our HPCA 2015 paper [90]).

8. Related Work
To our knowledge, our HPCA 2015 paper is the �rst work

to i) provide a detailed qualitative and empirical analysis of
the relationship between process variation and temperature
dependence of modern DRAM devices on the one side, and
DRAM access latency on the other side (we directly attribute
the relationship between the two to the amount of charge in
cells), ii) experimentally characterize a large number of exis-
ting DIMMs to understand the potential of reducing DRAM
timing constraints, iii) provide a practical mechanism that can
take advantage of this potential, and iv) evaluate the perfor-
mance bene�ts of this mechanism by dynamically optimizing
DRAM timing parameters on a real system using a variety of
real workloads.

Several works investigated the possibility of reducing
DRAM latency by either exploiting DRAM latency variation
or changing the DRAM architecture. We discuss these below.
DRAM Latency Variation. Chandrasekar et al. [29] eva-

luate the potential of relaxing some DRAM timing parame-
ters to reduce DRAM latency. This work observes latency
variations across DIMMs as well as for a DIMM at di�erent
operating temperatures. However, there is no explanation
as to why this phenomenon exists. In contrast, our HPCA
2015 paper [90] (i) identi�es and analyzes the root cause of
latency variation in detail, (ii) provides a practical mecha-
nism that can relax timing parameters, and (iii) provides a
real system evaluation of this new mechanism, using real
workloads, showing improved performance and preserved
reliability.

NUAT [153] and ChargeCache [51] show that recently-
refreshed rows contain more charge, and propose mecha-
nisms to access recently-refreshed rows with reduced latency.
Even though some of the observations in these works are

5

17

similar to ours, the approaches to leverage them are di�erent.
AL-DRAM exploits temperature dependence in a DIMM and
process variations across DIMMs, while NUAT and Charge-
Cache use the time di�erence between a row refresh and an
access to the row (hence its bene�ts are dependent on when
the row is accessed after it is refreshed). Therefore, NUAT
and ChargeCache are complementary to AL-DRAM, and can
potentially be combined for better performance.

Voltron [34] uses an experimental characterization of real
DRAM modules to identify the relationship between the
DRAM supply voltage and access latency variation. Voltron
uses this relationship to identify the combination of voltage
and access latency that minimizes system-level energy con-
sumption without exceeding a user-speci�ed threshold for
the maximum acceptable performance loss.

Flexible-Latency DRAM (FLY-DRAM) [30] uses an expe-
rimental characterization of real DRAM modules to capture
access latency variation across DRAM cells within a single
DRAM chip due to manufacturing process variation. FLY-
DRAM identi�es that there is spatial locality in the slower
cells, resulting in fast regions (i.e., regions where all DRAM
cells can operate at signi�cantly-reduced access latency wit-
hout experiencing errors) and slow regions (i.e., regions where
some of the DRAM cells cannot operate at signi�cantly-
reduced access latency without experiencing errors) within
each chip. To take advantage of this heterogeneity in the reli-
able access latency of DRAM cells within a chip, FLY-DRAM
(1) categorizes the cells into fast and slow regions; and (2) lo-
wers the overall DRAM latency by accessing fast regions with
a lower latency.

Design-Induced Variation-Aware DRAM (DIVA-
DRAM) [89] uses an experimental characterization of
real DRAM modules to identify the latency variation within
a single DRAM chip that occurs due to the architectural
design of the chip. For example, a cell that is further away
from the row decoder requires a longer access time than a
cell that is close to the row decoder. Similarly, a cell that
is farther away from the wordline driver requires a larger
access time than a cell that is close to the wordline driver.
DIVA-DRAM uses design-induced variation to reduce the
access latency to di�erent parts of the chip.
Low-Latency DRAMArchitectures. Various works [31,

32, 33, 53, 78, 92, 108, 116, 142, 146, 154, 176] propose new
DRAM architectures that provide lower latency. Many of
these works improve DRAM latency at the cost of either
signi�cant additional DRAM chip area (i.e., extra sense am-
pli�ers [108, 142, 154], an additional SRAM cache [53, 176]),
specialized protocols [31,78,92,146] or a combination of these.
Our proposed mechanism requires no changes to the DRAM
chip and the DRAM interface, and hence has almost negligi-
ble overhead. Furthermore, AL-DRAM is largely orthogonal
to these proposed designs, and can be applied in conjunction
with them, providing greater cumulative reduction in latency.

Binning or Overclocking DRAM. AL-DRAM has mul-
tiple sets of DRAM timing parameters for di�erent tempe-
ratures and dynamically optimizes the timing parameters
at runtime. Therefore, AL-DRAM is di�erent from simple
binning (performed by manufacturers) or over-clocking (per-
formed by end-users; e.g., [58,126]) that are used to �gure out
the highest static frequency or lowest static timing parameters
for DIMMs.
OtherMethods for LoweringMemory Latency. There

are many works that reduce overall memory access latency
by modifying DRAM, the DRAM-controller interface, and
DRAM controllers. These works enable more parallelism and
bandwidth [3, 4, 31, 32, 78, 88, 93, 145, 146, 147, 167, 174, 178],
reduce refresh counts [66, 68, 70, 97, 98, 136, 164], accelerate
bulk operations [32,145,146,147,148], accelerate computation
in the logic layer of 3D-stacked DRAM [5, 6, 14, 15, 50, 54, 55,
72, 100, 129, 173], enable better communication between the
CPU and other devices through DRAM [93], leverage DRAM
access patterns [51, 153], reduce write-related latencies by
better designing DRAM and DRAM control policies [35, 83,
144], reduce overall queuing latencies in DRAM by better
scheduling memory requests [12, 13, 38, 46, 49, 56, 59, 61, 65, 76,
77, 84, 85, 86, 96, 109, 110, 111, 112, 120, 121, 125, 129, 141, 152,
159, 160, 161, 162, 163, 177], employ prefetching [9, 28, 36, 37,
42, 44, 45, 47, 84, 113, 114, 115, 119, 122, 124, 128, 158], perform
memory/cache compression [1, 7, 8, 39, 41, 43, 130, 131, 132,
133, 134, 151, 165, 168, 175], or perform better caching [67,
137, 138, 149, 150]. Our proposal is orthogonal to all of these
approaches and can be applied in conjunction with them to
achieve higher latency and energy bene�ts.
Experimental Studies of DRAM Chips. There are

several studies that characterize various errors in DRAM.
Many of these works observe how speci�c factors a�ect
DRAM errors, analyzing the impact of temperature [48] and
hard errors [57]. Other works have conducted studies of
DRAM error rates in the �eld, studying failures across a
large sample size [95, 106, 143, 155, 156, 157]. There are also
works that have studied errors through controlled experi-
ments, usually using FPGA-based DRAM testing infrastruc-
tures like SoftMC [52], to investigate errors due to reten-
tion time [52, 66, 68, 69, 70, 97, 98, 127, 136], disturbance from
neighboring DRAM cells [62, 74, 75, 118], latency variation
across/within DRAM chips [29, 30, 33, 87, 89], and supply
voltage [33, 34]. None of these works extensively study la-
tency variation across DRAM modules, which we characterize
in our work.

9. Signi�cance
Our work on AL-DRAM is the �rst to extensively characte-

rize and exploit the large access latency variation that exists
in modern DRAM devices. In this section, we discuss the
novelty of AL-DRAM and its expected future impact on the
community.

6

18

9.1. Novelty

We make the following major contributions in our HPCA
2015 paper [90]:
Addressing a Critical Real Problem, High DRAM La-

tency, with Low Cost. High DRAM latency is a critical bott-
leneck for overall system performance in a variety of modern
computing systems [117, 123], especially in real large-scale
server systems [63, 101]. Considering the signi�cant di�cul-
ties in DRAM scaling [64, 117, 118, 123], the DRAM latency
problem is getting worse in future systems due to process
variation. Our HPCA 2015 work [90] leverages the heteroge-
neity created by DRAM process variation across DRAM chips
and system operating conditions to mitigate the DRAM la-
tency problem. We propose a practical mechanism, Adaptive-
Latency DRAM, which mitigates DRAM latency with very
modest hardware cost, and with no changes to the DRAM
chip itself.
Large-Scale Latency Pro�ling of Modern DRAM

Chips. Using our FPGA-based DRAM testing infrastruc-
ture [30, 33, 34, 52, 68, 69, 75, 87, 89, 90, 97, 127, 136], we pro�le
115 DRAM modules (920 DRAM chips in total) and show
that there is signi�cant timing variation between di�erent
DIMMs at di�erent temperatures. We believe that our results
are statistically signi�cant to validate our hypothesis that the
DRAM timing parameters strongly depend on the amount of
cell charge. We provide a detailed characterization of each
DIMM online at the SAFARI Research Group website [91].
Furthermore, we introduce our FPGA-based DRAM infra-
structure and experimental methodology for DRAM pro�ling,
which are carefully constructed to represent the worst-case
conditions in power noise, bitline/wordline coupling, data
patterns, and access patterns. Such information will hopefully
be useful for future DRAM research.
Extensive Real System Evaluation of DRAM Latency.

We evaluate our mechanism on a real system [10,11] and show
that our mechanism provides signi�cant performance impro-
vements. Reducing the timing parameters strips the excessive
margin in the electrical charge stored within a DRAM cell.
We show that the remaining margin is enough for DRAM to
operate reliably. To verify the correctness of our experiments,
we ran our workloads for 33 days nonstop, and examined
their and the system’s correctness with reduced timing para-
meters. Using the reduced timing parameters over the course
of 33 days, our real system was able to execute 35 di�erent
workloads in both single-core and multi-core con�gurations
while preserving correctness and being error-free. Note that
these results do not absolutely guarantee that no errors can
be introduced by reducing the timing parameters. However,
we believe that we have demonstrated a proof-of-concept
which shows that DRAM latency can be reduced at no impact
on DRAM reliability. Ultimately, DRAM manufacturers can
provide the reliable timing parameters for di�erent operating
conditions and modules.

9.2. Potential Long-Term Impact
Tolerating High DRAM Latency by Exploiting

DRAM Intrinsic Characteristics. Today, there is a large
latency cli� between the on-chip last level cache and o�-chip
DRAM, leading to a large performance fall-o� when applica-
tions start missing in the last level cache. By enabling lower
DRAM latency, our mechanism, Adaptive-Latency DRAM,
smoothens this latency cli� without adding another layer
into the memory hierarchy.
Applicability to FutureMemoryDevices. We show the

bene�ts of the common-case timing optimization in modern
DRAM devices by taking advantage of intrinsic characteris-
tics of DRAM. Considering that most memory devices adopt a
uni�ed speci�cation that is dictated by the worst-case opera-
ting condition, our approach that optimizes device latency for
the common case can be applicable to other memory devices
by leveraging the intrinsic characteristics of the technology
they are built with. We believe there is signi�cant potential
for approaches that could reduce the latency of Phase Change
Memory (PCM) [40, 80, 81, 82, 105, 135, 139, 140, 170, 172], STT-
MRAM [79, 105], RRAM [169], and NAND �ash memory [16,
17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 102, 103, 104, 107].

NewResearchOpportunities. Adaptive-Latency DRAM
creates new opportunities by enabling mechanisms that can
leverage the heterogeneous latency o�ered by our mechanism.
We describe a few of these brie�y.

Optimizing the operating conditions for faster DRAM access:
Adaptive-Latency DRAM provides di�erent access latencies
for di�erent operating conditions. Future works can explore
how the operating conditions themselves can be optimized,
which can be used in conjunction with AL-DRAM to further
improve the DRAM access latency. For instance, balancing
DRAM accesses over multiple DRAM channels and ranks can
potentially reduce the DRAM operating temperature, max-
imizing the bene�ts provided by AL-DRAM. At the system
level, operating the system at a constant low temperature can
enable the use of lower DRAM latencies more frequently.
Optimizing data placement to reduce overall DRAM access

latency: We characterize the latency variation in di�erent
DIMMs due to process variation. Placing data based on this
information and the latency criticality of data maximizes the
bene�ts of lowering DRAM latency, by placing the data that
is most sensitive to latency in the fastest DRAM chips (and,
thus, providing lookups to the data with the fastest access
latency).

Error correction mechanisms to further reduce DRAM latency.
Error correction mechanisms allow us to lower DRAM latency
even further, by correcting bit errors that occur when a small
number of the DRAM operations end before the minimum
charge is stored in the DRAM cell. Such mechanisms can rely
on error correction to compensate for the reduced reliability
of read and write operations at even lower latencies, leading
to a further reduction in DRAM latency without errors. Fu-
ture research that uses error correction to enable even lower

7

19

latency DRAM is therefore promising as it opens a new set
of trade-o�s. Note that our recent work, DIVA-DRAM [89],
explores this direction and �nds very promising bene�ts.

Inspired by our characterization and proposed techniques,
several recent works [30, 34, 51, 71, 89, 127] have explored
many of these new research opportunities, by (1) analyzing
di�erent sources of latency and performance variation within
DRAM chips, and (2) exploiting these sources of latency and
performance variation to reduce access latency and/or energy
consumption.

10. Conclusion
This paper summarizes our HPCA 2015 work on Adaptive-

Latency DRAM (AL-DRAM), a simple and e�ective mecha-
nism for dynamically tailoring the DRAM timing parameters
for the current operating condition without introducing any
errors. AL-DRAM takes advantage of the large latency mar-
gin available in the DRAM timing parameters for common-
case operation, by dynamically the operating temperature
of each DRAM module and employing timing constraints
optimized for a particular module at the current tempera-
ture. AL-DRAM provides an average 14% improvement in
overall system performance across a wide variety of memory-
intensive applications run on a real multi-core system. We
conclude that AL-DRAM is a simple and e�ective mechanism
to reduce DRAM latency. We hope that our experimental
exposure of the large margin present in the standard DRAM
timing constraints will inspire other approaches to optimize
DRAM chips, latencies, and parameters at low cost.

Acknowledgments
We thank Saugata Ghose for his dedicated e�ort in the pre-

paration of this article. We thank the anonymous reviewers
for their valuable feedback. We thank Uksong Kang, Jung-Bae
Lee, and Joo Sun Choi from Samsung, and Michael Kozuch
from Intel for their helpful comments. We acknowledge the
support of our industrial partners: Facebook, IBM, Intel, Mi-
crosoft, Qualcomm, VMware, and Samsung. This research
was partially supported by NSF (grants 0953246, 1212962,
1065112), the Semiconductor Research Corporation, and the
Intel Science and Technology Center for Cloud Computing.
Donghyuk Lee was supported in part by the John and Claire
Bertucci Graduate Fellowship.

References
[1] B. Abali, H. Franke, D. Po�, R. Saccone, C. Schulz, L. Herger, and T. Smith, “Me-

mory Expansion Technology (MXT): Software support and performance,” in IBM
JRD, 2001.

[2] J.-H. Ahn et al., “Adaptive Self Refresh Scheme for Battery Operated High-
Density Mobile DRAM Applications,” in ASSCC, 2006.

[3] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, “Improving
System Energy E�ciency with Memory Rank Subsetting,” in ACM TACO, 2012.

[4] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore DIMM: an Energy
E�cient Memory Module with Independently Controlled DRAMs,” in IEEE CAL,
2009.

[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[6] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[7] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for High-
Performance Processors,” in ISCA, 2004.

[8] A. R. Alameldeen and D. A. Wood, “Frequent Pattern Compression: A
Signi�cance-Based Compression Scheme for L2 Caches,” Univ. of Wisconsin–
Madison, Computer Sciences Dept., Tech. Rep. 1500, 2004.

[9] A. Alameldeen and D. Wood, “Interactions Between Compression and Prefet-
ching in Chip Multiprocessors,” in HPCA, 2007.

[10] AMD, AMD Opteron 4300 Series processors, http://www.amd.com/en-us/
products/server/4000/4300.

[11] AMD, “BKDG for AMD Family 16h Models 00h-0Fh Processors,” 2013.
[12] R. Ausavarungnirun, K. Chang, L. Subramanian, G. H. Loh, and O. Mutlu, “Staged

memory scheduling: achieving high performance and scalability in heterogene-
ous systems,” in ISCA, 2012.

[13] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir,
and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to Improve GPGPU Perfor-
mance,” in PACT, 2015.

[14] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[15] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and
O. Mutlu, “LazyPIM: An E�cient Cache Coherence Mechanism for Processing-
in-Memory,” in IEEE CAL, 2016.

[16] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” in Procee-
dings of the IEEE, 2017.

[17] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[18] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[19] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[20] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[21] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in
MLC NAND �ash memory: Characterization, analysis, and modeling,” in DATE,
2013.

[22] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND Flash
Memory: Characterization, Mitigation, and Recovery,” in DSN, 2015.

[23] Y. Cai, Y. Luo, E. Haratsch, K. Mai, and O. Mutlu, “Data retention in MLC NAND
�ash memory: Characterization, optimization, and recovery,” in HPCA, 2015.

[24] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[25] Y. Cai, G. Yalcin, O. Mutlu, E. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
correct-and-refresh: Retention-aware error management for increased �ash me-
mory lifetime,” in ICCD, 2012.

[26] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Error
Analysis and Retention-Aware Error Management for NAND Flash Memory,” in
ITJ, 2013.

[27] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
“Neighbor-cell Assisted Error Correction for MLC NAND Flash Memories,” in
SIGMETRICS, 2014.

[28] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A Study of Integrated Prefetching
and Caching Strategies,” in SIGMETRICS, 1995.

[29] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens, “Exploiting Expendable Process-margins in DRAMs for Run-time
Performance Optimization,” in DATE, 2014.

[30] K. Chang, A. Kashyap, H. Hassan, S. Khan, K. Hsieh, D. Lee, S. Ghose, G. Pekhi-
menko, T. Li, and O. Mutlu, “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,” in SIGME-
TRICS, 2016.

[31] K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu,
“Improving DRAM performance by parallelizing refreshes with accesses,” in
HPCA, 2014.

[32] K. Chang, P. J. Nair, S. Ghose, D. Lee, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[33] K. K. Chang, “Understanding and Improving Latency of DRAM-Based Memory
Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[34] K. K. Chang, A. G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose, A. Kashyap,
H. Hassan, D. Lee, M. O’Connor, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[35] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi,
“Staged Reads: Mitigating the Impact of DRAM Writes on DRAM Reads,” in
HPCA, 2012.

[36] R. Cooksey, S. Jourdan, and D. Grunwald, “A Stateless, Content-directed Data
Prefetching Mechanism,” in ASPLOS, 2002.

[37] F. Dahlgren, M. Dubois, and P. Stenström, “Sequential Hardware Prefetching in
Shared-Memory Multiprocessors,” in IEEE TPDS, 1995.

[38] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-
to-core mapping policies to reduce memory system interference in multi-core

8

20

systems,” in HPCA, 2013.
[39] R. de Castro, A. Lago, and M. Silva, “Adaptive compressed caching: design and

implementation,” in SBAC-PAD, 2003.
[40] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and DRAM main

memory system,” in DAC, 2009.
[41] F. Douglis, “The Compression Cache: Using On-line Compression to Extend Phy-

sical Memory,” in Winter USENIX Conference, 1993.
[42] J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-executing

Instructions Under a Cache Miss,” in ICS, 1997.
[43] J. Dusser, T. Piquet, and A. Seznec, “Zero-content Augmented Caches,” in ICS,

2009.
[44] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for bandwidth-e�cient prefet-

ching of linked data structures in hybrid prefetching systems,” in HPCA, 2009.
[45] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware Shared Resource

Management for Multi-core Systems,” in ISCA, 2011.
[46] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.

Patt, “Parallel application memory scheduling,” in MICRO, 2011.
[47] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple

Prefetchers in Multi-core Systems,” in MICRO, 2009.
[48] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder,

“Temperature Management in Data Centers: Why Some (Might) Like It Hot,” in
SIGMETRICS, 2012.

[49] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via
Processor-Side Load Criticality Information,” in ISCA, 2013.

[50] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi, J. C. Hoe, and
F. Franchetti, “3D-Stacked Memory-Side Acceleration: Accelerator and System
Design,” in WoNDP, 2014.

[51] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[52] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[53] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima, “The Cache DRAM Archi-
tecture: A DRAM with an On-Chip Cache Memory,” in IEEE Micro, 1990.

[54] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[55] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent O�oading and Mapping (TOM): Ena-
bling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[56] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” inMICRO, 2004.
[57] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike

Twice: Understanding the Nature of DRAM Errors and the Implications for Sy-
stem Design,” in ASPLOS, 2012.

[58] Intel Corp., “Intel Extreme Memory Pro�le (Intel XMP) DDR3
Technology,” http://www.intel.com/content/www/us/en/chipsets/
extreme-memory-pro�le-ddr3-technology-paper.html, 2009.

[59] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-optimizing memory con-
trollers: A reinforcement learning approach,” in ISCA, 2008.

[60] JEDEC, Standard No. 79-3F. DDR3 SDRAM Speci�cation, Jul. 2012.
[61] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,

“Exploiting Core-Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[62] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn, “Reverse Engineering of
DRAMs: Row Hammer with Crosshair,” in MEMSYS, 2016.

[63] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks, “Pro�ling a Warehouse-Scale Computer,” in ISCA, 2015.

[64] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[65] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM Page-
Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.

[66] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by
Exploiting Current Memory Content,” in MICRO, 2017.

[67] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A. Jimenez, “Impro-
ving Cache Performance by Exploiting Read-Write Disparity,” in HPCA, 2014.

[68] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
E�cacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[69] S. Khan, D. Lee, C. Wilkerson, and O. Mutlu, “PARBOR: An E�cient System-
Level Technique to Detect Data Dependent Failures in DRAM,” in DSN, 2016.

[70] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” in IEEE CAL, 2016.

[71] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[72] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin, C. Al-
kan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Map-
ping Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[73] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” in IEEE CAL, 2015.

[74] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,
Carnegie Mellon University, 2015.

[75] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[76] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in HPCA,
2010.

[77] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Me-
mory Scheduling: Exploiting Di�erences in Memory Access Behavior,” in MI-
CRO, 2010.

[78] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[79] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an energy-e�cient main memory alternative,” in ISPASS, 2013.

[80] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” in IEEEMicro, 2010.

[81] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
As a Scalable DRAM Alternative,” in ISCA, 2009.

[82] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” in CACM, 2010.

[83] C. J. Lee, E. Ebrahimi, V. Narasiman, O. Mutlu, and Y. N. Patt, “DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory
Systems,” Univ. of Texas at Austin, High Performance Systems Group, Tech. Rep.
TR-HPS-2010-002, 2010.

[84] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-
trollers,” in MICRO, 2008.

[85] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware Memory Con-
trollers,” in IEEE TC, 2011.

[86] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[87] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon University, 2016.

[88] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” in ACM
TACO, 2016.

[89] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[90] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-latency DRAM: Optimizing DRAM timing for the common-case,” in
HPCA, 2015.

[91] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html.

[92] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-latency
DRAM: A low latency and low cost DRAM architecture,” in HPCA, 2013.

[93] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Tra�c by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[94] J. Lee, K. Kim, Y. Shin, K. Lee, J. Kim, D. Kim, J. Park, and J. Lee, “Simultaneously
Formed Storage Node Contact and Metal Contact Cell (SSMC) for 1Gb DRAM
and Beyond,” in IEDM, 1996.

[95] X. Li, M. C. Huang, K. Shen, and L. Chu, “A Realistic Evaluation of Memory
Hardware Errors and Software System Susceptibility,” in USENIX ATC, 2010.

[96] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-Based Hybrid
Memory Management,” in CLUSTER, 2016.

[97] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[98] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[99] S. Liu, B. Leung, A. Neckar, S. Memik, G. Memik, and N. Hardavellas, “Har-
dware/software techniques for DRAM thermal management,” in HPCA, 2011.

[100] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent Data Structures for Near-
Memory Computing,” in SPAA, 2017.

[101] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles:
Improving resource e�ciency at scale,” in ISCA, 2015.

[102] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “High-Performance and Lightweight
Transaction Support in Flash-Based SSDs,” in IEEE TC, 2015.

[103] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND �ash
memory lifetime with write-hotness aware retention management,” in MSST,
2015.

[104] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” in JSAC, 2016.

[105] J. Meza, J. Li, and O. Mutlu, “A Case for Small Row Bu�ers in Non-Volatile Main
Memories,” in ICCD, Poster Session, 2012.

[106] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[107] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of �ash memory
failures in the �eld,” in SIGMETRICS, 2015.

9

21

[108] Micron, “RLDRAM 2 and 3 Speci�cations,” http://www.micron.com/products/
dram/rldram-memory.

[109] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-core Systems,” in USENIX Security, 2007.

[110] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application
to Multi-core Dram Controllers,” in PODC, 2008.

[111] J. Mukundan and J. F. Martínez, “MORSE: Multi-Objective Recon�gurable Self-
Optimizing Memory Scheduler,” in HPCA, 2012.

[112] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,
“Reducing memory interference in multicore systems via application-aware me-
mory channel partitioning,” in MICRO, 2011.

[113] O. Mutlu, H. Kim, and Y. Patt, “Address-value delta (AVD) prediction: increasing
the e�ectiveness of runahead execution by exploiting regular memory allocation
patterns,” in MICRO, 2005.

[114] O. Mutlu, H. Kim, and Y. Patt, “Techniques for e�cient processing in runahead
execution engines,” in ISCA, 2005.

[115] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an alternative
to very large instruction windows for out-of-order processors,” in HPCA, 2003.

[116] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in MemCon,
2013.

[117] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[118] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory

Becomes Denser,” in DATE, 2017.
[119] O. Mutlu, H. Kim, and Y. N. Patt, “E�cient Runahead Execution: Power-e�cient

Memory Latency Tolerance,” in IEEE Micro, 2006.
[120] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[121] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[122] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An ef-

fective alternative to large instruction windows,” in IEEE Micro, 2003.
[123] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” in SUPERFRI, 2014.
[124] K. Nesbit, A. Dhodapkar, and J. Smith, “AC/DC: an adaptive data cache prefet-

cher,” in PACT, 2004.
[125] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair Queuing Memory

Systems,” in MICRO, 2006.
[126] NVIDIA Corp., “Extreme DDR3 Performance with SLI-Ready Memory,” http://

www.nvidia.com/docs/IO/52280/NVIDIA_EPP2_TB.pdf, 2008.
[127] M. Patel, J. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the Mi-

tigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,” in
ISCA, 2017.

[128] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka, “Informed
Prefetching and Caching,” in SOSP, 1995.

[129] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das, “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[130] G. Pekhimenko, E. Bolotin, M. O’Connor, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “Toggle-Aware Compression for GPUs,” in IEEE CAL, 2015.

[131] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “Toggle-Aware Bandwidth Compression for GPUs,” in HPCA, 2016.

[132] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. P. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Exploiting Compressed Block Size as an Indicator of Future Reuse,”
in HPCA, 2015.

[133] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Ko-
zuch, and T. C. Mowry, “Linearly Compressed Pages: A Low-complexity, Low-
latency Main Memory Compression Framework,” in MICRO, 2013.

[134] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mo-
wry, “Base-Delta-Immediate Compression: A Practical Data Compression Me-
chanism for On-Chip Caches,” in PACT, 2012.

[135] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing lifetime and security of PCM-based main memory with start-gap
wear leveling,” in MICRO, 2009.

[136] M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[137] M. K. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer, “Adaptive Insertion Policies
for High Performance Caching,” in ISCA, 2007.

[138] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-Aware
Cache Replacement,” in ISCA, 2006.

[139] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-change Memory Technology,” in ISCA, 2009.

[140] S. Raoux et al., “Phase-change random access memory: A scalable technology,”
in IBM Journal of Research and Development, 2008.

[141] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[142] Y. Sato et al., “Fast Cycle RAM (FCRAM); a 20-ns random row access, pipe-lined
operating DRAM,” in VLSIC, 1998.

[143] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A Large-
Scale Field Study,” in SIGMETRICS, 2009.

[144] V. Seshadri, A. Bhowmick, O. Mutlu, P. Gibbons, M. Kozuch, and T. Mowry, “The
Dirty-Block Index,” in ISCA, 2014.

[145] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. Kozuch, O. Mutlu, P. Gibbons,
and T. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in IEEE CAL, 2015.

[146] V. Seshadri et al., “RowClone: Fast and Energy-e�cient in-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[147] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[148] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-unit Strided Accesses,” in MICRO, 2015.

[149] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The Evicted-Address
Filter: A Uni�ed Mechanism to Address Both Cache Pollution and Thrashing,”
in PACT, 2012.

[150] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Mitigating Prefetcher-Caused Pollution Using Informed Caching Poli-
cies for Prefetched Blocks,” in ACM TACO, 2015.

[151] A. Sha�ee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip: Exploring
Unconventional Bene�ts from Memory Compression,” in HPCA, 2014.

[152] J. Shao and B. T. Davis, “A Burst Scheduling Access Reordering Mechanism,” in
HPCA, 2007.

[153] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access Time
Memory Controller,” in HPCA, 2014.

[154] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory Access
Latency with Asymmetric DRAM Bank Organizations,” in ISCA, 2013.

[155] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, the Bad, and
the Ugly,” in ASPLOS, 2015.

[156] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,” in SC, 2012.
[157] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi,

“Feng Shui of Supercomputer Memory: Positional E�ects in DRAM and SRAM
Faults,” in SC, 2013.

[158] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching:
Improving the Performance and Bandwidth-E�ciency of Hardware Prefetchers,”
in HPCA, 2007.

[159] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting
Memory Scheduler: Achieving high performance and fairness at low cost,” in
ICCD, 2014.

[160] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” in TPDS,
2016.

[161] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-Application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[162] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing
Performance Predictability and Improving Fairness in Shared Main Memory Sy-
stems,” in HPCA, 2013.

[163] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH: Deadline-Aware High-
Performance Memory Scheduler for Heterogeneous Systems with Hardware
Accelerators,” in ACM TACO, 2016.

[164] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in DRAM
(RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[165] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with As-
sist Warps,” in ISCA, 2015.

[166] M.-J. Wang, R.-L. Jiang, J.-W. Hsia, C.-H. Wang, and J.-E. Chen, “Guardband de-
termination for the detection of o�-state and junction leakages in DRAM testing,”
in Asian Test Symposium, 2001.

[167] F. Ware and C. Hampel, “Improving Power and Data E�ciency with Threaded
Memory Modules,” in ICCD, 2006.

[168] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for Compressed Ca-
ching in Virtual Memory Systems,” in ATEC, 1999.

[169] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. Chen, and
M.-J. Tsai, “Metal Oxide RRAM,” in Proceedings of the IEEE, 2012.

[170] H.-S. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, “Phase Change Memory,” in Proceedings of the IEEE, 2010.

[171] D. Yaney, C. Y. Lu, R. Kohler, M. J. Kelly, and J. Nelson, “A meta-stable leakage
phenomenon in DRAM charge storage - Variable hold time,” in IEDM, 1987.

[172] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multilevel Cell Phase-Change Memories,”
in ACM TACO, 2014.

[173] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatow-
ski, “TOP-PIM: Throughput-oriented Programmable Processing in Memory,” in
HPCA, 2014.

[174] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM: A high-
bandwidth and low-power DRAM architecture from the rethinking of �ne-
grained activation,” in ISCA, 2014.

[175] Y. Zhang, J. Yang, and R. Gupta, “Frequent value locality and value-centric data
cache design,” in ASPLOS, 2000.

[176] Z. Zhang, Z. Zhu, and X. Zhang, “Cached DRAM for ILP Processor Memory
Access Latency Reduction,” in IEEE Micro, 2001.

[177] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and High-Performance Memory Cont-
rol for Persistent Memory Systems,” in MICRO, 2014.

[178] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adap-
tive DRAM architecture for improving memory power e�ciency,” in MICRO,
2008.

10

22

Flexible-Latency DRAM: Understanding and Exploiting
Latency Variation in Modern DRAM Chips

Kevin K. Chang
1,2

Abhijith Kashyap
3,2

Hasan Hassan
4,2,5

Saugata Ghose
2

Kevin Hsieh
2

Donghyuk Lee
6,2

Tianshi Li
2,7

Gennady Pekhimenko
8,2

Samira Khan
9,2

Onur Mutlu
4,2

1Facebook 2Carnegie Mellon University 3NVIDIA 4ETH Zürich
5TOBB University of Economics & Technology 6NVIDIA Research

7Peking University 8University of Toronto 9University of Virginia

This article summarizes key results of our work on experi-
mental characterization and analysis of latency variation and
latency-reliability trade-o�s in modern DRAM chips, which was
published in SIGMETRICS 2016 [24], and examines the work’s
signi�cance and future potential. Our work is motivated to
reduce the long DRAM latency, which is a critical performance
bottleneck in current systems. DRAM access latency is de�ned
by three fundamental operations that take place within the
DRAM cell array: (i) activation of a memory row, which opens
the row to perform accesses; (ii) precharge, which prepares the
cell array for the next memory access; and (iii) restoration of
the row, which restores the values of cells in the row that were
destroyed due to activation. There is signi�cant latency vari-
ation for each of these operations across the cells of a single
DRAM chip due to irregularity in the manufacturing process.
As a result, some cells are inherently faster to access, while
others are inherently slower. Unfortunately, existing systems do
not exploit this variation.

The goal of this work is to (i) experimentally characterize and
understand the latency variation across cells within a DRAM
chip for these three fundamental DRAM operations, and (ii) de-
velop new mechanisms that exploit our understanding of the
latency variation to reliably improve performance. To this end,
we comprehensively characterize 240 DRAM chips from three
major vendors, and make six major new observations about
latency variation within DRAM. Notably, we �nd that (i) there
is large latency variation across the cells for each of the three
operations; (ii) variation characteristics exhibit signi�cant spa-
tial locality: slower cells are clustered in certain regions of a
DRAM chip; and (iii) the three fundamental operations exhibit
di�erent reliability characteristics when the latency of each
operation is reduced.

Based on our observations, we propose Flexible-LatencY
DRAM (FLY-DRAM), a mechanism that exploits latency va-
riation across DRAM cells within a DRAM chip to improve
system performance. The key idea of FLY-DRAM is to exploit
the spatial locality of slower cells within DRAM, and access the
faster DRAM regions with reduced latencies for the fundamen-
tal operations. Our evaluations show that FLY-DRAM improves
the performance of a wide range of applications by 13.3%, 17.6%,

and 19.5%, on average, for each of the three di�erent vendors’
real DRAM chips, in a simulated 8-core system.

We have open sourced the data from our research online. We
hope the characterization and analysis we provide opens up
new research directions for both researchers and practitioners
in computer architecture and systems.

1. Introduction

Over the past few decades, the long latency of memory

has been a critical bottleneck in system performance. Increa-

sing core counts, the emergence of more data-intensive and

latency-critical applications, and increasingly limited band-

width in the memory system are together leading to higher

memory latency. Thus, low-latency memory operation is

now even more important to improving overall system per-

formance [30, 55, 93, 101, 102, 105, 143].

The latency of a memory request is predominantly de�ned

by the timings of three fundamental operations: (1) activation,

which “opens” a row of DRAM cells to access stored data,

(2) precharge, which “closes” an activated row, and (3) resto-
ration, which restores the charge level of each DRAM cell

in a row to prevent data loss.
1

The latencies of these three

DRAM operations, as de�ned by vendor speci�cations, have

not improved signi�cantly in the past 18 years, as depicted

in Figure 1. This is especially true when we compare latency

improvements to the capacity (128×) and bandwidth impro-

vements (20×) [23] commodity DRAM chips experienced in

the past 18 years. In fact, the activation and precharge laten-

cies increased from 2013 to 2015, when DDR DRAM transitio-

ned from the third generation (12.5ns for DDR3-1600J [51]) to

the fourth generation (14.06ns for DDR4-2133P [53]). As the

latencies speci�ed by vendors have not reduced over time,

the memory latency remains as a critical system performance

bottleneck in many modern applications, such as big data

workloads [28] and Google’s warehouse-scale workloads [55].

1
We refer the reader to our prior works [22, 24, 25, 26, 43, 44, 61, 64, 65,

66, 67, 68, 76, 77, 79, 81, 82, 86, 87, 110, 127, 128] for a detailed background on

DRAM.

23

+21% -29%

-17% +8%

Figure 1: DRAM latency trends over time [50,51,53,97]. Adap-
ted from [24].

2. Motivation
In this work, we observe that the three fundamental DRAM

operations can actually complete with a much lower latency

for many DRAM cells than the vendor speci�cation, because

there is inherent latency variation present across the DRAM
cells within a DRAM chip. This is a result of manufacturing

process variation, which causes the sizes and strengths of cells

to be di�erent, thus making some cells faster and other cells

slower to be accessed reliably [85]. The speed gap between

the fastest and slowest DRAM cells is getting worse [20, 107],

as the technology node continues to scale down to sub-20nm

feature sizes. Unfortunately, instead of optimizing the latency

speci�cations for the common case, DRAM vendors use a sin-

gle set of standard access latencies, called timing parameters,

which provide reliable operation guarantees for the worst case
(i.e., the slowest cells), to maximize manufacturing yield.

We experimentally demonstrate that signi�cant latency

variation is present across DRAM cells in 240 DDR3 DRAM

chips from three major vendors, and that a large fraction of

cells can be read reliably even if the activation/restoration/-

precharge latencies are reduced signi�cantly. By repeatedly

testing these DRAM chips, we observe that access latency

variation exhibits spatial locality within DRAM — slower cells

cluster in certain regions of a DRAM chip. In Section 4, we

propose a new mechanism, called FLY-DRAM, which exploits

the lower latencies of DRAM regions with faster cells by in-

troducing heterogeneous timing parameters into the memory

controller. By analyzing and exploiting the latency variation

that exists in DRAM cells, we can greatly reduce the DRAM

access latency.

We discuss our major experimental observations in

Section 3. For a detailed discussion on all of our observations,

we refer the reader to our SIGMETRICS 2016 paper [24].

3. Latency Variation Analysis
To capture the e�ect of latency variation in modern DDR3

DRAM chips, we tune the timing parameters that control the

amount of time taken for each of the fundamental DRAM

operations. We developed an FPGA-based DRAM testing

platform [43] that allows us to precisely control the timing

parameter values and the tested DRAM location (i.e., banks,

rows, and columns). A photo of the platform is shown in

Figure 2. Using this platform, we characterize latency va-

riation on a total of 30 DDR3 DRAM modules (or DIMMs),

comprising 240 DRAM chips from three major vendors. Each

chip has a 1Gb density. Thus, each of our DIMMs has a 1GB

capacity. Table 1 lists the relevant information about the

tested DRAM modules. Unless otherwise speci�ed, we test

modules at an ambient temperature of 20±1℃. For results

using higher temperatures, we refer the reader to Section 4.5

of our SIGMETRICS 2016 paper [24].

Figure 2: FPGA-based DRAM testing infrastructure. Repro-
duced from [24].

Vendor

Total Number Timing (ns) Assembly

of Chips (tRCD/tRP/tRAS) Year

A (8 DIMMs) 64 13.125/13.125/35-36 2012-13

B (9 DIMMs) 72 13.75/13.75/35 2011-12

C (13 DIMMs) 104 13.75/13.75/34-36 2011-12

Table 1: Main properties of the tested DIMMs. Reproduced
from [24].

In this section, we present a short summary of our key

results on varying the activation, precharge, and restoration

latencies, which are controlled by the tRCD, tRP, and tRAS

timing parameters, respectively. For more details on the ex-

perimental results and observations, see Sections 4–6 of our

SIGMETRICS 2016 paper [24].

3.1. Behavior of Timing Errors
We analyze the variation in the latencies of activation,

precharge, and restoration by operating DRAM at multiple

reduced latencies for each of these operations. Faster cells do

not get a�ected by the reduced timings, and can be accessed

reliably without any errors; however, slower cells cannot be

read reliably with reduced latencies for the three operations,

leading to bit �ips. In this work, we de�ne a timing error as a

bit �ip in a cell that occurs due to a reduced-latency access,

and characterize timing errors incurred by the three DRAM

operations.

Our experiments yield several new observations on the

behavior of timing errors. When we reduce the three laten-

cies, we observe that each latency exhibits a di�erent level

of impact on the inherently-slower cells. Lowering the acti-

vation latency (tRCD) a�ects only the cells (data) read in the

2

24

�rst accessed cache line, but not the subsequently read cache

lines from the same row. This is mainly due to two reasons.

First, a read command accesses only its corresponding sense

ampli�ers, without accessing the other columns. Hence, a

read’s e�ect is isolated to its target cache line. Second, by the

time a subsequent read is issued to the same activated row,

a su�cient amount of time has already passed for the row

bu�er to fully sense and latch in the row data. In contrast,

lowering the restoration (tRAS) or precharge (tRP) latencies

a�ects all cells in the activated row (see Section 5 of our

SIGMETRICS 2016 paper [24] for a detailed explanation). Lo-

wering these latencies a�ects the entire row because these

commands operate at the row level, and they directly a�ect

the restoration and sensing of all cells in the row.

We also �nd that the number of timing errors introduced is

very sensitive to reducing the activation or precharge latency,

but not that sensitive to reducing the restoration latency. We

conclude that di�erent levels of mitigation are required to

address the timing errors that result from lowering each of

the di�erent DRAM operation latencies, and that reducing

restoration latency to the lowest levels allowed by our infra-

structure does not introduce timing errors in our experiments

(see Section 6 in our SIGMETRICS 2016 paper [24]).

3.2. Timing Error Distribution
We brie�y present the distribution of activation and pre-

charge errors collected from all of the tests conducted on

every DIMM. Figure 3 shows the box plots of the bit error rate
(BER) observed on every DIMM as activation latency (tRCD)

varies. The BER is de�ned as the fraction of bits with errors

due to reducing tRCD in the total population of tested bits.

In other words, the BER represents the fraction of cells that

cannot operate reliably under the speci�ed shortened latency.

The box plot shows the maximum and minimum BER of all of

our tested DIMMs as whiskers, and the box shows the quarti-

les of the distribution. In addition, we show all observation

points for each speci�c tRCD/tRP value by overlaying them

on top of their corresponding box plot. Each point shows a

BER collected from one round of tests on one DIMM with

a speci�c data pattern and tRCD value. For box plots sho-

wing the BER distribution when the precharge latency (tRP)

is reduced, see Figure 12 in the original paper [24]. We make

two observations from the BER distributions when reducing

tRCD or tRP.

First, at tRCD or tRP values of 12.5ns and 10ns, we observe

no timing errors on any DIMM due to reduced activation or

precharge latency. This shows that the tRCD/tRP latencies

of the slowest cells in our tested DIMMs likely fall between

7.5 and 10ns, which are lower than the value provided in

the vendor speci�cations (13.125ns). DRAM vendors use the

extra latency as a guardband to provide additional protection

against process variation.

Second, there exists a large BER variation among DIMMs

at tRCD of 7.5ns, and the BER variation becomes smaller as

2.55.07.510.012.5

tRCD (ns)

10-1010-910-810-710-610-510-410-310-210-1100

B
it

E
rr

or
 R

at
e

(B
E

R
)

Figure 3: Bit error rate of all DIMMs with reduced tRCD. Re-
produced from [24].

the tRCD or tRP value decreases. The number of fast cells that

can operate at tRCD=7.5ns or tRP=7.5ns varies signi�cantly

across di�erent DIMMs. These results demonstrate that there

exists signi�cant latency variation among and within DIMMs,

as not all of the cells exhibit timing errors at 7.5ns.

3.3. Spatial Locality of Timing Errors

In this section, we investigate the location and distribution

of timing errors within a DIMM when the activation or pre-

charge latencies are reduced. Figure 4 shows the probability

of every cache line (64B) in one bank of a speci�c DIMM ob-

serving at least 1 bit of error with reduced activation latency

(Figure 4a) or precharge latency (Figure 4b). See [24] for ad-

ditional results. The x-axis and y-axis indicate the cache line

number and row number (in thousands), respectively. In our

tested DIMMs, a row size is 8KB, comprising 128 cache lines.

0 20 40 60 80 100 120

Cache LLne

0

2

4

6

8

10

12

14

16

5
R
w

 (
0

0
0

s)

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27

P
r(

ca
ch

e
 l
Ln

e
 w

Lt
h
 ≥

 1
-b

Lt
 e

rr
R
r)

(a) Activation latency (tRCD)

at 7.5ns (43% reduction).

0 20 40 60 80 100 120

Cache LLne

0

2

4

6

8

10

12

14

16

5
R
w

 (
0

0
0

s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
r(

ca
ch

e
 lL

n
e
 w

Lt
h
 ≥

 1
-b

Lt
 e

rr
R
r)

(b) Precharge latency (tRP)

at 7.5ns (43% reduction).

Figure 4: Probability of observing timing errors in oneDIMM.
Adapted from [24].

The main observation is that timing errors due to reducing

activation or precharge latency are not distributed uniformly

across locations within this DIMM. Timing errors tend to

cluster at certain regions of cache lines. For the remaining

cache lines, we observe that they do not exhibit timing errors

due to reduced latency throughout the experiments. We ob-

serve similar characteristics in other DIMMs — timing errors

concentrate within certain spatial regions of memory.

We hypothesize that the cause of the spatial locality of ti-

ming errors is due to the locality of variation in the fabrication

process during manufacturing. Certain cache line locations

can end up with less robust components, such as weaker

sense ampli�ers, weaker cells, or higher resistance bitlines.

3

25

3.4. Other Characterization Results
We brie�y summarize our other observations on the e�ects

of reducing timing parameters. First, we analyze the number

of timing errors that occur when DRAM access latencies are

reduced, and experimentally demonstrate that most of the

erroneous cache lines have a single-bit error, with only a

small fraction of cache lines experiencing more than one bit

�ip (see Section 4.7 of our SIGMETRICS 2016 paper [24]). We

conclude, therefore, that using simple error-correcting codes

(ECC) can correctmost of these errors, thereby enabling lower

latency for many inherently slower cells (see Section 4.8 of

our SIGMETRICS 2016 paper [24] for a detailed analysis of

ECC).

Second, we �nd that the stored data pattern in cells a�ects

access latency variation. Certain patterns lead to more timing

errors than others. For example, the bit value 1 can be read

signi�cantly more reliably at a reduced access latency than

the bit value 0 (see Section 4.4 of our SIGMETRICS 2016

paper [24]). This observation is similar to the data pattern

dependence observation made for retention times of DRAM

cells [57, 58, 59, 60, 86, 110].

Third, we �nd no clear correlation between temperature

and variation in cell access latency. We believe that it is not

essential for latency reduction techniques that exploit such va-

riation to be aware of the operating temperature (Section 4.5

in [24]).

4. Exploiting Latency Variation
Based on our extensive experimental characterization and

new observations on latency-reliability trade-o�s in modern

DRAM chips, we propose a new hardware mechanism, cal-

led Flexible-LatencY DRAM (FLY-DRAM), to reduce DRAM

latency for better system performance. FLY-DRAM exploits

the key observation that (i) di�erent cells can operate reliably

at di�erent DRAM latencies, and (ii) there is a strong correla-

tion between the location of a cell and the lowest latency that

the cell can operate reliably at. The key idea of FLY-DRAM

is to (i) categorize the DRAM cells into fast and slow regi-

ons, (ii) expose this categorization to the memory controller,

and (iii) reduce overall DRAM latency by accessing the fast

regions with a lower latency.

The FLY-DRAM memory controller (i) loads the latency

pro�ling results [24] into on-chip SRAM at system boot time,

(ii) looks up the pro�led latency for each memory request ba-

sed on its memory address, and (iii) applies the corresponding

latency to the request. By reducing the values of tRCD, tRAS,

and tRP for some memory requests, FLY-DRAM improves

overall system performance. In addition, we also propose an

OS page allocator design that exploits the latency variation

in DRAM to improve system performance (see Section 7.2 of

our paper [24]).

There are two key design challenges of FLY-DRAM. The

�rst challenge is determining the fraction of fast cells within

a DRAM chip and the innate access latency of the fast cells.

Since DRAM vendors have detailed information on their

DRAM chips from the DRAM post-production tests, DRAM

vendors can embed the latency pro�ling results in the Se-

rial Presence Detect (SPD) circuitry (a ROM present in each

DIMM) [52]. The memory controller can read the pro�ling

results from the SPD circuitry during DRAM initialization,

and apply the correct latency for each DRAM region.

The second design challenge is limiting the storage over-

head of the latency pro�ling results. Recording the shortest

latency for each cache line can incur a large storage over-

head. Fortunately, the storage overhead can be reduced based

on a new observation of ours. As discussed in Section 3.3,

timing errors typically concentrate at certain DRAM regi-

ons. Therefore, FLY-DRAM records the shortest latency at

the granularity of DRAM regions (i.e., a group of adjacent

cache lines, rows, or banks). One can imagine using more

sophisticated structures, such as Bloom Filters [6], to provide

�ner-grained latency information within a reasonable storage

overhead, as shown in prior work on variable DRAM refresh

intervals [87, 115].

4.1. Summary of Results

We evaluate FLY-DRAM on on an 8-core system with a

wide variety of workloads by using Ramulator [64, 120], a

cycle-level open-source DRAM simulator developed by our

research group. Table 2 summarizes the con�guration of our

evaluated system. We use the standard DDR3-1333H timing

parameters [51] as our baseline.

Processor 8 cores, 3.3 GHz, OoO 128-entry window

LLC 8 MB shared, 8-way set associative

DRAM
DDR3-1333H [51], open-row policy [66, 67, 118],

2 channels, 1 rank per channel, 8 banks per rank,

Baseline: tRCD/tCL/tRP = 13.125ns, tRAS = 36ns

Table 2: Evaluated system con�guration. Adapted from [24].

Figure 5 illustrates the system performance improvement

of FLY-DRAM over the baseline (DDR3-1333) for 40 worklo-

ads. The x-axis indicates each of the evaluated DRAM con-

�gurations. D2

A, D7

B, and D2

C correspond to latency pro�les

collected from three real DIMMs. Our SIGMETRICS 2016

paper [24] describes these real-DRAM pro�les in more detail.

For these three DIMMs, FLY-DRAM improves system per-

formance signi�cantly, by 17.6%, 13.3%, and 19.5% on average

across all 40 workloads. This is because FLY-DRAM reduces

the latency of tRCD, tRP, and tRAS by 42.8%, 42.8%, and 25%,

respectively, for a large fraction of cache lines. In particular,

DIMM D2

C , which has a 99% of cells that operate reliably at

low tRCD and tRP, performs within 1% of the upper-bound

performance (19.7% on average), which is obtained by ope-

rating all DRAM cells at low tRCD and tRP. We conclude

that FLY-DRAM is an e�ective mechanism to improve system

performance by exploiting the widespread latency variation

present across DRAM cells.

4

26

D2
A D7

B D2
C

Upper Bound
1.05
1.10
1.15
1.20
1.25
1.30

N
or

m
al

iz
ed

 W
S

17.6%
13.3%

19.5% 19.7%

Figure 5: System performance improvement of FLY-DRAM
for various DIMMs. Reproduced from [24].

As we show in our SIGMETRICS 2016 paper [24],

FLY-DRAM can take advantage of an intelligent

DRAM-aware page allocator that allocates frequently

used and latency-critical pages in fast DRAM regions. We

leave the detailed design and evaluation of such an allocator

to future work.

5. Related Work
To our knowledge, this is the �rst work to (i) provide a

detailed experimental characterization and analysis of latency

variation for three major DRAM operations (tRCD, tRP, and

tRAS) across di�erent cells within a DRAM chip, (ii) demon-

strate that a reduction in latency for each of these funda-

mental operations has a di�erent impact on di�erent cells,

(iii) show that access latency variation exhibits spatial lo-

cality, (iv) demonstrate that the error rate due to reduced

latencies is correlated with the stored data pattern but not
conclusively correlated with temperature, and (v) propose

mechanisms that take advantage of variation within a DRAM
chip to improve system performance. We discuss the most

closely related works here.

5.1. DRAM Latency Variation
Adaptive-Latency DRAM (AL-DRAM) also characterizes

and exploits DRAM latency variation, but does so at a much

coarser granularity [79]. This work experimentally charac-

terizes latency variation across di�erent DRAM chips under

di�erent operating temperatures. AL-DRAM sets a uniform

operation latency for the entire DIMM. In contrast, our work

characterizes latency variation within each chip, at the granu-

larity of individual DRAM cells. Our mechanism, FLY-DRAM,

can be combined with AL-DRAM to further improve perfor-

mance.
2

A recent work by Lee et al. [76] also observes latency vari-

ation within DRAM chips. The work analyzes the variation

that is due to the circuit design of DRAM components, which

it calls design-induced variation. Furthermore, it proposes a

new pro�ling technique to identify the lowest DRAM latency

without introducing errors. In this work, we provide the �rst
detailed experimental characterization and analysis of the ge-

neral latency variation phenomenon within real DRAM chips.

Our analysis is broad and is not limited to design-induced

2
A description of the AL-DRAM work and its impact is provided in a

companion article in the very same issue of this journal [80].

variation. Our proposal of exploiting latency variation, FLY-

DRAM can employ Lee et al.’s new pro�ling mechanism [76]

to identify additional latency variation regions for reducing

access latency.

Chandrasekar et al. study the potential of reducing some

DRAM timing parameters [21]. Similar to AL-DRAM, this

work observes and characterizes latency variation across
DIMMs, whereas our work studies variation across cells

within a DRAM chip.

5.2. DRAM Error Studies
There are several studies that characterize various er-

rors in DRAM. Many of these works observe how speci�c

factors a�ect DRAM errors, analyzing the impact of tem-

perature [32, 79] and hard errors [48]. Other works have

conducted studies of DRAM error rates in the �eld, stu-

dying failures across a large sample size [84, 95, 123, 132, 133].

There are also works that have studied errors through con-

trolled experiments, investigating errors due to retention

time [43, 57, 58, 59, 60, 86, 110, 115], disturbance from neighbo-

ring DRAM cells [65, 101], latency variation across/within

DRAM chips [21, 76, 78, 79], and supply voltage [26]. None of

these works study errors due to latency variation across the

cells within a DRAM chip, which we extensively characterize

in our work.

5.3. DRAM Latency Reduction
Several types of commodity DRAM (Micron’s RL-

DRAM [98] and Fujitsu’s FCRAM [122]) provide low latency

at the cost of high area overhead [68, 81]. Many prior works

(e.g., [22, 25, 45, 68, 81, 88, 101, 102, 106, 125, 127, 128, 131, 150])

propose various architectural changes within DRAM chips to

reduce latency. In contrast, FLY-DRAM does not require any

changes to a DRAM chip. Other works [44, 75, 124, 129, 130]

reduce DRAM latency by changing the memory controller,

and FLY-DRAM is complementary to them.

5.4. ECC DRAM
Many memory systems incorporate ECC DIMMs, which

store information used to correct data during a read operation.

Prior work (e.g., [39, 54, 60, 63, 83, 140, 142, 145, 146]) proposes

more �exible or more powerful ECC schemes for DRAM.

While these ECC mechanisms are designed to protect against

faults using standard DRAM timings, we show that they also

have the potential to correct timing errors that occur due to

reduced DRAM latencies. A recent work by Lee et al. [76]

exploits this observation and uses ECC to correct errors that

occur due to reduced latency in DRAM.

5.5. Other Latency Reduction Mechanisms
Various prior works [1, 2, 3, 5, 7, 8, 25, 31, 33, 34, 35, 36, 38, 40,

42, 46, 47, 56, 62, 69, 92, 109, 111, 112, 114, 125, 126, 128, 129, 134,

139, 149] examine processing in memory to reduce DRAM la-

tency. Other prior works propose memory scheduling techni-

ques, [4,37,49,66,67,74,99,100,103,104,135,136,137,138,141],

5

27

which generally reduce latency to access DRAM. Our ana-

lyses and techniques can be combined with these works to

enable further low-latency operation.

6. Signi�cance
Our SIGMETRICS 2016 paper [24] presents a new expe-

rimental characterization and analysis of latency variation

in modern DRAM chips. In this section, we describe the

potential impact that our study can have on the research

community and industry.

6.1. Potential Research Impact
Our paper develops a new way of using manufactured

DRAM chips: accessing di�erent regions of memory using

each region’s inherent latency instead of a homogeneous

�xed standard latency for all regions of memory. We show

that (i) there is signi�cant latency variation within a DRAM

chip, and (ii) it is possible to exploit the variation with sim-

ple mechanisms. We believe one key impact of our paper is

demonstrating the e�ectiveness of designing memory opti-

mizations based on real-world characterization. We expect

that this same principle can be used to craft new memory

architectures for both existing and future memory techno-

logies, such as SRAM, PCM [71, 72, 73, 116, 117, 147, 148],

STT-MRAM [27, 41, 70], or RRAM [144].

Our work exposes several opportunities for both operating

systems and hardware to further optimize for memory access

latency. We have open-sourced our raw characterization data,

to allow other researchers to further analyze and build o� of

our work [120]. Other researchers can �nd many other ways

to take advantage of the insights and the characterization data

we provide. Our FLY-DRAM implementation is also available

as part of the open-source release of Ramulator [64, 119].

ECC to Reduce Latency. In our paper, we analyze the

distribution of timing errors (due to reduced latency) at the

granularity of data beats, as conventional error-correcting co-

des (ECC) work at the same granularity. Our data shows that

many of the erroneous data beats experience only a single-bit

error, while the majority of the data beats contain no errors.

Therefore, this creates an opportunity for applying ECC to

correct timing errors. We also envision an opportunity for

applying ECC to only certain regions of DRAM, which takes

advantage of the spatial locality of timing errors exposed by

our work. Lee et al. [76] provide examples of the use of ECC

to reduce latency further, but they apply ECC globally to the

entire DRAM chip. We believe a signi�cant opportunity ex-

ists in customizing ECC to latency errors and di�erent DRAM

reliability issues.

Data Pattern Dependence. We �nd that timing errors

caused by reducing activation latency are dependent on the

stored data pattern. Reading bit 1 is signi�cantly more re-

liable than bit 0 at reduced activation latencies. This asym-

metric sensing strength can potentially be a good direction

for studying DRAM reliability. Currently, DRAM commonly

employs data bus inversion [53] as an encoding scheme to

reduce toggle rate on the data bus, thereby saving channel

power [113]. Similar encoding techniques can be developed

to reduce bit 0s and increase the overall number of 1s in data.

We believe that developing asymmetric data encodings or

ECC mechanisms that favor 1s over 0s is a promising rese-

arch direction to improve DRAM reliability.

DRAM-Aware Page Allocator. We developed a har-

dware mechanism (FLY-DRAM) that exploits latency va-

riation to improve system performance in a software-

transparent manner. Researchers can take better advantage

of the variation by exposing the di�erent latency regions

to the software stack. In our SIGMETRICS 2016 paper [24],

we discuss the potential of a DRAM-aware page allocator in

the OS (Section 7.2), which can improve FLY-DRAM perfor-

mance by intelligently mapping more frequently-accessed

application pages to faster DRAM regions. We believe that

the key idea of enabling the OS to allocate pages based on

the accessed memory region’s latency can be applied to other

types of memory characteristics (e.g., energy e�ciency or

voltage [26, 29]) without needing to modify the architecture.

Applicability to Other Memory Technologies. In this

work, we focus on characterizing only DRAM technology. A

class of emerging memory technology is non-volatile memory

(NVM), which has the capability of retaining data even when

the memory is not powered. Since the memory organization

of NVM mostly resembles that of DRAM [71, 96, 147], we

believe that our characterization and optimization can be

extended to di�erent types of NVMs, such as PCM [71, 72,

73, 116, 117, 147, 148], STT-MRAM [27, 41, 70], or NAND �ash

memory [9,10,11,12,13,14,15,16,17,18,19,89,90,91] to further

enhance their reliability or performance.

6.2. Long-Term Impact on Industry
High main memory latency remains a problem for many

modern applications, such as in-memory databases (e.g., Re-

dis [121], MemSQL [94], TimesTen [108]), Spark, Google’s

datacenter workloads [28, 55], and many mobile and inte-

ractive workloads. We propose two simple ideas that exploit

latency variation in existing DRAM chips. Both can be adop-

ted relatively easily in the processor architecture (i.e., the

memory controller) or in the OS.

In addition to improving memory access latency, redu-

cing the latency of the three fundamental DRAM operati-

ons also increases the e�ective memory bandwidth. To fully

utilize the available memory bandwidth, memory control-

lers would have to maximize the number of read or write

commands. However, due to interference between access

streams within and across applications, memory controllers

need to constantly open and close rows by issuing activate

and precharge commands due to an increasing number of

bank con�icts [44,68]. These commands increase the queuing

latency of accesses (read and write), thus decreasing the

e�ective memory bandwidth utilization.

6

28

As pin count is limited and increasing bus frequency is

becoming more di�cult (due to signal integrity issues [29]),

our work o�ers a new alternative to help improve bandwidth

utilization. By reducing the latency of DRAM operations,

which fall on the critical path of DRAM access time, more

accesses per second are allowed, thereby improving the over-

all e�ective bandwidth. Furthermore, improving latency and

e�ective bandwidth also leads to lower memory energy con-

sumption due to reduced execution time and fewer active

cycles.

All these bene�ts (e.g., reduced latency, increased band-

width, and reduced energy) will become much more impor-

tant as applications become more data-intensive and sys-

tems become more energy-constrained in the foreseeable

future [102, 105].

In conclusion, we believe that in the longer term, the idea of

leveraging variation in di�erent characteristics (e.g., latency,

reliability) inside memory chips will become more bene�cial

for both the software and hardware industry. For example, by

making CPU aware of variation behavior in memory devices,

memory vendors have an incentive to sell memory with larger

variation at a lower price, allowing system designers to lower

costs with a small amount of additional logic in hardware.

Many other opportunities to improve system performance,

energy, and cost abound, which we hope the future works

can build upon and exploit.

7. Conclusion
This paper provides the �rst experimental study that com-

prehensively characterizes and analyzes the latency variation

within modern DRAM chips for three fundamental DRAM

operations (activation, precharge, and restoration). We �nd

that signi�cant latency variation is present across DRAM

cells in all 240 of our tested DRAM chips, and that a large

fraction of cache lines can be read reliably even if the activa-

tion/restoration/precharge latencies are reduced signi�cantly.

Consequently, exploiting the latency variation in DRAM cells

can greatly reduce the DRAM access latency. Based on the

�ndings from our experimental characterization, we propose

and evaluate a new mechanism, FLY-DRAM (Flexible-LatencY

DRAM), which reduces DRAM latency by exploiting the in-

herent latency variation in DRAM cells. FLY-DRAM reduces

DRAM latency by categorizing the DRAM cells into fast and

slow regions, and accessing the fast regions with a reduced

latency. We demonstrate that FLY-DRAM can greatly reduce

DRAM latency, leading to signi�cant system performance

improvements on a variety of workloads.

We conclude that it is promising to understand and exploit

the inherent latency variation within modern DRAM chips.

We hope that the experimental characterization, analysis, and

optimization techniques presented in this paper will enable

the development of other new mechanisms that exploit the

latency variation within DRAM to improve system perfor-

mance and perhaps reliability.

Acknowledgments
We thank the anonymous reviewers and SAFARI group

members for their feedback. We acknowledge the support

of Google, Intel, NVIDIA, and Samsung. This research was

supported in part by the ISTC-CC, SRC, and NSF (grants

1212962 and 1320531). Kevin Chang was supported in part

by the SRCEA/Intel Fellowship.

References
[1] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph

Processing,” in ISCA, 2015.

[2] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware

Processing-in-Memory Architecture,” in ISCA, 2015.

[3] B. Akin et al., “Data Reorganization in Memory Using 3D-stacked DRAM,” in

ISCA, 2015.

[4] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High Perfor-

mance and Scalability in Heterogeneous Systems,” in ISCA, 2012.

[5] O. O. Babarinsa and S. Idreos, “Jafar: Near-data processing for databases,” in

SIGMOD, 2015.

[6] B. H. Bloom, “Space/Time Tradeo�s in Hash Coding with Allowable Errors,”

CACM, July 1970.

[7] A. Boroumand et al., “LazyPIM: An E�cient Cache Coherence Mechanism for

Processing-in-Memory,” CAL, 2016.

[8] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data

Movement Bottlenecks,” in ASPLOS, 2018.

[9] Y. Cai et al., “Read Disturb Errors in MLC NAND Flash Memory: Characteriza-

tion and Mitigation,” in DSN, 2015.

[10] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash-Memory-

Based Solid-State Drives,” Proceedings of the IEEE, 2017.

[11] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash Memory

Based Solid-State Drives,” arXiv:1706.08642 [cs.AR], 2017.

[12] Y. Cai et al., “Errors in Flash-Memory-Based Solid-State Drives: Analysis, Miti-

gation, and Recovery,” arXiv:1711.11427 [cs.AR], 2017.

[13] Y. Cai et al., “Vulnerabilities in MLC NAND Flash Memory Programming: Expe-

rimental Analysis, Exploits, and Mitigation Techniques,” in HPCA, 2017.

[14] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Cha-

racterization, and Analysis,” in DATE, 2012.

[15] Y. Cai et al., “Data Retention in MLC NAND Flash Memory: Characterization,

Optimization, and Recovery,” in HPCA, 2015.

[16] Y. Cai et al., “Flash Correct-and-Refresh: Retention-Aware Error Management

for Increased Flash Memory Lifetime,” in ICCD, 2012.

[17] Y. Cai et al., “Error Analysis and Retention-Aware Error Management for NAND

Flash Memory,” in ITJ, 2013.

[18] Y. Cai et al., “Neighbor Cell Assisted Error Correction in MLC NAND Flash Me-

mories,” in SIGMETRICS, 2014.

[19] Y. Cai et al., “Threshold Voltage Distribution in MLC NAND Flash Memory: Cha-

racterization, Analysis, and Modeling,” in DATE, 2013.

[20] K. Chakraborty and P. Mazumder, Fault-Tolerance and Reliability Techniques for
High-Density Random-Access Memories. Prentice Hall, 2002.

[21] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in DRAMs for

Run-Time Performance Optimization,” in DATE, 2014.

[22] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes

with Accesses,” in HPCA, 2014.

[23] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-

mory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[24] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,

2016.

[25] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-

Subarray Data Movement in DRAM,” in HPCA, 2016.

[26] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM

Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGME-
TRICS, 2017.

[27] M. T. Chang et al., “Technology Comparison for Large Last-Level Caches (L3Cs):

Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-Optimized

eDRAM,” in HPCA, 2013.

[28] R. Clapp et al., “Quantifying the performance impact of memory latency and

bandwidth for big data workloads,” in IISWC, 2015.

[29] H. David et al., “Memory Power Management via Dynamic Voltage/Frequency

Scaling,” in ICAC, 2011.

[30] J. Dean and L. A. Barroso, “The Tail at Scale,” CACM, 2013.

[31] J. Draper et al., “The Architecture of the DIVA Processing-in-memory Chip,” in

ICS, 2002.

[32] N. El-Sayed et al., “Temperature Management in Data Centers: Why Some

(Might) Like It Hot,” in SIGMETRICS, 2012.

7

29

[33] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration architecture le-

veraging commodity DRAM devices and standard memory modules,” in HPCA,

2015.

[34] B. B. Fraguela et al., “Programming the FlexRAM Parallel Intelligent Memory

System,” in PPoPP, 2003.

[35] M. Gao et al., “Practical near-data processing for in-memory analytics frame-

works,” in PACT, 2015.

[36] M. Gao and C. Kozyrakis, “HRL: E�cient and �exible recon�gurable logic for

near-data processing,” in HPCA, 2016.

[37] S. Ghose et al., “Improving Memory Scheduling via Processor-Side Load Critica-

lity Information,” in ISCA, 2013.

[38] M. Gokhale et al., “Processing in memory: the Terasys massively parallel PIM

array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[39] S.-L. Gong et al., “CLEAN-ECC: High Reliability ECC for Adaptive Granularity

Memory System,” in MICRO, 2015.

[40] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System

Design,” in WONDP, 2014.

[41] X. Guo et al., “Resistive Computation: Avoiding the Power Wall with Low-

Leakage, STT-MRAM Based Computing,” in ISCA, 2010.

[42] M. Hashemi et al., “Accelerating Dependent Cache Misses with an Enhanced

Memory Controller,” in ISCA, 2016.

[43] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure

for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[44] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality,” in HPCA, 2016.

[45] H. Hidaka et al., “The Cache DRAM Architecture,” IEEE Micro, 1990.

[46] K. Hsieh et al., “Transparent O�oading and Mapping (TOM): Enabling

Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[47] K. Hsieh et al., “Accelerating pointer chasing in 3D-stacked memory: Challenges,

mechanisms, evaluation,” in ICCD, 2016.

[48] A. A. Hwang et al., “Cosmic Rays Don’t Strike Twice: Understanding the Nature

of DRAM Errors and the Implications for System Design,” in ASPLOS, 2012.

[49] E. Ipek et al., “Self-Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.

[50] JEDEC, “DDR2 SDRAM Standard,” 2009.

[51] JEDEC, “DDR3 SDRAM Standard,” 2010.

[52] JEDEC, “Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for DDR3

SDRAM Modules,” 2011.

[53] JEDEC, “DDR4 SDRAM Standard,” 2012.

[54] X. Jian et al., “Low-Power, Low-Storage-Overhead Chipkill Correct via Multi-

Line Error Correction,” in SC, 2013.

[55] S. Kanev et al., “Pro�ling a Warehouse-Scale Computer,” in ISCA, 2015.

[56] Y. Kang et al., “FlexRAM: toward an advanced intelligent memory system,” in

ICCD, 1999.

[57] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by

Exploiting Current Memory Content,” in MICRO, 2017.

[58] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation of

Data-Dependent Failures in DRAM,” CAL, 2016.

[59] S. Khan et al., “PARBOR: An E�cient System-Level Technique to Detect Data

Dependent Failures in DRAM,” in DSN, 2016.

[60] S. Khan et al., “The E�cacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[61] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclona-

ble Functions by Exploiting the Latency–Reliability Tradeo� in Modern DRAM

Devices,” in HPCA, 2018.

[62] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping

Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[63] J. Kim et al., “Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Com-

puter Memory,” in HPCA, 2015.

[64] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.

[65] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimen-

tal Study of DRAM Disturbance Errors,” in ISCA, 2014.

[66] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers,” in HPCA, 2010.

[67] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Di�erences in

Memory Access Behavior,” in MICRO, 2010.

[68] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in

DRAM,” in ISCA, 2012.

[69] P. M. Kogge, “EXECUBE-A New Architecture for Scaleable MPPs,” in ICPP, 1994.

[70] E. Kultursay et al., “Evaluating STT-RAM as an energy-e�cient main memory

alternative,” in ISPASS, 2013.

[71] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM Alter-

native,” in ISCA, 2009.

[72] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for Scalabi-

lity,” CACM, vol. 53, no. 7, pp. 99–106, 2010.

[73] B. C. Lee et al., “Phase-Change Technology and the Future of Main Memory,”

IEEE Micro, vol. 30, no. 1, pp. 143–143, 2010.

[74] C. J. Lee et al., “Prefetch-Aware DRAM Controllers,” in MICRO, 2008.

[75] C. J. Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing Write-

Caused Interference in Memory Systems,” Univ. of Texas at Austin, High Per-

formance Systems Group, Tech. Rep. TR-HPS-2010-002, 2010.

[76] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Cha-

racterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,

2017.

[77] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Tra�c

by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[78] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”

Ph.D. dissertation, Carnegie Mellon University, 2016.

[79] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the

Common-Case,” in HPCA, 2015.

[80] D. Lee et al., “Adaptive-Latency DRAM: Reducing DRAM Latency by Exploiting

Timing Margins,” IPSI Transactions on Advanced Research (TAR), 2018.

[81] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-

chitecture,” in HPCA, 2013.

[82] D. Lee et al., “Simultaneous Multi Layer Access: A High Bandwidth and Low

Cost 3D-Stacked Memory Interface,” TACO, 2016.

[83] S. Li et al., “MAGE: Adaptive Granularity and ECC for Resilient and Power E�-

cient Memory Systems,” in SC, 2012.

[84] X. Li et al., “A Realistic Evaluation of Memory Hardware Errors and Software

System Susceptibility,” in USENIX ATC, 2010.

[85] Y. Li et al., “DRAM Yield Analysis and Optimization by a Statistical Design Ap-

proach,” in IEEE TCSI, 2011.

[86] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Pro�ling Mechanisms,” in ISCA,

2013.

[87] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.

[88] S.-L. Lu et al., “Improving DRAM Latency with Dynamic Asymmetric Subarray,”

in MICRO, 2015.

[89] Y. Luo et al., “WARM: Improving NAND �ash memory lifetime with write-

hotness aware retention management,” in MSST, 2015.

[90] Y. Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling

for Modern MLC NAND Flash Memory,” JSAC, 2016.

[91] Y. Luo et al., “HeatWatch: Improving 3D NAND Flash Memory Device Reliability

by Exploiting Self-Recovery and Temperature Awareness,” in HPCA, 2018.

[92] K. Mai et al., “Smart memories: a modular recon�gurable architecture,” in ISCA,

2000.

[93] S. A. McKee, “Re�ections on the memory wall,” in CF, 2004.

[94] MemSQL, Inc., “MemSQL,” https://www.memsql.com.

[95] J. Meza et al., “Revisiting Memory Errors in Large-Scale Production Data Centers:

Analysis and Modeling of New Trends from the Field,” in DSN, 2015.

[96] J. Meza et al., “A Case for Small Row Bu�ers in Non-Volatile Main Memories,” in

ICCD Poster Session, 2012.

[97] Micron Technology, Inc., “128Mb: x4, x8, x16 Automotive SDRAM,” 1999.

[98] Micron Technology, Inc., “576Mb: x18, x36 RLDRAM3,” 2011.

[99] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory

Service in Multi-core Systems,” in USENIX Security, 2007.

[100] S. P. Muralidhara et al., “Reducing Memory Interference in Multicore Systems

via Application-aware Memory Channel Partitioning,” in MICRO, 2011.

[101] O. Mutlu, “The RowHammer problem and other issues we may face as memory

becomes denser,” in DATE, 2017.

[102] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.

[103] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.

[104] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[105] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.

[106] S. O et al., “Row-Bu�er Decoupling: A Case for Low-Latency DRAM Microarchi-

tecture,” in ISCA, 2014.

[107] M. Onabajo and J. Silva-Martinez, Analog Circuit Design for Process Variation-
Resilient Systems-on-a-Chip. Springer, 2012.

[108] Oracle, “Oracle TimesTen In-Memory Database,” https://www.oracle.com/

database/timesten-in-memory-database/index.html.

[109] M. Oskin et al., “Active pages: a computation model for intelligent memory,” in

ISCA, 1998.

[110] M. Patel et al., “The Reach Pro�ler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Pro�ling at Aggressive Conditions,” in ISCA, 2017.

[111] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.

[112] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-In-Memory Capabilities,” in PACT, 2016.

[113] G. Pekhimenko et al., “A Case for Toggle-Aware Compression for GPU Systems,”

in HPCA, 2016.

[114] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked memory+logic

devices on MapReduce workloads,” in ISPASS, 2014.

[115] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh

for DRAM Systems,” in DSN, 2015.

[116] M. K. Qureshi et al., “Enhancing Lifetime and Security of PCM-based Main Me-

mory with Start-gap Wear Leveling,” in MICRO, 2009.

[117] M. K. Qureshi et al., “Scalable High Performance Main Memory System Using

Phase-change Memory Technology,” in ISCA, 2009.

[118] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.

8

30

[119] SAFARI Research Group, “Ramulator – GitHub Repository,” https://github.com/

CMU-SAFARI/ramulator.

[120] SAFARI Research Group, “SAFARI Software Tools – GitHub Repository,” https:

//github.com/CMU-SAFARI.

[121] S. San�lippo, “Redis,” https://redis.io.

[122] Y. Sato et al., “Fast cycle RAM (FCRAM): A 20-ns Random Row Access, Pipe-

Lined Operating DRAM,” in VLSIC, 1998.

[123] B. Schroeder et al., “DRAM Errors in the Wild: A Large-Scale Field Study,” in

SIGMETRICS, 2009.

[124] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.

[125] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.

[126] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly

E�cient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[127] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.

[128] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.

[129] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Im-

prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[130] W. Shin et al., “NUAT: A Non-Uniform Access Time Memory Controller,” in

HPCA, 2014.

[131] Y. H. Son et al., “Reducing Memory Access Latency with Asymmetric DRAM

Bank Organizations,” in ISCA, 2013.

[132] V. Sridharan et al., “Memory Errors in Modern Systems: The Good, The Bad, and

The Ugly,” in ASPLOS, 2015.

[133] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,” in SC, 2012.

[134] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.

[135] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity

in Memory Access Scheduling,” in IEEE TPDS, 2016.

[136] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving High

Performance and Fairness at Low Cost,” in ICCD, 2014.

[137] L. Subramanian et al., “Mise: Providing performance predictability and impro-

ving fairness in shared main memory systems,” in HPCA, 2013.

[138] L. Subramanian et al., “The Application Slowdown Model: Quantifying and Con-

trolling the Impact of Inter-application Interference at Shared Caches and Main

Memory,” in MICRO, 2015.

[139] Z. Sura et al., “Data access optimization in a processing-in-memory system,” in

CF, 2015.

[140] A. N. Udipi et al., “LOT-ECC: Localized and Tiered Reliability Mechanisms for

Commodity Memory Systems,” in ISCA, 2012.

[141] H. Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler

for Heterogeneous Systems with Hardware Accelerators,” TACO, vol. 12, no. 4,

pp. 65:1–65:28, 2016.

[142] C. Wilkerson et al., “Reducing Cache Power with Low-cost, Multi-bit Error-

correcting Codes,” in ISCA, 2010.

[143] M. V. Wilkes, “The Memory Gap and the Future of High Performance Memories,”

SIGARCH CAN, 2001.

[144] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, 2012.

[145] D. H. Yoon et al., “BOOM: Enabling Mobile Memory Based Low-Power Server

DIMMs,” in ISCA, 2012.

[146] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible Reliability in Main Memory,”

in ASPLOS, 2010.

[147] H. Yoon et al., “Row Bu�er Locality Aware Caching Policies for Hybrid Memo-

ries,” in ICCD, 2012.

[148] H. Yoon et al., “E�cient Data Mapping and Bu�ering Techniques for Multilevel

Cell Phase-Change Memories,” TACO, vol. 11, no. 4, pp. 40:1–40:25, 2014.

[149] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in

Memory,” in HPDC, 2014.

[150] T. Zhang et al., “Half-DRAM: A High-Bandwidth and Low-Power DRAM Archi-

tecture from the Rethinking of Fine-grained Activation,” in ISCA, 2014.

9

31

Voltron: Understanding and Exploiting
the Voltage–Latency–Reliability Trade-O�s

in Modern DRAM Chips to Improve Energy E�ciency

Kevin K. Chang1,2 Abdullah Giray Yağlıkçı2 Saugata Ghose2 Aditya Agrawal3
Niladrish Chatterjee3 Abhijith Kashyap4,2 Donghyuk Lee3

Mike O’Connor3,5 Hasan Hassan6 Onur Mutlu6

1Facebook 2Carnegie Mellon University 3NVIDIA Research
4NVIDIA 5The University of Texas at Austin 6ETH Zürich

This paper summarizes our work on experimental characte-
rization and analysis of reduced-voltage operation in modern
DRAM chips, which was published in SIGMETRICS 2017 [29],
and examines the work’s signi�cance and future potential. This
work is motivated to reduce the energy consumption of DRAM,
which is a critical concern in modern computing systems. Im-
provements in manufacturing process technology have allowed
DRAM vendors to lower the DRAM supply voltage conserva-
tively, which reduces some of the DRAM energy consumption.
We would like to reduce the DRAM supply voltage more aggres-
sively, to further reduce energy. Aggressive supply voltage re-
duction requires a thorough understanding of the e�ect voltage
scaling has on DRAM access latency and DRAM reliability.

We take a comprehensive approach to understanding and
exploiting the latency and reliability characteristics of mo-
dern DRAM when the supply voltage is lowered below the no-
minal voltage level speci�ed by DRAM standards. Using an
open-source FPGA-based testing platform based on SoftMC [54],
we perform an experimental study of 124 real DDR3L (low-
voltage) DRAM chips manufactured recently by three major
DRAM vendors. We �nd that reducing the supply voltage be-
low a certain point introduces bit errors in the data, and we
comprehensively characterize the behavior of these errors. We
discover that these errors can be avoided by increasing the la-
tency of three major DRAM operations (activation, restoration,
and precharge). We perform detailed DRAM circuit simula-
tions to validate and explain our experimental �ndings. We
also characterize the various relationships between reduced sup-
ply voltage and error locations, stored data patterns, DRAM
temperature, and data retention.

Based on our observations, we propose a new DRAM energy
reduction mechanism, called Voltron. The key idea of Voltron is
to use a performance model to determine by how much we can
reduce the supply voltage without introducing errors and wit-
hout exceeding a user-speci�ed threshold for performance loss.
Our evaluations show that Voltron reduces the average DRAM
and system energy consumption by 10.5% and 7.3%, respectively,
while limiting the average system performance loss to only 1.8%,
for a variety of memory-intensive quad-core workloads. We
also show that Voltron signi�cantly outperforms prior dynamic

voltage and frequency scaling mechanisms for DRAM. We be-
lieve our experimental characterization and �ndings can pave
the way for new mechanisms that exploit DRAM voltage to
improve power, performance, energy, and reliability.

1. Motivation
In a wide range of modern computing systems, span-

ning from warehouse-scale data centers to mobile platforms,
energy consumption is a �rst-order concern [39, 56, 65, 105,
107]. In these systems, the energy consumed by the DRAM-
based main memory system constitutes a signi�cant fraction
of the total energy. For example, experimental studies of
production systems have shown that DRAM consumes 40%
of the total energy in servers [56, 140] and 40% of the total
power in graphics cards [115].

Improvements in manufacturing process technology have
allowed DRAM vendors to lower the DRAM supply voltage
conservatively, which reduces some of the DRAM energy con-
sumption [59, 60, 61]. In this work, we would like to reduce
DRAM energy by further reducing DRAM supply voltage. Ven-
dors choose a conservatively high supply voltage, to provide
a guardband that allows DRAM chips with worst-case process
variation to operate without errors under the worst-case ope-
rating conditions [36]. The exact amount of supply voltage
guardband varies across chips, and lowering the voltage be-
low the guardband can result in erroneous or even unde�ned
behavior [29]. Therefore, we need to understand how DRAM
chips behave during reduced-voltage operation. To our kno-
wledge, no previously published work examines the e�ect
of using a wide range of di�erent supply voltage values on
the reliability, latency, and retention characteristics of DRAM
chips.
Our goal in our SIGMETRICS 2017 paper [29] is to (i) cha-

racterize and understand the relationship between supply
voltage reduction and various characteristics of DRAM, inclu-
ding DRAM reliability, latency, and data retention; and (ii) use
the insights derived from this characterization and understan-
ding to design a new mechanism that can aggressively lower
the supply voltage to reduce DRAM energy consumption
while keeping performance loss under a bound.

32

To this end, we build an FPGA-based testing platform ba-
sed on SoftMC [54] that allows us to tune the DRAM sup-
ply voltage and change DRAM timing parameters (i.e., the
amount of time the memory controller waits for a DRAM
operation to complete). We perform an experimental study
on 124 real 4Gb DDR3L (low-voltage) DRAM chips manufac-
tured recently (between 2014 and 2016) by three major DRAM
vendors. Our extensive experimental characterization yields
four major observations on how DRAM latency, reliability,
and data retention are a�ected by reduced voltage.

Based on our experimental observations, we propose a new
low-cost DRAM energy reduction mechanism called Voltron.
The key idea of Voltron is to use a performance model to de-
termine by how much we can reduce the DRAM array voltage
at runtime without introducing errors and without exceeding
a user-speci�ed threshold for acceptable performance loss.

2. Characterization of DRAM Under
Reduced Supply Voltage

In this section, we brie�y summarize our four major ob-
servations from our detailed experimental characterization
of 31 commodity DRAM modules, also called DIMMs, from
three vendors, when the DIMMs operate under reduced sup-
ply voltage (i.e., below the nominal voltage level of 1.35V).
Each DIMM comprises 4 DDR3L DRAM chips, totaling to
124 chips for 31 DIMMs. Each chip has a 4Gb density. Thus,
each of our DIMMs has a 2GB capacity. Table 1 describes
the relevant information about the tested DIMMs. For a com-
plete discussion on all of our observations and experimental
methodology, we refer the reader to our SIGMETRICS 2017
paper [29].

Vendor Total Number Timing (ns) Assembly
of Chips (tRCD/tRP/tRAS) Year

A (10 DIMMs) 40 13.75/13.75/35 2015-16
B (12 DIMMs) 48 13.75/13.75/35 2014-15
C (9 DIMMs) 36 13.75/13.75/35 2015

Table 1: Main properties of the tested DIMMs. Reproduced
from [29].

2.1. DRAM Reliability as Voltage Decreases
We �rst study the reliability of DRAM chips under low

voltage, which was not studied by prior works on DRAM
voltage scaling (e.g., [36]; see Section 4 for a detailed discus-
sion of these works). Figure 1 shows the fraction of cache
lines that experience at least 1 bit of error (i.e., 1 bit �ip) in
each DIMM (represented by each curve), categorized based
on vendor.

We observe that we can reliably access data when DRAM
supply voltage is lowered below the nominal voltage level,
until a certain voltage value, Vmin, which is the minimum
voltage level at which no bit errors occur. Furthermore, we
�nd that we can reduce the voltage below Vmin to attain furt-
her energy savings, but that errors start occurring in some

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.25 1.3 1.35
Supply Voltage (V)

0

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

F
ra

ct
io

n
of

 C
ac

he
 L

in
es

w
ith

 E
rr

or
s

(%
)

Vendor A Vendor B Vendor C

Figure 1: The fraction of erroneous cache lines in eachDIMM
as we reduce the supply voltage, with a �xed latency. Repro-
duced from [29].

of the data read from memory. However, not all cache li-
nes exhibit errors for all supply voltage values below Vmin.
Instead, the number of erroneous cache lines for each DIMM
increases as we reduce the voltage further below Vmin. Spe-
ci�cally, Vendor A’s DIMMs experience a near-exponential
increase in errors as the supply voltage reduces below Vmin.
This is mainly due to the manufacturing process [90] and ar-
chitectural variation [87], which introduces strength and size
variation across the di�erent DRAM cells within a chip.

We make two major conclusions: (i) the variation of errors
due to reduced-voltage operation across vendors is very sig-
ni�cant; and (ii) in most cases, there is a signi�cant margin
in the voltage speci�cation, i.e., Vmin for each chip is signi�-
cantly lower than the manufacturer-speci�ed supply voltage
value.

2.2. Longer Access Latency Mitigates
Voltage-Induced Errors

We observe that while reducing the voltage below Vmin
introduces bit errors in the data, we can prevent these
errors if we increase the timing parameters of three ma-
jor DRAM operations, i.e., activation, restoration, and pre-
charge [27,29,55,87,90].1 When the supply voltage is reduced,
the DRAM cell capacitor charge takes a longer time to change,
thereby causing these DRAM operations to become slower
to complete. Errors are introduced into the data when the
memory controller does not account for this slowdown in
the DRAM operations. We �nd that if the memory controller
allocates extra time for these operations to �nish when the
supply voltage is below Vmin, errors no longer occur. We
validate, analyze, and explain this behavior using SPICE si-
mulation of a detailed circuit-level model, which we have
openly released online [124]. Sections 4.1 and 4.2 of our SIG-
METRICS 2017 paper [29] provide our extensive circuit-level
analyses, validated using data from real DRAM chips.

1We refer the reader to our prior works [26, 27, 28, 29, 54, 55, 72, 75, 77,
78, 79, 80, 87, 88, 90, 91, 92, 96, 97, 112, 128, 129] for a detailed background on
DRAM.

2

33

2.3. Spatial Locality of Errors
While reducing the supply voltage induces errors when

the DRAM latency is not long enough, we also show that not
all DRAM locations experience errors at all supply voltage
levels. To understand the locality of the errors induced by a
low supply voltage, we show the probability of each DRAM
row in a DIMM experiencing at least one bit of error across
all experiments.

Figure 2 shows the probability of each row experiencing
at least a one-bit error due to reduced voltage in the two
representative DIMMs. For each DIMM, we choose the supply
voltage at which errors start appearing (i.e., the voltage level
one step below Vmin), and we do not increase the DRAM
access latency (i.e., keep it at 10ns for both tRCD and tRP,
which are the activation and precharge timing parameters,
respectively). The x-axis and y-axis indicate the bank number
and row number (in thousands), respectively. Our tested
DIMMs are divided into eight banks, and each bank consists
of 32K rows of cells. Additional results showing the error
locations at di�erent voltage levels are in our SIGMETRICS
2017 paper [29].

(a) DIMM B6 of vendor B at 1.05V.

(b) DIMM C2 of vendor C at 1.20V.
Figure 2: The probability of error occurrence for two repre-
sentative DIMMs, categorized into di�erent rows and banks,
due to reduced voltage. Reproduced from [29].

The major observation is that when only a small number
of errors occur due to reduced supply voltage, these errors
tend to cluster physically in certain regions of a DRAM chip,
as opposed to being randomly distributed throughout the
chip.2 This observation implies that when we reduce the

2We believe this observation is due to both process and architectural
variation across di�erent regions in the DRAM chip.

supply voltage to the DRAM array, we need to increase the
fundamental operation latencies for only the regions where
errors can occur.

2.4. Impact on Refresh Rate
Commodity DRAM chips guarantee that all cells can safely

retain data for 64ms, after which the cells are refreshed to
replenish charge that leaks out of the capacitors [26, 96, 97].
We observe that the e�ect of the supply voltage on retention
times is not statistically signi�cant. Even when we reduce the
supply voltage from 1.35V to 1.15V (i.e., a 15% reduction), the
rate at which charge leaks from the capacitors is so slow that
no data is lost during the 64ms refresh interval at both 20℃
and 70℃. Therefore, we conclude that using a reduced supply
voltage does not require any changes to the standard refresh
interval at 20℃ and 70℃. Detailed results are in Section 4.6
of our SIGMETRICS 2017 paper [29].

2.5. Other Experimental Observations
We refer the reader to our SIGMETRICS 2017 paper [29]

for more details on the other two key observations. First,
we �nd that the most commonly-used ECC scheme, SE-
CDED [66, 99, 132], is unlikely to alleviate errors induced
by a low supply voltage. This is because lowering voltage
increases the fraction of data that contains more than two bits
of errors, exceeding the one-bit correction capability of SE-
CDED (see Section 4.4 of our SIGMETRICS 2017 paper [29]).
Second, temperature a�ects the reliable access latency at low
supply voltage levels and the e�ect is very vendor-dependent
(see Section 4.5 of our SIGMETRICS 2017 paper [29]). Out of
the three major vendors whose DIMMs we evaluate, DIMMs
from two vendors require longer activation and precharge
latencies to operate reliably at high temperature under low
supply voltage. The main reason is that DRAM chips become
slower at higher temperature [24, 87, 90].

3. Exploiting Reduced-Voltage Behavior
Based on the extensive understanding we have developed

on reduced-voltage operation of real DRAM chips, we pro-
pose a new mechanism called Voltron, which reduces DRAM
energy without sacri�cing memory throughput. Voltron ex-
ploits the fundamental observation that reducing the supply
voltage to DRAM requires increasing the latency of the three
DRAM operations in order to prevent errors. Using this ob-
servation, the key idea of Voltron is to use a performance
model to determine by how much to reduce the DRAM supply
voltage, without introducing errors and without exceeding a
user-speci�ed threshold for performance loss. Voltron con-
sists of two main components: (i) array voltage scaling and
(ii) performance-aware voltage control.

3.1. Components of Voltron
Array Voltage Scaling. Unlike prior works, Voltron does
not reduce the voltage of the peripheral circuitry, which is

3

34

responsible for transferring commands and data between the
memory controller and the DRAM chip. If Voltron were to
reduce the voltage of the peripheral circuitry, we would have
to also reduce the operating frequency of DRAM. A reduction
in the operating frequency reduces the memory data throug-
hput, which can signi�cantly degrade the performance of
applications that require high memory bandwidth. Instead,
Voltron reduces the voltage supplied to only the DRAM ar-
ray without changing the voltage supplied to the peripheral
circuitry, thereby allowing the DRAM channel to maintain
a high frequency while reducing the power consumption
of the DRAM array. To prevent errors from occurring du-
ring reduced-voltage operation, Voltron increases the latency
of the three DRAM operations (activation, restoration, and
precharge) based our observation in Section 2.2.
Performance-Aware Voltage Control. Array voltage sca-
ling provides system users with the ability to decrease DRAM
array voltage (Varray) to reduce DRAM power. Employing a
lower Varray provides greater power savings, but at the cost
of longer DRAM access latency, which leads to larger perfor-
mance degradation. This trade-o� varies widely across di�e-
rent applications, as each application has a di�erent tolerance
to the increased memory latency. This raises the question of
how to pick a “suitable” array voltage level for di�erent appli-
cations as a system user or designer. For our evaluations, we
say that an array voltage level is suitable if it does not degrade
system performance by more than a user-speci�ed threshold.
Our goal is to provide a simple technique that can automati-
cally select a suitable Varray value for di�erent applications.
To this end, we propose performance-aware voltage control, a
power–performance management policy that selects a mini-
mum Varray which satis�es a desired performance constraint.
The key observation is that an application’s performance loss
(due to increased memory latency) scales linearly with the ap-
plication’s memory demand (e.g., memory intensity). Based
on this empirical observation we make, we build a perfor-
mance loss predictor that leverages a linear model to predict
an application’s performance loss based on its characteristics
and the e�ect of di�erent voltage level choices at runtime.
Using the performance loss predictor, Voltron �nds a value
of Varray that can keep the predicted performance within
the user-speci�ed target at runtime. We refer the reader to
Section 5.2 of our SIGMETRICS 2017 paper [29] for more
detail and for an evaluation of the performance model alone.

3.2. Evaluation
We evaluate the system-level energy and performance im-

pact of Voltron using Ramulator [75, 124], integrated with
McPAT [93] and DRAMPower [25] for modeling the energy
consumption of both the processor and DRAM. Our wor-
kloads consist of 27 benchmarks from SPEC CPU2006 [134]
and YCSB [34]. We evaluate Voltron with a target perfor-
mance loss of 5%. Voltron executes the performance-aware
voltage control mechanism once every four million cycles.

We refer the reader to Section 6.1 of our SIGMETRICS 2017
paper [29] for more detail on the system con�guration and
workloads. We qualitatively and quantitatively compare Vol-
tron to MemDVFS, a dynamic DRAM frequency and voltage
scaling mechanism proposed by prior work [36].

Figure 3 shows the system energy savings and the system
performance (i.e., weighted speedup [43, 131]) loss due to
MemDVFS and Voltron, compared to a baseline DRAM with
a supply voltage of 1.35V. The graph uses box plots to show
the distribution among all workloads that are categorized
as either non-memory-intensive or memory-intensive. The
memory intensity is determined based on the commonly-used
metric MPKI (last-level cache misses per kilo-instruction). We
categorize an application as memory intensive when its MPKI
is greater than or equal to 15. We make two observations.

1on-IntenVLve IntenVLve
0
1
2
3
4
5
6

6
yV

te
P

 3
er

Io
rP

Dn
Fe

Lo
VV

 (%
)

0ePDV)6 Voltron

1on-Intensive Intensive
−2

0
2
4
6
8

10
12

6
ys

te
m

 (
ne

rg
y

6
av

in
gs

 (%
)

1on-IntenVLve IntenVLve
0
1
2
3
4
5
6

6
yV

te
P

 3
er

Io
rP

Dn
Fe

Lo
VV

 (%
)

0ePDV)6 Voltron

Figure 3: Energy (left) and performance (right) comparison
between Voltron and MemDVFS on non-memory-intensive
and memory-intensive workloads. Adapted from [29].

First, Voltron is e�ective and saves more energy than
MemDVFS. MemDVFS has almost zero e�ect on memory-
intensive workloads. This is because MemDVFS avoids sca-
ling DRAM frequency (and hence voltage) when an applica-
tion’s memory bandwidth utilization is above a �xed thres-
hold. Reducing the frequency can result in a large perfor-
mance loss since the memory-intensive workloads require
high memory throughput. As memory-intensive applicati-
ons have high memory bandwidth consumption that easily
exceeds the �xed threshold used by MemDVFS, MemDVFS
cannot perform frequency and voltage scaling during most
of the execution time. In contrast, Voltron reduces system
energy by 7.0% on average for memory-intensive workloads.
Thus, we demonstrate that Voltron is an e�ective mecha-
nism that improves system energy e�ciency not only on
non-memory-intensive applications, but also (especially) on
memory-intensive workloads where prior work was unable
to do so.

Second, as shown in Figure 3 (right), Voltron consistently
selects aVarray value that satis�es the performance loss bound
of 5% across all workloads. Voltron incurs an average (max-
imum) performance loss of 2.5% (4.4%) and 2.9% (4.1%) for
non-memory-intensive and memory-intensive workloads, re-
spectively. This demonstrates that our performance model
enables Voltron to select a low voltage value that saves energy
while bounding performance loss based on the user’s requi-
rement.

4

35

Our SIGMETRICS 2017 paper contains extensive perfor-
mance and energy analysis of the Voltron mechanism in Secti-
ons 6.2 to 6.8 [29]. In particular, we show that if we exploit
spatial locality of errors (Section 2.3), we can improve the
performance bene�ts of Voltron, reducing the average per-
formance loss for memory-intensive workloads to 1.8% (see
Section 6.5 of our SIGMETRICS 2017 paper [29]). We refer the
reader to these sections for a detailed evaluation of Voltron.

4. Related Work
To our knowledge, this is the �rst work to (i) experimen-

tally characterize the reliability and performance of modern
low-power DRAM chips under di�erent supply voltages, and
(ii) introduce a new mechanism that reduces DRAM energy
while retaining high memory data throughput by adjusting
the DRAM array voltage. We brie�y discuss other prior work
in DRAM energy reduction.
DRAM Frequency and Voltage Scaling. Many prior

works propose to reduce DRAM energy by adjusting the
memory channel frequency and/or the DRAM supply voltage
dynamically. Deng et al. [39] propose MemScale, which scales
the frequency of DRAM at runtime based on a performance
predictor of an in-order processor. Other work focuses on
developing management policies to improve system energy
e�ciency by coordinating DRAM DFS with DVFS on the
CPU [12,37,38] or GPU [115]. In addition to frequency scaling,
David et al. [36] propose to scale the DRAM supply voltage
along with the memory channel frequency, based on the
memory bandwidth utilization of applications.

In contrast to all these works, our work focuses on a de-
tailed experimental characterization of real DRAM chips as
the supply voltage varies. Our study provides fundamental ob-
servations for potential mechanisms that can mitigate DRAM
and system energy consumption. Furthermore, frequency sca-
ling hurts memory throughput, and thus signi�cantly degra-
des the system performance of especially memory-intensive
workloads (see Section 2.4 in our SIGMETRICS 2017 pa-
per [29] for our quantitative analysis). We demonstrate the
importance and bene�ts of exploiting our experimental ob-
servations by proposing Voltron, one new example mecha-
nism that uses our observations to reduce DRAM and system
energy without sacri�cing memory throughput.
Low-Power Modes for DRAM. Modern DRAM chips

support various low-power standby modes. Entering and
exiting these modes incurs some amount of latency, which
delays memory requests that must be serviced. To increase
the opportunities to exploit these low-power modes, several
prior works propose mechanisms that increase periods of
memory idleness through data placement (e.g., [44, 83]) and
memory tra�c reshaping (e.g., [2, 9, 14, 40, 100]). Exploiting
low-power modes is orthogonal to our work on studying the
impact of reduced-voltage operation in DRAM. Furthermore,
low-power modes have a smaller e�ect on memory-intensive
workloads, which exhibit little idleness in memory acces-

ses, whereas, as we show in Section 3.2, our mechanism is
especially e�ective on memory-intensive workloads.
Low-Power DDR DRAM Chips. Low-power DDR

(LPDDR) [59, 61, 112] is a speci�c type of DRAM that is opti-
mized for low-power systems like mobile devices. To reduce
power consumption, LPDDRx (currently in its 4th genera-
tion) employs a few major design changes that di�er from
conventional DDRx chips. First, LPDDRx uses a low-voltage
swing I/O interface that consumes 40% less I/O power than
DDR4 DRAM [33]. Second, it supports additional low-power
modes with a lower supply voltage. Since the LPDDRx ar-
ray design remains the same as DDRx, our observations on
the correlation between access latency and array voltage are
applicable to LPDDRx DRAM as well. Voltron, our propo-
sal, can provide signi�cant bene�ts in LPDDRx, since array
energy consumption is signi�cantly higher than the energy
consumption of peripheral circuitry in LPDDRx chips [33].
We leave the detailed evaluation of LPDDRx chips for future
work since our current experimental platform is not capable
of evaluating them. Two recent experimental works [72, 112]
examine the retention time behavior of LPDDRx chips and
�nd it to be similar to DDRx chips.
Low-PowerDRAMArchitectures. Prior works (e.g., [31,

35, 137, 150]) propose to modify the DRAM chip architecture
to reduce the ACTIVATE power by activating only a fraction of
a row instead of the entire row. Another common technique,
called sub-ranking or mini-ranks, reduces dynamic DRAM
power by accessing data from a subset of chips from a DRAM
module [139,145,152]. A couple of prior works [102,144] pro-
pose DRAM module architectures that integrate many low-
frequency LPDDR chips to enable DRAM power reduction.
These proposed changes to DRAM chips or DIMMs are ort-
hogonal to our work.
Reducing Refresh Power. In modern DRAM chips, alt-

hough di�erent DRAM cells have widely di�erent retention
times [74,96,112], memory controllers conservatively refresh
all of the cells based on the retention time of a small fraction of
weak cells, which have the longest retention time out of all of
the cells. To reduce DRAM refresh power, many prior works
(e.g., [3,11,13,68,69,70,71,95,96,97,106,108,110,112,119,138])
propose mechanisms to reduce unnecessary refresh operati-
ons, and, thus, refresh power, by characterizing the retention
time pro�le (i.e., the data retention behavior of each cell)
within the DRAM chips. However, these techniques do not
reduce the power of other DRAM operations, and these prior
works do not provide an experimental characterization of the
e�ect of reduced voltage levels on data retention time.
Improving DRAMEnergy E�ciency by Reducing La-

tency or Improving Parallelism. Various prior works
(e.g., [26, 28, 54, 55, 80, 87, 88, 89, 90, 91, 92, 107, 128, 129, 130])
improve DRAM energy e�ciency by reducing the execution
time through techniques that reduce the DRAM access latency
or improve parallelism between memory requests. These me-

5

36

chanisms are orthogonal to ours, because they do not reduce
the voltage level of DRAM.
Improving Energy E�ciency by Processing in Me-

mory. Various prior works [4, 5, 6, 10, 16, 17, 28, 41, 45, 46,
48, 49, 50, 51, 53, 57, 58, 67, 73, 81, 101, 111, 113, 114, 118, 126, 127,
129, 130, 135, 136, 149] examine processing in memory to im-
prove energy e�ciency. Our analyses and techniques can be
combined with these works to enable low-voltage operation
in processing-in-memory engines.
Experimental Studies of DRAM Chips. Recent works

experimentally investigate various reliability, data retention,
and latency characteristics of modern DRAM chips [24, 27,
54, 63, 64, 70, 71, 76, 77, 87, 89, 90, 96, 97, 104, 112, 125, 132, 133]
usually using FPGA-based DRAM testing infrastructures, like
SoftMC [54], or using large-scale data from the �eld. None
of these works study these characteristics under reduced-
voltage operation, which we do in this paper.

Reduced-Voltage Operation in SRAM Caches. Prior
works propose di�erent techniques to enable SRAM caches
to operate under reduced voltage levels (e.g., [7, 8, 32, 123, 141,
142]). These works are orthogonal to our experimental study
because we focus on understanding and enabling reduced-
voltage operation in DRAM, which is a signi�cantly di�erent
memory technology than SRAM.

5. Signi�cance
Our SIGMETRICS 2017 paper [29] presents a new set of

detailed experimental characterization and analyses on the
voltage-latency-reliability trade-o�s in modern DRAM chips.
In this section, we describe the potential impact that our study
can bring to the research community and industry.

5.1. Potential Industry Impact
We believe our experimental characterization results and

proposed mechanism can have signi�cant impact in fast-
growing data centers as well as mobile systems, where DRAM
power consumption is growing due to higher demand for me-
mory capacity for certain types of service (e.g., memcached).
To reduce the energy and power consumed by DRAM, DRAM
manufacturers have been decreasing the supply voltage of
DRAM chips with newer DRAM standards (e.g., DDR4) or
low-voltage variants of DDR, such as LPDDR4 (Low-Power
DDR4) and DDR3L (DDR3 Low-voltage). However, the supply
voltage reduction has been conservative with each new DDR
standard, which takes years to be adopted by the vendors and
the market. For example, since the release of DDR3L (1.35V)
in 2010, the supply voltage has reduced by only 11% with the
latest DDR4 standard (1.2V) released in 2014. Furthermore,
since the release of DDR4 in 2014, the supply voltage for most
commodity DDR4 chips has remained at 1.2V. As a result,
further reducing DRAM supply voltage below the standard
voltage, as we do in our SIGMETRICS 2017 paper [29], can
be a very e�ective way of reducing DRAM power consump-
tion. However, to do so, we need to carefully and rigorously

understand how DRAM chips behave under reduced-voltage
operation.

To enable the development of new mechanisms that le-
verage reduce-voltage operation in DRAM, we provide the
�rst set of comprehensive experimental results on the e�ect
of using a wide range of di�erent supply voltage values on
the reliability, latency, and retention characteristics of DRAM
chips. In this work, we demonstrate how we can use our expe-
rimental data to design a new mechanism, Voltron (Section 3),
which reduces DRAM energy consumption through voltage
reduction. Therefore, we believe that understanding and
leveraging reduced-voltage operation will help industry im-
prove the energy e�ciency of memory subsystems.

5.2. Potential Research Impact
Our paper sheds new light on the feasibility of enabling

reduced-voltage operation in manufactured DRAM chips.
One important research question that our work raises is how
do modern DRAM chips behave under a wide range of supply
voltage levels? Existing systems are limited to a few DRAM
power states, which prevent DRAM from serving memory
accesses when it enters a low-power state. However, in our
work, we show that it is possible to operate commodity DRAM
chips under a wide range of supply voltage levels while still
being able to serve memory accesses under a di�erent set of
trade-o�s. To facilitate further research initiative to exploit
reduced-voltage operation in DRAM chips, we have open-
sourced our characterization results, FPGA-based testing plat-
form [54], and DRAM SPICE circuit model (for validation) in
our GitHub repository [124]. We believe that these tools can
be extended for other research objectives besides studying
voltage reduction in DRAM. One potential direction is to le-
verage our results to design mechanisms that reduce DRAM
latency by operating DRAM at a higher supply voltage.

5.3. Applicability to Other Memory Technologies
We believe the high-level ideas of our work can be levera-

ged in the context of other memory technologies, such as
NAND �ash memory [19, 20, 21], PCM [84, 85, 86, 103, 120,
121, 146, 147], STT-MRAM [30, 52, 82, 103, 109], RRAM [143],
or hybrid memory systems [1, 15, 42, 47, 62, 94, 98, 103, 116,
117, 121, 122, 146, 148, 151]. A recent work on NAND �ash
memory, for example, proposes reducing the pass-through
voltage [18, 19, 20, 21] to reduce read disturb errors, which
in turn saves energy. We refer the reader to past works on
NAND �ash memory for a more detailed analysis of reliability-
voltage trade-o�s [18, 19, 20, 21, 22, 23]. We hope our work in-
spires characterization and understanding of reduced-voltage
operation in other memory technologies, with the goal of
enabling a more energy-e�cient system design.

6. Conclusion
Our SIGMETRICS 2017 paper [29] provides the �rst expe-

rimental study that comprehensively characterizes and ana-
lyzes the behavior of DRAM chips when the supply voltage

6

37

is reduced below its nominal value. We demonstrate, using
124 DDR3L DRAM chips, that the DRAM supply voltage can
be reliably reduced to a certain level, beyond which errors
arise within the data. We then experimentally demonstrate
the relationship between the supply voltage and the latency
of the fundamental DRAM operations (activation, restoration,
and precharge). We show that bit errors caused by reduced-
voltage operation can be eliminated by increasing the latency
of the three fundamental DRAM operations. By changing
the memory controller con�guration to allow for the longer
latency of these operations, we can thus further lower the
supply voltage without inducing errors in the data. We also
experimentally characterize the relationship between redu-
ced supply voltage and error locations, stored data patterns,
temperature, and data retention.

Based on these observations, we propose and evaluate Vol-
tron, a low-cost energy reduction mechanism that reduces
DRAM energy without a�ecting memory data throughput.
Voltron reduces the supply voltage for only the DRAM array,
while maintaining the nominal voltage for the peripheral cir-
cuitry to continue operating the memory channel at a high
frequency. Voltron uses a new piecewise linear performance
model to �nd the array supply voltage that maximizes the
system energy reduction within a given performance loss
target. Our experimental evaluations across a wide variety
of workloads demonstrate that Voltron signi�cantly reduces
system energy consumption with only very modest perfor-
mance loss.

We conclude that it is very promising to understand and
exploit reduced-voltage operation in modern DRAM chips.
We hope that the experimental characterization, analysis, and
optimization techniques presented in our SIGMETRICS 2017
paper will enable the development of other new mechanisms
that can e�ectively exploit the trade-o�s between voltage,
reliability, and latency in DRAM to improve system perfor-
mance, e�ciency, and/or reliability. We also hope that our pa-
per’s studies inspire new experimental studies to understand
reduced-voltage operation in other memory technologies,
such as NAND �ash memory, PCM, and STT-MRAM.

Acknowledgments
We thank the anonymous reviewers of SIGMETRICS 2017

and SAFARI group members for their feedback. We acknow-
ledge the support of Google, Intel, NVIDIA, Samsung, VM-
ware, and the United States Department of Energy. This re-
search was supported in part by the ISTC-CC, SRC, and NSF
(grants 1212962 and 1320531). Kevin Chang was supported
in part by an SRCEA/Intel Fellowship.

References
[1] N. Agarwal and T. F. Wenisch, “Thermostat: Application-Transparent Page Ma-

nagement for Two-Tiered Main Memory,” in ASPLOS, 2017.
[2] N. Aggarwal et al., “Power-E�cient DRAM Speculation,” in HPCA, 2008.
[3] A. Agrawal et al., “Mosaic: Exploiting the spatial locality of process variation to

reduce refresh energy in on-chip eDRAM modules,” in HPCA, 2014.
[4] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph

Processing,” in ISCA, 2015.

[5] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture,” in ISCA, 2015.

[6] B. Akin et al., “Data Reorganization in Memory Using 3D-stacked DRAM,” in
ISCA, 2015.

[7] A. R. Alameldeen et al., “Adaptive Cache Design to Enable Reliable Low-Voltage
Operation,” IEEE TC, 2011.

[8] A. R. Alameldeen et al., “Energy-E�cient Cache Design Using Variable-Strength
Error-Correcting Codes,” in ISCA, 2011.

[9] A. M. Amin and Z. A. Chishti, “Rank-aware Cache Replacement and Write Buf-
fering to Improve DRAM Energy E�ciency,” in ISLPED, 2010.

[10] O. O. Babarinsa and S. Idreos, “Jafar: Near-data processing for databases,” in
SIGMOD, 2015.

[11] S. Baek et al., “Refresh Now and Then,” IEEE TC, vol. 63, no. 12, pp. 3114–3126,
2014.

[12] R. Begum et al., “Energy-Performance Trade-o�s on Energy-Constrained Devi-
ces with Multi-component DVFS,” in IISWC, 2015.

[13] I. Bhati et al., “Flexible Auto-refresh: Enabling Scalable and Energy-e�cient
DRAM Refresh Reductions,” in ISCA, 2015.

[14] M. Bi et al., “Delay-Hiding Energy Management Mechanisms for DRAM,” in
HPCA, 2010.

[15] S. Bock et al., “Concurrent Migration of Multiple Pages in Software-Managed
Hybrid Main Memory,” in ICCD, 2016.

[16] A. Boroumand et al., “LazyPIM: An E�cient Cache Coherence Mechanism for
Processing-in-Memory,” CAL, 2016.

[17] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[18] Y. Cai et al., “Read Disturb Errors in MLC NAND Flash Memory: Characteriza-
tion and Mitigation,” in DSN, 2015.

[19] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash-Memory-
Based Solid-State Drives,” Proceedings of the IEEE, 2017.

[20] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash Memory
Based Solid-State Drives,” arXiv:1706.08642 [cs.AR], 2017.

[21] Y. Cai et al., “Errors in Flash-Memory-Based Solid-State Drives: Analysis, Miti-
gation, and Recovery,” arXiv:1711.11427 [cs.AR], 2017.

[22] Y. Cai et al., “Vulnerabilities in MLC NAND Flash Memory Programming: Expe-
rimental Analysis, Exploits, and Mitigation Techniques,” in HPCA, 2017.

[23] Y. Cai et al., “Data Retention in MLC NAND Flash Memory: Characterization,
Optimization, and Recovery,” in HPCA, 2015.

[24] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in DRAMs for
Run-Time Performance Optimization,” in DATE, 2014.

[25] K. Chandrasekar et al., “DRAMPower: Open-source DRAM Power & Energy Es-
timation Tool,” http://www.drampower.info.

[26] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes
with Accesses,” in HPCA, 2014.

[27] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[28] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[29] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGME-
TRICS, 2017.

[30] M. T. Chang et al., “Technology Comparison for Large Last-Level Caches (L3Cs):
Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-Optimized
eDRAM,” in HPCA, 2013.

[31] N. Chatterjee et al., “Architecting an Energy-E�cient DRAM System for GPUs,”
in HPCA, 2017.

[32] Z. Chishti et al., “Improving Cache Lifetime Reliability at Ultra-Low Voltages,”
in MICRO, 2009.

[33] J. Choi, “LPDDR4: Evolution for new Mobile World,” in MEMCON, 2013.
Available: http://www.memcon.com/pdfs/proceedings2013/track1/LPDDR4_
Evolution_for_a_New_Mobile_World.pdf

[34] B. F. Cooper et al., “Benchmarking Cloud Serving Systems with YCSB,” in SOCC,
2010.

[35] E. Cooper-Balis and B. Jacob, “Fine-Grained Activation for Power Reduction in
DRAM,” IEEE Micro, vol. 30, no. 3, pp. 34–47, 2010.

[36] H. David et al., “Memory Power Management via Dynamic Voltage/Frequency
Scaling,” in ICAC, 2011.

[37] Q. Deng et al., “CoScale: Coordinating CPU and Memory System DVFS in Server
Systems,” in MICRO, 2012.

[38] Q. Deng et al., “MultiScale: Memory System DVFS with Multiple Memory Con-
trollers,” in ISLPED, 2012.

[39] Q. Deng et al., “MemScale: Active Low-power Modes for Main Memory,” in AS-
PLOS, 2011.

[40] B. Diniz et al., “Limiting the Power Consumption of Main Memory,” in ISCA,
2007.

[41] J. Draper et al., “The Architecture of the DIVA Processing-in-memory Chip,” in
ICS, 2002.

[42] S. R. Dulloor et al., “Data Tiering in Heterogeneous Memory Systems,” in EuroSys,
2016.

7

38

[43] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[44] X. Fan et al., “Memory Controller Policies for DRAM Power Management,” in
ISLPED, 2001.

[45] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration architecture le-
veraging commodity DRAM devices and standard memory modules,” in HPCA,
2015.

[46] B. B. Fraguela et al., “Programming the FlexRAM Parallel Intelligent Memory
System,” in PPoPP, 2003.

[47] K. Gai et al., “Smart Energy-Aware Data Allocation for Heterogeneous Memory,”
in HPCC, 2016.

[48] M. Gao et al., “Practical near-data processing for in-memory analytics frame-
works,” in PACT, 2015.

[49] M. Gao and C. Kozyrakis, “HRL: E�cient and �exible recon�gurable logic for
near-data processing,” in HPCA, 2016.

[50] M. Gokhale et al., “Processing in memory: the Terasys massively parallel PIM
array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[51] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System
Design,” in WONDP, 2014.

[52] X. Guo et al., “Resistive Computation: Avoiding the Power Wall with Low-
Leakage, STT-MRAM Based Computing,” in ISCA, 2010.

[53] M. Hashemi et al., “Accelerating Dependent Cache Misses with an Enhanced
Memory Controller,” in ISCA, 2016.

[54] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[55] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality,” in HPCA, 2016.

[56] U. Höelzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

[57] K. Hsieh et al., “Transparent O�oading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[58] K. Hsieh et al., “Accelerating pointer chasing in 3D-stacked memory: Challenges,
mechanisms, evaluation,” in ICCD, 2016.

[59] JEDEC, “Low Power Double Data Rate 3 (LPDDR3),” 2012.
[60] JEDEC, “Addendum No.1 to JESD79-3 - 1.35V DDR3L-800, DDR3L-1066, DDR3L-

1333, DDR3L-1600, and DDR3L-1866,” 2013.
[61] JEDEC, “Low Power Double Data Rate 4 (LPDDR4),” 2014.
[62] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM Caching for CMP Server

Platforms,” in HPCA, 2010.
[63] M. Jung et al., “A New Bank Sensitive DRAMPower Model for E�cient Design

Space Exploration,” in PATMOS, 2016.
[64] M. Jung et al., “Reverse Engineering of DRAMs: Row Hammer with Crosshair,”

in MEMSYS, 2016.
[65] R. Kalla et al., “Power7: IBM’s Next-Generation Server Processor,” IEEE Micro,

vol. 30, no. 2, pp. 7–15, 2010.
[66] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM Pro-

cess Scaling,” in The Memory Forum, 2014.
[67] Y. Kang et al., “FlexRAM: toward an advanced intelligent memory system,” in

ICCD, 1999.
[68] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by

Exploiting Current Memory Content,” in MICRO, 2017.
[69] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation of

Data-Dependent Failures in DRAM,” CAL, 2016.
[70] S. Khan et al., “PARBOR: An E�cient System-Level Technique to Detect Data

Dependent Failures in DRAM,” in DSN, 2016.
[71] S. Khan et al., “The E�cacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
[72] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclona-

ble Functions by Exploiting the Latency–Reliability Tradeo� in Modern DRAM
Devices,” in HPCA, 2018.

[73] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[74] K. Kim and J. Lee, “A New Investigation of Data Retention Time in Truly Nanos-
caled DRAMs,” EDL, vol. 30, no. 8, pp. 846–848, 2009.

[75] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.
[76] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,

Carnegie Mellon University, 2015.
[77] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimen-

tal Study of DRAM Disturbance Errors,” in ISCA, 2014.
[78] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers,” in HPCA, 2010.
[79] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Di�erences in

Memory Access Behavior,” in MICRO, 2010.
[80] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in

DRAM,” in ISCA, 2012.
[81] P. M. Kogge, “EXECUBE-A New Architecture for Scaleable MPPs,” in ICPP, 1994.
[82] E. Kultursay et al., “Evaluating STT-RAM as an energy-e�cient main memory

alternative,” in ISPASS, 2013.
[83] A. R. Lebeck et al., “Power Aware Page Allocation,” in ASPLOS, 2000.
[84] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM Alter-

native,” in ISCA, 2009.

[85] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for Scalabi-
lity,” CACM, vol. 53, no. 7, pp. 99–106, 2010.

[86] B. C. Lee et al., “Phase-Change Technology and the Future of Main Memory,”
IEEE Micro, vol. 30, no. 1, pp. 143–143, 2010.

[87] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Cha-
racterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,
2017.

[88] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Tra�c
by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[89] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon University, 2016.

[90] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case,” in HPCA, 2015.

[91] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-
chitecture,” in HPCA, 2013.

[92] D. Lee et al., “Simultaneous Multi Layer Access: A High Bandwidth and Low
Cost 3D-Stacked Memory Interface,” TACO, 2016.

[93] S. Li et al., “McPAT: An Integrated Power, Area, and Timing Modeling Frame-
work for Multicore and Manycore Architectures,” in MICRO, 2009.

[94] Y. Li et al., “Utility-Based Hybrid Memory Management,” in CLUSTER, 2017.
[95] C. H. Lin et al., “SECRET: Selective Error Correction for Refresh Energy Re-

duction in DRAMs,” in ICCD, 2012.
[96] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Pro�ling Mechanisms,” in ISCA,
2013.

[97] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[98] L. Liu et al., “Memos: A Full Hierarchy Hybrid Memory Management Frame-

work,” in ICCD, 2016.
[99] Y. Luo et al., “Characterizing Application Memory Error Vulnerability to Opti-

mize Datacenter Cost via Heterogeneous-Reliability Memory,” in DSN, 2014.
[100] C. Lyuh and T. Kim, “Memory Access Scheduling and Binding Considering

Energy Minimization in Multi-Bank Memory Systems,” in DAC, 2004.
[101] K. Mai et al., “Smart memories: a modular recon�gurable architecture,” in ISCA,

2000.
[102] K. T. Malladi et al., “Towards Energy-Proportional Datacenter Memory with Mo-

bile DRAM,” in ISCA, 2012.
[103] J. Meza et al., “A Case for E�cient Hardware/Software Cooperative Management

of Storage and Memory,” in WEED, 2013.
[104] J. Meza et al., “Revisiting Memory Errors in Large-Scale Production Data Centers:

Analysis and Modeling of New Trends from the Field,” in DSN, 2015.
[105] T. Mudge, “Power: a �rst-class architectural design constraint,” Computer, vol. 34,

no. 4, pp. 52–58, 2001.
[106] O. Mutlu, “The RowHammer problem and other issues we may face as memory

becomes denser,” in DATE, 2017.
[107] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[108] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[109] H. Naeimi et al., “STT-RAM Scaling and Retention Failure,” Intel Technology Jour-

nal, 2013.
[110] T. Ohsawa et al., “Optimizing the DRAM Refresh Count for Merged DRAM/Logic

LSIs,” in ISLPED, 1998.
[111] M. Oskin et al., “Active pages: a computation model for intelligent memory,” in

ISCA, 1998.
[112] M. Patel et al., “The Reach Pro�ler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Pro�ling at Aggressive Conditions,” in ISCA, 2017.
[113] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[114] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-In-Memory Capabilities,” in PACT, 2016.
[115] I. Paul et al., “Harmonia: Balancing Compute and Memory Power in High-

performance GPUs,” in ISCA, 2015.
[116] A. J. Peña and P. Balaji, “Toward the E�cient Use of Multiple Explicitly Managed

Memory Subsystems,” in CLUSTER, 2014.
[117] S. Phadke and S. Narayanasamy, “MLP aware heterogeneous memory system,”

in DATE, 2011.
[118] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked memory+logic

devices on MapReduce workloads,” in ISPASS, 2014.
[119] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh

for DRAM Systems,” in DSN, 2015.
[120] M. K. Qureshi et al., “Enhancing Lifetime and Security of PCM-based Main Me-

mory with Start-gap Wear Leveling,” in MICRO, 2009.
[121] M. K. Qureshi et al., “Scalable High Performance Main Memory System Using

Phase-change Memory Technology,” in ISCA, 2009.
[122] L. E. Ramos et al., “Page Placement in Hybrid Memory Systems,” in ICS, 2011.
[123] D. Roberts et al., “On-Chip Cache Device Scaling Limits and E�ective Fault Re-

pair Techniques in Future Nanoscale Technology,” in DSD, 2007.
[124] SAFARI Research Group, “SAFARI Software Tools – GitHub Repository,” https:

//github.com/CMU-SAFARI.
[125] B. Schroeder et al., “DRAM Errors in the Wild: A Large-Scale Field Study,” in

SIGMETRICS, 2009.
[126] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.

8

39

[127] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
E�cient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[128] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[129] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” in MICRO, 2017.

[130] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[131] A. Snavely and D. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Mul-
tithreading Processor,” in ASPLOS, 2000.

[132] V. Sridharan et al., “Memory Errors in Modern Systems: The Good, The Bad, and
The Ugly,” in ASPLOS, 2015.

[133] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,” in SC, 2012.
[134] Standard Performance Evaluation Corp., “SPEC CPU2006 Benchmarks,”

http://www.spec.org/cpu2006.
[135] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[136] Z. Sura et al., “Data access optimization in a processing-in-memory system,” in

CF, 2015.
[137] A. N. Udipi et al., “Rethinking DRAM Design and Organization for Energy-

Constrained Multi-Cores,” in ISCA, 2010.
[138] R. Venkatesan et al., “Retention-Aware Placement in DRAM (RAPID): Software

Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.
[139] F. A. Ware and C. Hampel, “Improving Power and Data E�ciency with Threaded

Memory Modules,” in ICCD, 2006.
[140] M. Ware et al., “Architecting for Power Management: The IBM® POWER7™

Approach,” in HPCA, 2010.

[141] C. Wilkerson et al., “Trading O� Cache Capacity for Reliability to Enable Low
Voltage Operation,” in ISCA, 2008.

[142] C. Wilkerson et al., “Trading O� Cache Capacity for Low-Voltage Operation,”
IEEE Micro, 2009.

[143] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, 2012.
[144] D. H. Yoon et al., “BOOM: Enabling Mobile Memory Based Low-power Server

DIMMs,” in ISCA, 2012.
[145] D. H. Yoon et al., “Adaptive Granularity Memory Systems: A Tradeo� Between

Storage E�ciency and Throughput,” in ISCA, 2011.
[146] H. Yoon et al., “Row Bu�er Locality Aware Caching Policies for Hybrid Memo-

ries,” in ICCD, 2012.
[147] H. Yoon et al., “E�cient Data Mapping and Bu�ering Techniques for Multilevel

Cell Phase-Change Memories,” TACO, vol. 11, no. 4, pp. 40:1–40:25, 2014.
[148] X. Yu et al., “Banshee: Bandwidth-E�cient DRAM Caching via Software/Har-

dware Cooperation,” in MICRO, 2017.
[149] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in

Memory,” in HPDC, 2014.
[150] T. Zhang et al., “Half-DRAM: A High-Bandwidth and Low-Power DRAM Archi-

tecture from the Rethinking of Fine-grained Activation,” in ISCA, 2014.
[151] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die-Stacking

for Power/Thermal Friendly, Fast and Durable Memory Architectures,” in PACT,
Raleigh, NC, September 2009, pp. 101–112.

[152] H. Zheng et al., “Mini-rank: Adaptive DRAM Architecture for Improving Me-
mory Power E�ciency,” in MICRO, 2008.

9

40

SoftMC: Practical DRAM Characterization
Using an FPGA-Based Infrastructure

Hasan Hassan1,2,3 Nandita Vijaykumar2 Samira Khan4,2

Saugata Ghose2 Kevin Chang5,2 Gennady Pekhimenko6,2

Donghyuk Lee7,2 Oguz Ergin3 Onur Mutlu1,2

1ETH Zürich 2Carnegie Mellon University 3TOBB University of Economics & Technology
4University of Virginia 5Facebook 6Microsoft Research 7NVIDIA Research

This paper summarizes the SoftMC DRAM characterization
infrastructure, which was published in HPCA 2017 [44], and exa-
mines the work’s signi�cance and future potential. DRAM is the
primary technology used for main memory in modern systems.
Unfortunately, as DRAM scales down to smaller technology
nodes, it faces key challenges in both data integrity and latency,
which strongly a�ect overall system reliability and performance.
To develop reliable and high-performance DRAM-based main
memory in future systems, it is critical to characterize, under-
stand, and analyze various aspects (e.g., reliability, latency)
of modern DRAM chips. To enable this, there is a strong need
for a publicly-available DRAM testing infrastructure that can
�exibly and e�ciently test DRAM chips in a manner accessible
to both software and hardware developers.

This work develops the �rst such infrastructure, SoftMC (Soft
Memory Controller), an FPGA-based testing platform that can
control and test memory modules designed for the commonly-
used DDR (Double Data Rate) interface. SoftMC has two key
properties: (i) it provides �exibility to thoroughly control me-
mory behavior or to implement a wide range of mechanisms
using DDR commands; and (ii) it is easy to use as it provides
a simple and intuitive high-level programming interface for
users, completely hiding the low-level details of the FPGA.

We demonstrate the capability, �exibility, and programming
ease of SoftMC with two example use cases. First, we imple-
ment a test that characterizes the retention time of DRAM cells.
Experimental results we obtain using SoftMC are consistent
with the �ndings of prior studies on retention time in modern
DRAM, which serves as a validation of our infrastructure. Se-
cond, we validate two recently-proposed mechanisms, which
rely on accessing recently-refreshed or recently-accessed DRAM
cells faster than other DRAM cells. Using our infrastructure,
we show that the expected latency reduction e�ect of these
mechanisms is not observable in existing DRAM chips,which
demonstrates the usefulness of SoftMC in testing new ideas on
existing memory modules.

Various versions of the SoftMC platform have enabled many
of our other DRAM characterization studies [26, 29, 60, 61, 62,
68, 80, 84, 88, 117]. We discuss several other use cases of SoftMC,
including the ability to characterize emerging non-volatile me-
mory modules that obey the DDR standard. We hope that
our open-source release of SoftMC �lls a gap in the space of

publicly-available experimental memory testing infrastructures
and inspires new studies, ideas, and methodologies in memory
system design.

1. Understanding DRAM Characteristics
DRAM (Dynamic Random Access Memory) is the predo-

minant technology used to build main memory systems of
modern computers. The continued scaling of DRAM process
technology has enabled tremendous growth in DRAM density
in the last few decades, leading to higher capacity main me-
mories. Unfortunately, as the process technology node scales
down to the sub-20 nm feature size range, DRAM technology
faces key challenges that critically impact its reliability and
performance [102, 103, 106].

The fundamental challenge with scaling DRAM cells into
smaller technology nodes arises from the way DRAM stores
data in cells. A DRAM cell consists of a transistor and a
capacitor. Data is stored as charge in the capacitor. A DRAM
cell cannot retain its data permanently as this capacitor leaks
its charge gradually over time. To maintain correct data in
DRAM, each cell is periodically refreshed to replenish the
charge in the capacitor [87]. At smaller technology nodes, it
is becoming increasingly di�cult to store and retain enough
charge in a cell, causing various reliability and performance
issues [27,63,87,88]. Ensuring reliable operation of the DRAM
cells is a key challenge in future technology nodes [55, 60, 66,
87, 88, 93, 99, 102, 103, 112].

The fundamental problem of retaining data with less charge
in smaller cells directly impacts the reliability and perfor-
mance of DRAM cells. First, smaller cells placed in close prox-
imity make cells more susceptible to various types of interfe-
rence. This potentially disrupts DRAM operation by �ipping
bits in DRAM, resulting in major reliability issues [68, 95, 108,
121, 126, 135, 136], which can lead to system failure [95, 126]
or security breaches [10, 41, 68, 120, 127, 128, 144, 148]. Second,
it takes longer time to access a cell with less charge [43, 80],
and write latency increases as the access transistor size redu-
ces [55]. Thus, smaller cells directly impact DRAM latency,
as DRAM access latency is determined by the worst-case (i.e.,
slowest) cell in any acceptable chip [24, 29, 80]. DRAM access
latency has not signi�cantly improved with technology sca-
ling in the past two decades [7, 25, 26, 54, 81, 82, 102], and,

41

in fact, some latencies are expected to increase [55], making
memory latency an increasingly critical system performance
bottleneck.

As such, there is a signi�cant need for new mechanisms
that improve the reliability and performance of DRAM-based
main memory systems. In order to design, evaluate, and
validate many such mechanisms, it is important to accura-
tely characterize, analyze, and understand DRAM (cell) be-
havior in terms of reliability and latency. For such an un-
derstanding to be accurate, it is critical that the characteri-
zation and analysis be based on the experimental studies of
real DRAM chips, since a large number of factors (e.g., va-
rious types of cell-to-cell interference [68, 108, 121], inter-
and intra-die process variation [24, 26, 29, 65, 80, 84, 109, 112],
random e�ects [45, 60, 88, 117, 123, 137, 149], operating condi-
tions [29, 65, 80, 86, 88, 112], internal organization [46, 61, 88],
stored data patterns [61,62,88]) concurrently impact the relia-
bility and latency of cells. Many of these phenomena and their
interactions cannot be properly modeled (e.g., in simulation
or using analytical methods) without rigorous experimental
characterization and analysis of real DRAM chips. The need
for such experimental characterization and analysis, with
the goal of building the understanding necessary to improve
the reliability and performance of future DRAM-based main
memories at various levels (both software and hardware),
motivates the need for a publicly-available DRAM testing
infrastructure that can enable system users and designers to
characterize real DRAM chips.

2. Experimental DRAM Characterization
Two key features are desirable from an experimental me-

mory testing infrastructure. First, the infrastructure should
be �exible enough to test any DRAM operation (supported by
the commonly-used DRAM interfaces, e.g., the standard Dou-
ble Data Rate, or DDR, interface) to characterize cell behavior
or evaluate the impact of a mechanism (e.g., adopting di�e-
rent refresh rates for di�erent cells [60,62,63,87,112,117,145])
on real DRAM chips. Second, the infrastructure should be
easy to use, such that it is possible for both software and
hardware developers to implement new tests or mechanisms
without spending signi�cant time and e�ort. For example, a
testing infrastructure that requires circuit-level implementa-
tion, detailed knowledge of the physical implementation of
DRAM data transfer protocols over the memory channel, or
low-level FPGA-programming to modify the infrastructure
would severely limit the usability of such a platform to a
limited number of experts.

Our HPCA 2017 paper [44] designs, prototypes, and demon-
strates the basic capabilities of such a �exible and easy-to-use
experimental DRAM testing infrastructure, called SoftMC
(Soft Memory Controller). SoftMC is an open-source FPGA-
based DRAM testing infrastructure, consisting of a program-
mable memory controller that can control and test memory
modules designed for the commonly-used DDR (Double Data

Rate) interface. To this end, SoftMC implements all low-level
DRAM operations (i.e., DDR commands) available in a typical
memory controller (e.g., opening a row in a bank, reading
a speci�c column address, performing a refresh operation,
enforcing various timing constraints between commands).
Using these low-level operations, SoftMC can test and cha-
racterize any (existing or new) DRAM mechanism that uses
the existing DDR interface. SoftMC provides a simple and
intuitive high-level programming interface that completely
hides the low-level details of the FPGA from users. Users
implement their test routines or mechanisms in a high-level
language that automatically gets translated into the low-level
SoftMC memory controller operations in the FPGA.

3. Overview of SoftMC
A publicly-available DRAM testing infrastructure should

have two key features to ensure widespread adoption among
architects and designers: (i) �exibility and (ii) ease of use.
Flexibility. A DRAM chip is typically accessed by issuing

a set of DRAM commands in a particular sequence with a
strict delay between the commands (speci�ed by the timing
parameters in the datasheet of the DRAM chip/module). A
DRAM testing infrastructure should implement all low-level
DRAM operations with tunable timing parameters without
any restriction on the ordering of DRAM commands. Such a
design enables �exibility at two levels. First, it enables com-
prehensive testing of any DRAM operation with the ability
to customize the length of each timing constraint. For exam-
ple, we can implement a retention test with di�erent refresh
intervals to characterize the distribution of retention time in
modern DRAM chips (as done in [60, 87, 112]). Such a charac-
terization can enable new mechanisms to reduce the number
of refresh operations in DRAM, leading to performance and
power e�ciency improvements. Second, it enables testing
of DRAM chips with high-level test programs, which can
consist of any combination of DRAM operations and timings.
Such �exibility is extremely powerful to test the impact of
existing or new DRAM mechanisms in real DRAM chips.
Ease of Use. A DRAM testing infrastructure should pro-

vide a simple and intuitive programming interface that mini-
mizes programming e�ort and time. An interface that hides
the details of the underlying implementation is accessible to
a wide range of users. With such a high-level abstraction,
even users that lack hardware design experience should be
able to develop DRAM tests.

Figure 1 shows our temperature-controller setup for testing
DRAM modules. The components of SoftMC operate on the
host machine and the FPGA. On the host machine, the SoftMC
API provides a high-level software interface (in C++) for de-
veloping a test program that generates DRAM commands
and sends them to the FPGA. On the FPGA, SoftMC hardware
is responsible for handling the commands sent by the host
machine. The SoftMC hardware issues the DRAM commands
in order and with the timing parameters as de�ned in the

2

42

test program developed using the SoftMC API. SoftMC also
implements a PCIe driver for high-speed communication bet-
ween the host machine and the FPGA. The user only needs
to focus on de�ning a routine for testing the DRAM.

Figure 1: Our SoftMC infrastructure. Reproduced from [44].

A detailed description of the interface, design, and opera-
tion of SoftMC can be found in our HPCA 2017 paper [44].
The source code for SoftMC can be freely downloaded
from [125].

4. Example Use Cases
Using our SoftMC prototype, we perform two case studies

on randomly-selected real DRAM chips from three major ma-
nufacturers. First, we discuss how a simple retention test can
be implemented using SoftMC, and present the experimental
results of that test (Section 4.1). Second, we demonstrate how
SoftMC can be leveraged to test the expected e�ect of two
recently-proposed mechanisms [43, 134] that aim to reduce
DRAM access latency (Section 4.2). Both use cases demon-
strate the �exibility and ease of use of SoftMC.

4.1. Retention Time Distribution Study
This test aims to characterize data retention time in dif-

ferent DRAM modules. The retention time of a cell can be
determined by testing the cell with di�erent refresh intervals.
The cell fails at a refresh interval that is greater than its re-
tention time. In this test, we gradually increase the refresh
interval from the default 64 ms and count the number of bytes
that have an incorrect value at each refresh interval.
4.1.1. Evaluating Retention Time with SoftMC. We per-
form a simple test to measure the retention time of the cells
in a DRAM chip. Our test consists of three steps: (i) We write
a reference data pattern (e.g. all zeros, or all ones) to an entire
row. (ii) We wait for the speci�ed refresh interval, so that the
row is idle for that time and all cells gradually leak charge.
(iii) We read data back from the same row and compare it
against the reference pattern that we wrote in the �rst step.
Any mismatch indicates that the cell could not hold its data
for that duration, resulting in a bit �ip. We count the number
of bytes that have bit �ips for each test.

We repeat this procedure for all rows in the DRAM module.
The read and write operations in the test are issued with
the standard timing parameters, to make sure that the only
timing change that a�ects the reliability of the cells is the
change in the refresh interval.
Writing Data to DRAM. In Program 1, we present the

implementation of the �rst part of our retention time test,
where we write data to a row, using the SoftMC API. First, to
activate the row, we insert the instruction generated by the
genACT() function to an instance of the InstructionSequence
(Lines 1-2). This function is followed by a genWAIT() function
(Line 3) that ensures that the activation completes with the
standard timing parameter tRCD. Second, we issue write in-
structions to write the data pattern in each column of the row.
This is implemented in a loop, where, in each iteration, we call
genWR() (Line 5), followed by a call to genWAIT() function
(Line 6) that ensures proper delay between two WRITE ope-
rations. After writing to all columns of the row, we insert
another delay (Line 8) to account for the write recovery time
tWR. Third, once we have written to all columns, we close the
row by precharging it. This is done by the genPRE() function
(Line 9), followed by a genWAIT() function with standard tRP
timing.1 Finally, we call the genEND() function to indicate the
end of the instruction sequence, and send the test program
to the FPGA by calling the execute() function.

1 InstructionSequence iseq;
2 iseq.insert(genACT(bank, row));
3 iseq.insert(genWAIT(tRCD));
4 for(int col = 0; col < COLUMNS; col++){
5 iseq.insert(genWR(bank, col, data));
6 iseq.insert(genWAIT(tBL));
7 }
8 iseq.insert(genWAIT(tCL + tWR));
9 iseq.insert(genPRE(bank));

10 iseq.insert(genWAIT(tRP));
11 iseq.insert(genEND());
12 iseq.execute(fpga));

Program 1: Writing data to a row using the SoftMC API. Re-
produced from [44].

Employing a Speci�c Refresh Interval. Using SoftMC,
we can implement the target refresh interval in two ways.
We can use the auto-refresh support provided by the SoftMC
hardware, by setting the tREFI parameter to our target va-
lue, and letting the FPGA take care of the refresh operations.
Alternatively, we can disable auto-refresh, and manually con-
trol the refresh operations from the software. In this case, the
user is responsible for issuing refresh operations at the right
time. In this retention test, we disable auto-refresh and use a
software clock to determine when we should read back data
from the row (i.e., refresh the row).
Reading Data from DRAM. Reading data back from the

DRAM requires steps similar to DRAM writes (presented in

1For details on DRAM timing parameters and internal DRAM operation,
we refer the reader to our prior works [26, 27, 28, 29, 43, 44, 65, 68, 69, 70, 71, 72,
80, 81, 83, 84, 85, 87, 88, 112, 130, 131].

3

43

Program 1). The only di�erence is that, instead of issuing a
WRITE command, we need to issue a READ command and
enforce read-related timing parameters. In the SoftMC API,
this is done by calling the genRD() function in place of the
genWR() function, and specifying the appropriate read-related
timing parameters. After the read operation is done, the FPGA
sends back the data read from the DRAM module, and the user
can access that data using the fpga_recv() function provided
by the driver.

Note that the complete code to implement our full retention
test (i.e., writing a data pattern to a DRAM module, waiting
for the target retention time, reading the data back from the
DRAM module, and checking the data for errors) in SoftMC
takes only approximately 200 lines of C code, in the form
shown in Program 1. Based on the intuitive code implementa-
tion of the retention test, we conclude that it requires minimal
e�ort to write test programs using the SoftMC API. Our full
test is provided in our open-source release of SoftMC [125].

4.1.2. Results. We perform the retention time test at room
temperature, using 24 DRAM chips from three major manu-
facturers. We vary the refresh interval from 64 ms to 8192 ms,
exponentially. Figure 2 shows the results for the test, where
the x-axis shows the refresh interval in milliseconds, and the
y-axis shows the number of erroneous bytes found in each
interval. We make two major observations.

0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
um

be
r o

f
Er

ro
ne

ou
s B

yt
es

Refresh Interval (ms)

Module B

Module C

Module A

Figure 2: Number of erroneous bytes observed in retention
time tests. Reproduced from [44].

(i) We do not observe any retention failures until we test
with a refresh interval of 1 s. This shows that there is a large
safety margin for the refresh interval in modern DRAM chips,
which is conservatively set to 64 ms by the DDR standard.2

(ii) We observe that the number of failures increases expo-
nentially with the increase in refresh interval.

Other experimental studies on retention time of DRAM
cells have reported similar observations as ours [42, 47, 60, 67,
80,80,88,112]. We conclude that SoftMC can easily reproduce
experimental DRAM results, validating the correctness of our
testing infrastructure and showing its �exibility and ease of
use.

2DRAM manufacturers perform retention tests that are similar to ours
(but with proprietary in-house infrastructures that are not disclosed). Their
results are similar to ours [26, 42, 60, 67, 80, 88, 112], showing signi�cant
margin for the refresh interval. This margin is added to ensure reliable
DRAM operation for the worst-case operating conditions (i.e., worst case
temperature and voltage levels) and for worst-case cells, as has been shown
by prior works [26, 42, 60, 67, 80, 88, 112].

4.2. Evaluating the Expected E�ect of Two
Recently-Proposed Mechanisms in Existing
DRAM Chips

Two recently-proposed mechanisms, ChargeCache [43]
and NUAT [134], provide low-latency access to highly-
charged DRAM cells. They both are based on the key idea
that a highly-charged cell can be accessed faster than a cell
with less charge [80]. ChargeCache observes that cells belon-
ging to recently-accessed DRAM rows are in a highly-charged
state and that such rows are likely to be accessed again in the
near future. ChargeCache exploits the highly-charged state
of these recently-accessed rows to lower the latency for later
accesses to them. NUAT observes that recently-refreshed cells
are in highly-charged state, and thus it lowers the latency
for accesses to recently-refreshed rows. Prior to activating a
DRAM row, both ChargeCache and NUAT determine whether
the target row is in a highly-charged state. If so, the memory
controller uses reduced tRCD and tRAS timing parameters
to perform a low latency access.

In this section, we evaluate whether or not the expected
latency reduction e�ect of these two works is observable in
existing DRAM modules, using SoftMC. We �rst describe our
methodology for evaluating the improvement in the tRCD
and tRAS timing parameters. We then show the results we
obtain using SoftMC, and discuss our observations.

4.2.1. EvaluatingDRAMLatencywith SoftMC. In our ex-
periments, we use 24 DDR3 chips (i.e., three SO-DIMMs [53])
from three major manufacturers. To stress DRAM reliability
and maximize the amount of cell charge leakage, we raise
the test temperature to 80◦C (signi�cantly higher than the
common-case operating range of 35-55◦C [80]) by enclosing
our FPGA infrastructure in a temperature-controlled heat
chamber (see Figure 1). For all experiments, the temperature
within the heat chamber was maintained within 0.5◦C of the
target 80◦C temperature.

To study the impact of charge variation in cells on access
latency, which is dominated by the tRCD and tRAS timing
parameters [26, 69, 80, 81], we perform experiments on exis-
ting DRAM chips to test the headroom for reducing these
parameters. In our experiments, we vary one of the two ti-
ming parameters, and test whether the original data can be
read back correctly with the reduced timing. If the data that
is read out contains errors, this indicates that the timing para-
meter cannot be reduced to the tested value without inducing
errors in the data. We perform the tests using a variety of
data patterns (e.g., 0x00, 0xFF, 0xAA, 0x55) because 1) di�e-
rent DRAM cells store information (i.e., 0 or 1) in di�erent
states (i.e., charged or empty) [88] and 2) we would like to
stress DRAM reliability by increasing the interference bet-
ween adjacent bitlines [60,61,62,63,88,112]. We also perform
tests using di�erent refresh intervals, to study whether the
variation in charge leakage increases signi�cantly if the time
between refreshes increases.

4

44

tRCD Test. We measure how highly-charged cells a�ect
the tRCD timing parameter (i.e., how long the controller
needs to wait after a row activation command is sent to safely
perform read and write operations on the row), by using a
custom tRCD value to read data from a row to which we
previously wrote a reference data pattern. We adjust the time
between writing a reference data pattern and performing the
read, to vary the amount of charge stored within the cells of
a row. In Figure 3a, we show the command sequence that
we use to test whether recently-refreshed DRAM cells can be
accessed with a lower tRCD, compared to cells that are close
to the end of the refresh interval. We perform the write and
read operations to each DRAM row one column at a time, to
ensure that each read incurs the tRCD latency. First (1 in
Figure 3a), we perform a reference write to the DRAM column
under test by issuing ACTIVATE, WRITE, and PRECHARGE
successively with the default DRAM timing parameters. Next
(2), we wait for the duration of a time interval (T1), which is
the refresh interval in practice, to vary the charge contained
in the cells. When we wait longer, we expect the target cells
to have less charge at the end of the interval. We cover a
wide range of wait intervals, evaluating values between 1 and
512 ms. Finally (3), we read the data from the column that
we previously wrote to and compare it with the reference
pattern. We perform the read with the custom tRCD value
for that speci�c test. We evaluate tRCD values ranging from
3 to 6 (default) cycles. Since a tRCD of 3 cycles produced
errors in every run, we did not perform any experiments with
a lower tRCD.

Write the data
pattern to a column

Read (with custom tRCD) the
column data and verify

Wait (T1)

1

2

3

(a) tRCD Test

Write the data
pattern to a row

1

2

5
Read row data and

verify
ACT-PRE

(with custom tRAS)
3

4Wait (T2) Wait (T3)
(b) tRAS Test

Figure 3: Timelines that illustrate the methodology for tes-
ting the improvement of (a) tRCD and (b) tRAS on highly-
charged DRAM cells. Reproduced from [44].

We process multiple rows in an interleaved manner (i.e.,
we write to multiple rows, wait, and then verify their data
one after another) in order to further stress the reliability of
DRAM [80]. We repeat this process for all DRAM rows to
evaluate the entire memory module.
tRAS Test. We measure the e�ect of accessing highly-

charged rows on the tRAS timing parameter (i.e., the time
that the controller needs to wait after a row activation com-
mand is sent to safely start precharging the row) by issuing
the ACTIVATE and PRECHARGE commands, with a custom

tRAS value, to a row. We check if that row still contains the
same data that it held before the ACTIVATE-PRECHARGE
command pair was issued. Figure 3b illustrates the methodo-
logy for testing the e�ect of the refresh interval ontRAS. First
(1), we write the reference data pattern to the selected DRAM
row with the default timing parameters. Di�erent from the
tRCD test, we write to every column in the open row (before
switching to another row) to save cycles by eliminating a sig-
ni�cant amount of ACTIVATE and PRECHARGE commands,
thereby reducing the testing time. Next (2), we wait for the
duration of time interval T2, during which the DRAM cells
lose a certain amount of charge. To refresh the cells (3),
we issue an ACTIVATE-PRECHARGE command pair asso-
ciated with a custom tRAS value. When the ACTIVATE-
PRECHARGE pair is issued, the charge in the cells of the
target DRAM row may not be fully restored if the wait time is
too long or the tRAS value is too short, potentially leading to
loss of data. Next (4), we wait again for a period of time T3
to allow the cells to leak a portion of their charge. Finally (5),
we read the row using the default timing parameters and test
whether it still retains the correct data. Similar to the tRCD
test, to stress the reliability of DRAM, we simultaneously
perform the tRAS test on multiple DRAM rows.

We would expect, from this experiment, that the data is
likely to maintain its integrity when evaluating reducedtRAS
with shorter wait times (T2). This is because when T2 is short,
a DRAM cell would lose only a small amount of its charge.
Thus, there would be more room for reducing tRAS, as the
cell would already contain a higher amount of charge prior to
the row activation. The higher amount of charge would allow
us to safely reduce tRAS by a larger amount. In contrast, we
would expect failures to be more likely when using a reduced
tRAS with a longer wait time, because the cells would have
a low amount of charge that is not enough to reliably reduce
tRAS.

4.2.2. Results. We analyze the results of the tRCD and tRAS
tests, for 24 real DRAM chips from di�erent vendors, using
the test programs detailed in Section 4.2.1. We evaluate tRCD
values ranging from 3 to 6 cycles, and tRAS values ranging
from 2 to 14 cycles, where the maximum number for each
is the default timing parameter value. For both tests, we
evaluate refresh intervals between 8 and 512 ms and measure
the number of observed errors during each experiment.

Figures 4 and 5 depict the results for the tRCD test and the
tRAS test, respectively, for three DRAM modules (each from
a di�erent DRAM vendor). We make three major observati-
ons:
(i) Within the duration of the standard refresh interval

(64 ms), DRAM cells do not leak a su�cient amount of charge to
have a negative impact on DRAM access latency.3 For refresh
intervals less than or equal to 64 ms, we observe little to no

3Other studies have shown methods to take advantage of the fact that
latencies can be reduced without incurring errors [26, 80].

5

45

variation in the number of errors induced. Within this refresh
interval range, depending on the tRCD or tRAS value, the
errors generated are either zero or a constant number. We
make the same observation in both the tRCD and tRAS tests
for all three DRAM modules.

For all the modules tested, using di�erent data patterns and
stressing DRAM operation with temperatures signi�cantly
higher than the common-case operating conditions, we can
signi�cantly reduce tRCD and tRAS parameters, without
observing any errors. We observe errors only when tRCD
and tRAS parameters are too small to correctly perform the
DRAM access, regardless of the charge amount of the accessed
cells.

(ii) The large safety margin employed by the manufacturers
protects DRAM against errors even when accessing DRAM cells
with low latency. We observe no change in the number of
induced errors for tRCD values less than the default of 6
cycles (down to 4 cycles in modules A and B, and 5 cycles
in module C). We observe a similar trend in the tRAS test:
tRAS can be reduced from the default value of 14 cycles to 5
cycles without increasing the number of induced errors for
any refresh interval.

We conclude that even at temperatures much higher than
typical operating conditions, there exists a large safety margin
for access latency in existing DRAM chips. This demonstra-
tes that DRAM cells are much stronger than their datasheet
timing speci�cations indicate.4 In other words, the timing

4Similar observations were made by prior work [24, 26, 80].

margin in most DRAM cells is very large, given the existing
timing parameters.

(iii) The expected e�ect of ChargeCache and NUAT, that
highly-charged cells can be accessed with lower latency, is slig-
htly observable only when very long refresh intervals are used.
For each of the tests, we observe a signi�cant increase in the
number of errors at refresh intervals that are much higher
than the typical refresh interval of 64 ms, demonstrating the
variation in charge held by each of the DRAM cells. Based on
the assumptions made by ChargeCache and NUAT, we expect
that when lower values of tRCD and tRAS are employed,
the error rate should increase more rapidly. However, we �nd
that for all but the minimum values of tRCD and tRAS (and
for tRCD = 4 for module C), the tRCD and tRAS latencies
have almost no impact on the error rate.

We believe that the reason we cannot observe the expected
latency reduction e�ect of ChargeCache and NUAT on exis-
ting DRAM modules is due to the internal behavior of exis-
ting DRAM chips that does not allow latencies to be reduced
beyond a certain point: we cannot externally control when the
sense ampli�er gets enabled, since this is dictated with a �xed
latency internally, regardless of the charge amount in the cell.
The sense ampli�ers are enabled only after charge sharing,
which starts by enabling the wordline and lasts until su�cient
amount of charge �ows from the activated cell into the bit-
line [28, 69, 81, 129, 130, 131], is expected to complete. Within
existing DRAM chips, the expected charge sharing latency
(i.e., the time when the sense ampli�ers get enabled) is not
represented by a timing parameter managed by the memory

0

100

200

300

400

500

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8

Nu
m

be
r o

f E
rr

on
eo

us
 B

yt
es

Refresh Interval (ms)

6 5 4 3
tRCD (cycles)

(a) Module A

1

10

100

1000

10000

100000

1000000

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8Nu

m
be

r o
f E

rr
on

eo
us

 B
yt

es

Refresh Interval (ms)

6 5 4 3
tRCD (cycles)

(b) Module B

1

10

100

1000

10000

100000

1000000

10000000

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8

Nu
m

be
r o

f E
rr

on
eo

us
 B

yt
es

Refresh Interval (ms)

6 5 4 3
tRCD (cycles)

(c) Module C

Figure 4: E�ect of reducing tRCD on the number of errors at various refresh intervals. Reproduced from [44]

0

10000

20000

30000

40000

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8Nu

m
be

r o
f E

rr
on

eo
us

 B
yt

es

Refresh Interval (ms)

14 11 8 5 2

tRAS (cycles)

(a) Module A

0

200

400

600

800

1000

1200

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8Nu

m
be

r o
f E

rr
on

eo
us

 B
yt

es

Refresh Interval (ms)

14 11 8 5 2

tRAS (cycles)

(b) Module B

0

400

800

1200

1600

2000

2400

8 40 72 10
4

13
6

16
8

20
0

23
2

26
4

29
6

32
8

36
0

39
2

42
4

45
6

48
8Nu

m
be

r o
f E

rr
on

eo
us

 B
yt

es

Refresh Interval (ms)

14 11 8 5 2

tRAS (cycles)

(c) Module C

Figure 5: E�ect of reducing tRAS on the number of errors at various refresh intervals. Reproduced from [44].

6

46

controller. Instead, the latency is controlled internally within
the DRAM using a �xed value [58, 143]. ChargeCache and
NUAT require that charge sharing completes in less time, and
the sense ampli�ers get enabled faster for a highly-charged
cell. However, since existing DRAM chips provide no way to
control the time it takes to enable the sense ampli�ers, we
cannot harness the potential latency reduction possible for
highly-charged cells [143]. Reducing tRCD a�ects the time
spent only after charge sharing, at which point the bitline
voltages exhibit similar behavior regardless of the amount
of charge initially stored within the cell. Consequently, we
are unable to observe the expected latency reduction e�ect
of ChargeCache and NUAT by simply reducing tRCD, even
though we believe that the mechanisms are sound and can
reduce latency (assuming the behavior of DRAM chips is mo-
di�ed). If the DDR interface exposes a method of controlling
the time it takes to enable the sense ampli�ers in the future,
SoftMC can be easily modi�ed to use the method and fully
evaluate the latency reduction e�ect of ChargeCache and
NUAT.
Summary. Overall, we make two major conclusions from

the implementation and experimental results of our DRAM
latency experiments. First, SoftMC provides a simple and
easy-to-use interface to quickly implement tests that charac-
terize modern DRAM chips. Second, SoftMC is an e�ective
tool to validate or refute the expected e�ect of existing or
new mechanisms on existing DRAM chips.

5. Related Work
No prior DRAM testing infrastructure provides both �exibi-

lity and ease of use properties, which are critical for enabling
widespread adoption of the infrastructure. Three di�erent
kinds of tools/infrastructure are available today for characte-
rizing the behavior of real DRAM chips. As we will describe,
each kind of tool has some shortcomings. SoftMC eliminates
all of these shortcomings and provides the �rst open-source
DRAM testing infrastructure that is publicly available [125].
Commercial Testing Infrastructures. A large number

of commercial DRAM testing platforms (e.g., [1, 39, 110, 142])
are available in the market. Such platforms are optimized for
test throughput (i.e., to test as many DRAM chips as possible
in a given time period), and generally apply a �xed test pat-
tern to the units under test. Thus, since they lack support for
�exibility in de�ning the test routine, these infrastructures
are not suitable for detailed DRAM characterization where
the goal is to investigate new issues and new ideas. Furt-
hermore, such testing equipment is usually quite expensive,
which makes these infrastructures an impractical option for
research in academia. Industry may also have internal DRAM
development and testing tools, but, to our knowledge, these
are proprietary and are unlikely to be made openly available.

We design SoftMC to be a low-cost (i.e., free) and �exi-
ble open-source alternative to commercial testing equipment
that can enable new research directions and mechanisms.

For example, prior work [151] recently proposed a random
command pattern generator to validate DRAM chips against
uncommon yet supported (according to JEDEC speci�cati-
ons) DDR command patterns. Using the test patterns on
commercial test equipment, this work demonstrates that spe-
ci�c sequences of commands introduce failures in current
DRAM chips (e.g., an ACTIVATE followed by a PRECHARGE,
without any READ or WRITE commands in between, results
in future accesses reading incorrect data in some DRAM devi-
ces). SoftMC �exibly supports the ability to issue an arbitrary
command sequence, and therefore can be used as a low-cost
method for validating DRAM chips against problems that
arise due to command ordering.
FPGA-Based Testing Infrastructures. Several prior

works propose FPGA-based DRAM testing infrastructures [47,
50, 59]. Unfortunately, all of them lack �exibility and/or a
simple user interface, and none are open-source. The FPGA-
based infrastructure proposed by Huang et al. [50] provides
a high-level interface for developing DRAM tests, but the
interface is limited to de�ning only data patterns and march
algorithms for the tests. Hou et al. [47] propose an FPGA-
based test platform whose capability is limited to analyzing
only the data retention time of the DRAM cells. Another
work [59] develops a custom memory testing board with an
FPGA chip, speci�cally designed to test memories at a very
high data rate. However, it requires low-level knowledge
to develop FPGA programs, and even then o�ers only limi-
ted �exibility in de�ning a test routine. On the other hand,
SoftMC provides full control over all DRAM commands using
a high-level software interface, and it is open-source.

PARDIS [6] is a recon�gurable logic (e.g., FPGA) based
programmable memory controller meant to be implemented
inside microprocessor chips. PARDIS is capable of optimizing
memory scheduling algorithms, refresh operations, etc. at
run-time based on application characteristics, and can im-
prove system performance and e�ciency. However, it does
not provide programmability for DRAM commands and ti-
ming parameters, and therefore cannot be used for detailed
DRAM characterization.
Built-In Self Test (BIST). A BIST mechanism (e.g, [5, 52,

114, 115, 150, 152]) is implemented inside the DRAM chip to
enable �xed test patterns and algorithms. Using such an ap-
proach, DRAM tests can be performed faster than with other
testing platforms. However, BIST has two major �exibility
issues, since the testing logic is hard-coded into the hardware:
(i) BIST o�ers only a limited number of tests that are �xed
at hardware design time. (ii) A limited set of DRAM chips,
which come with BIST support, can be tested. In contrast,
SoftMC allows for the implementation of a wide range of
DRAM test routines and supports any o�-the-shelf DRAM
chip that is compatible with the DDR interface.
Other Related Work. Although no prior work provi-

des an open-source DRAM testing infrastructure similar to
SoftMC, infrastructures for testing other types of memories

7

47

have been developed. Cai et al. [11, 12, 13, 15] develop a
platform for characterizing NAND �ash memory. They pro-
pose a �ash controller, implemented on an FPGA, to quickly
characterize error patterns of existing �ash memory chips.
They expose the functions of the �ash translation layer (i.e.,
the �ash chip interface) to the software developer via the
host machine connected to the FPGA board, similar to how
we expose the DDR interface to the user in SoftMC. Many
works [11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 38, 89, 90, 91]
use this �ash memory testing infrastructure to study various
aspects of �ash chips.

Our prior works [26,60,61,62,68,80,84,88] develop and use
FPGA-based infrastructures for a wide range of DRAM studies.
Liu et al. [88] and Khan et al. [60] analyze the data retention
behavior of modern DRAM chips and proposed mechanisms
for mitigating retention failures. Khan et al. [61, 62] study
data-dependent failures in DRAM, and developed techniques
for e�ciently detecting and handling them. Lee et al. [80, 84]
analyze latency characteristics of modern DRAM chips and
propose mechanisms for latency reduction. Kim et al. [68]
discover a new reliability issue in existing DRAM, called
RowHammer, which can lead to security breaches [41,103,120,
127,128,144,148]. Chang et al. [26] use SoftMC to characterize
latency variation across DRAM cells for fundamental DRAM
operations (e.g., activation, precharge). SoftMC evolved out
of these previous infrastructures, to address the need to make
the infrastructure �exible and easy to use.

Recently, Chang et al. [29] extend SoftMC with the ca-
pability to change the array voltage of DRAM chips, such
that SoftMC can be used to evaluate the trade-o�s between
voltage, latency, and reliability in modern DRAM chips.

Sukhwani et al. propose ConTutto [141], which is a re-
cent work that builds an FPGA-based platform for evaluating
di�erent memory technologies and new mechanisms on exis-
ting server systems. ConTutto is an extender board, which
plugs into the DDR3 module slot of a server machine. On the
board, an FPGA chip manages the communication between
the server machine and the memory, which is connected to
the other end of the ConTutto board. Using ConTutto, any
type of memory that can be attached to the ConTutto board
can potentially be used in existing systems, as part of main
memory, by using the FPGA as a translator between the two
interfaces, i.e., between the DDR3 interface to the server and
the interface of the memory attached to the ConTutto board.
Although ConTutto can be used as a prototyping platform
to evaluate di�erent memory technologies and mechanisms
on existing systems, it is not practical or �exible enough to
use for testing memories for two reasons. First, the operating
system needs to ensure that it does not allocate application
data to the memory that is being tested, as the data could be
destroyed during a testing procedure. Second, the memory
that is connected to ConTutto is accessed using load/store
instructions, which does not provide the �exibility of tes-
ting the memory at the memory command level. In contrast,

(1) the memory in SoftMC is not a part of the main memory
of the host machine, and (2) SoftMC provides a high-level
software interface for directly issuing commands to the me-
mory. These design choices enable many tests that are not
otherwise possible or practical to implement using load/store
instructions.

We conclude that prior work lacks either the �exibility
or the ease-of-use properties that are critical for performing
detailed DRAM characterization. To �ll the gap left by current
infrastructures, we introduce an open-source DRAM testing
infrastructure, SoftMC, that ful�lls these two properties.

6. Signi�cance
Computing systems typically use DRAM-based memories

as main memory since DRAM provides large capacity and
high performance. As the process technology scales down,
DRAM technology faces challenges that impact its reliability
and performance [102,103]. Our HPCA 2017 paper [44] intro-
duces SoftMC, a new DRAM characterization infrastructure
that is �exible and practical to use. We release SoftMC as
a publicly-available open-source tool [125]. In this section,
we discuss the signi�cance of our work by describing its no-
velty and long-term impact. We also discuss various future
research directions in which SoftMC can be extended and
applied.

6.1. Novelty
As we describe in Section 5, no prior DRAM testing infra-

structure provides both �exibility and ease of use properties,
which are critical for enabling widespread adoption of the
infrastructure. Three di�erent kinds of tools/infrastructu-
res are available today for characterizing DRAM behavior,
where each kind of tool has some shortcomings. We discuss
these tools and their shortcomings in Section 5. In contrast
to all these works, SoftMC allows for the implementation of a
wide range of DRAM test routines and supports any o�-the-
shelf DRAM chip that is compatible with the DDR interface.
SoftMC is also the �rst DRAM characterization tool that is
freely available to public [118].

6.2. Research Directions Enabled by SoftMC
We believe SoftMC can enable many new studies of the

behavior of DRAM and other memories. We brie�y describe
several examples in this section.
Enabling New Studies of DRAM Scaling and Failures.

The SoftMC DRAM testing infrastructure can test any DRAM
mechanism consisting of low-level DDR commands. There-
fore, it enables a wide range of characterization and analysis
studies of real DRAM modules that would otherwise not have
been possible without such an infrastructure. We discuss
three such example research directions.

First, as DRAM scales down to smaller technology nodes,
it faces key challenges in both reliability and latency [26, 29,
55, 61, 62, 63, 66, 87, 88, 93, 99, 102, 103]. Unfortunately, there is

8

48

no comprehensive experimental study that characterizes and
analyzes the trends in DRAM cell operations and behavior
with technology scaling across various DRAM generations.
The SoftMC infrastructure can help us answer various ques-
tions to this end: How are the cell characteristics, reliability,
and latency changing with di�erent generations of techno-
logy nodes? Do all DRAM operations and cells get a�ected
by scaling at the same rate? Which DRAM operations are
getting worse?

Second, aging-related failures in DRAM can potentially af-
fect the reliability and availability of systems in the �eld [95,
102, 106, 126]. However, the causes, characteristics, and im-
pact of aging in real DRAM devices have remained largely
unstudied. Using SoftMC, it is possible to devise controlled
experiments to analyze and characterize DRAM aging. The
SoftMC infrastructure can help us answer questions such
as: How prevalent are aging-related failures? What types
of usage accelerate aging? How can we design architectural
techniques that can slow down the aging process?

Third, prior works show that the failure rate of DRAM
modules in large data centers is signi�cant, largely a�ecting
the cost and downtime in data centers [92, 95, 126, 136]. Un-
fortunately, there is no study that analyzes DRAM modules
that have failed in the �eld to determine the common causes
of failure. Our SoftMC infrastructure can test faulty DRAM
modules and help answer various research questions: What
are the dominant types of DRAM failures at runtime? Are
failures correlated to any location or speci�c structure in
DRAM? Do all chips from the same generation exhibit the
same failure characteristics? Do failures repeat?
Characterization of Non-Volatile Memory. The

SoftMC infrastructure can test any chip compatible with the
DDR interface. Such a design makes the scope of the chips
that can be tested by SoftMC go well beyond just DRAM.
With the emergence of byte-addressable non-volatile me-
mories (e.g., phase-change memory [75, 76, 77, 94, 116, 119,
122, 146, 153], STT-MRAM [57, 74, 94, 107], RRAM/memris-
tors [4, 30, 139, 147]), several vendors are working towards
manufacturing DDR-compatible non-volatile memory chips
at a large scale [36, 96]. When these chips become commerci-
ally available, it will be critical to characterize and analyze
them in order to understand, exploit, and/or correct their
behavior. We believe that SoftMC can be seamlessly used to
characterize these chips, and can help enable future mecha-
nisms for NVM.

SoftMC will hopefully enable other works that build on
it in various ways. For example, future work can extend
the infrastructure to enable researchers to analyze memory
scheduling (e.g., [34, 40, 51, 70, 71, 78, 79, 97, 98, 100, 101, 104,
105, 124, 140, 154]) and memory power management [31, 32]
mechanisms, and allow them to develop new mechanisms
using a programmable memory controller and real workloads.
SoftMC can also be used as a substrate for developing in-
memory computation platforms and evaluating mechanisms

for in-memory computation (e.g., [2, 3, 8, 9, 33, 35, 37, 48, 49, 56,
64, 73, 111, 113, 130, 131, 132, 133, 138]).

We conclude that characterization with SoftMC enables a
wide range of research directions in DDR-compatible memory
chips (DRAM or NVM), leading to better understanding of
these technologies and helping to develop mechanisms that
improve the reliability and performance of future memory
systems.

7. Conclusion
This work introduces the �rst publicly-available FPGA-

based DRAM testing infrastructure, SoftMC (Soft Memory
Controller), which provides a programmable memory control-
ler with a �exible and easy-to-use software interface. SoftMC
enables the �exibility to test any standard DRAM operation
and any (existing or new) mechanism comprising of such
operations. It provides an intuitive high-level software inter-
face for the user to invoke low-level DRAM operations, in
order to minimize programming e�ort and time. We provide
a prototype implementation of SoftMC, and we have released
it publicly as a freely-available open-source tool [125].

We demonstrate the capability, �exibility, and program-
ming ease of SoftMC by implementing two example use cases.
Our experimental analyses demonstrate the e�ectiveness of
SoftMC as a new tool to (i) perform detailed characterization
of various DRAM parameters (e.g., refresh interval and access
latency) as well as the relationships between them, and (ii)
test the expected e�ects of existing or new mechanisms (e.g.,
whether or not highly-charged cells can be accessed faster
in existing DRAM chips). We believe and hope that SoftMC,
with its �exibility and ease of use, can enable many other stu-
dies, ideas and methodologies in the design of future memory
systems, by making memory control and characterization
easily accessible to a wide range of software and hardware
developers.

Acknowledgments
We thank the reviewers, the SAFARI group members,

and Shigeki Tomishima from Intel for their feedback. We
acknowledge the generous support of Google, Intel, NVIDIA,
Samsung, and VMware. This work is supported in part by
NSF grants 1212962, 1320531, and 1409723, the Intel Science
and Technology Center for Cloud Computing, and the Semi-
conductor Research Corporation.

References
[1] Advantest, “V6000 Memory Platform,” https://www.advantest.com/products/ic-

test-systems/v6000-memory.
[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing,” in ISCA, 2015.
[3] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-

Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[4] H. Akinaga and H. Shima, “Resistive Random Access Memory (ReRAM) Based

on Metal Oxides,” Proc. IEEE, 2010.
[5] P. Bernardi, M. Grosso, M. S. Reorda, and Y. Zhang, “A Programmable BIST for

DRAM Testing and Diagnosis,” in ITC, 2010.
[6] M. N. Bojnordi and E. Ipek, “PARDIS: A Programmable Memory Controller for

the DDRx Interfacing Standards,” in ISCA, 2012.

9

49

[7] S. Borkar and A. A. Chien, “The Future of Microprocessors,” CACM, 2011.
[8] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data

Movement Bottlenecks,” in ASPLOS, 2018.
[9] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and

O. Mutlu, “LazyPIM: An E�cient Cache Coherence Mechanism for Processing-
in-Memory,” IEEE CAL, 2017.

[10] E. Bosman, K. Razavi, H. Bos, and C. Giu�rida, “Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector,” in SP, 2016.

[11] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[12] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[13] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
2017.

[14] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[15] Y. Cai, E. F. Haratsch, M. McCartney, and K. Mai, “FPGA-Based Solid-State Drive
Prototyping Platform,” in FCCM, 2011.

[16] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[17] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution in
MLC NAND Flash Memory: Characterization, Analysis, and Modeling,” inDATE,
2013.

[18] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND Flash
Memory: Characterization, Mitigation, and Recovery,” in DSN, 2015.

[19] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[20] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[21] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai,
“Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime,” in ICCD, 2012.

[22] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai, “Er-
ror Analysis and Retention-Aware Error Management for NAND Flash Memory,”
ITJ, 2013.

[23] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
“Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” in
SIGMETRICS, 2014.

[24] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens, “Exploiting Expendable Process-Margins in DRAMs for Run-Time
Performance Optimization,” in DATE, 2014.

[25] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-
mory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[26] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[27] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Acces-
ses,” in HPCA, 2014.

[28] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[29] K. K. Chang, A. G. Yaălikçi, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” SIGMETRICS, 2017.

[30] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[31] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory Power

Management via Dynamic Voltage/Frequency Scaling,” in ICAC, 2011.
[32] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “MemScale:

Active Low-Power Modes for Main Memory,” in ASPLOS, 2011.
[33] J. Draper et al., “The Architecture of the DIVA Processing-in-Memory Chip,” in

ICS, 2002.
[34] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.

Patt, “Parallel Application Memory Scheduling,” in MICRO, 2011.
[35] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie, “Com-

putational RAM: Implementing Processors in Memory,” IEEE DT, 1999.
[36] EverSpin, “ST-MRAM,” https://www.everspin.com/mram-replaces-dram.
[37] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas, “Programming

the FlexRAM Parallel Intelligent Memory System,” in PPoPP, 2003.
[38] A. Fukami, S. Ghose, Y. Luo, Y. Cai, and O. Mutlu, “Improving the Reliability

of Chip-O� Forensic Analysis of NAND Flash Memory Devices,” in DFRWS EU,
2017.

[39] FuturePlus, “FS2800 DDR Detective,” http://www.futureplus.com/DDR-
Detective-Standalone/summary-2800.html.

[40] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via
Processor-Side Load Criticality Information,” in ISCA, 2013.

[41] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[42] T. Hamamoto, S. Sugiura, and S. Sawada, “On the Retention Time Distribution
of Dynamic Random Access Memory (DRAM),” Electron Devices, 1998.

[43] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[44] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[45] P. Hazucha and C. Svensson, “Impact of CMOS Technology Scaling on the At-
mospheric Neutron Soft Error Rate,” TNS, 2000.

[46] H. Hidaka, K. Fujishima, Y. Matsuda, M. Asakura, and T. Yoshihara, “Twisted
Bit-Line Architectures for Multi-Megabit DRAMs,” JSSC, 1989.

[47] C. Hou, J.-F. Li, C.-Y. Lo, D.-M. Kwai, Y.-F. Chou, and C.-W. Wu, “An FPGA-Based
Test Platform for Analyzing Data Retention Time Distribution of DRAMs,” in
VLSI-DAT, 2013.

[48] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent O�oading and Mapping (TOM): Ena-
bling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[49] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[50] J. Huang, C.-K. Ong, K.-T. Cheng, and C.-W. Wu, “An FPGA-Based Re-
Con�gurable Functional Tester for Memory Chips,” in ATS, 2000.

[51] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory Con-
trollers: A Reinforcement Learning Approach,” in ISCA, 2008.

[52] K. Itoh, VLSI Memory Chip Design. Springer Science & Business Media, 2013.
[53] JEDEC, “204-Pin DDR3 SDRAM Unbu�e-

red SODIMM Design Speci�cation,” 2014.
https://www.jedec.org/standards-documents/docs/module-42018

[54] T. S. Jung, “Memory Technology and Solutions Roadmap,” http://www.sec.co.kr/
images/corp/ir/irevent/techforum_01.pdf, 2005.

[55] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[56] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas,
“FlexRAM: Toward an Advanced Intelligent Memory System,” in ICCD, 2012.

[57] T. Kawahara et al., “2 Mb SPRAM (SPin-Transfer Torque RAM) with bit-by-bit
bi-directional current write and parallelizing-direction current read,” JSSC, 2008.

[58] B. Keeth, DRAMCircuit Design: Fundamental and High-Speed Topics. John Wiley
& Sons, 2008.

[59] D. Keezer, T. Chen, T. Moon, D. Stonecypher, A. Chatterjee, H. Choi, S. Kim,
and H. Yoo, “An FPGA-Based ATE Extension Module for Low-Cost Multi-GHz
Memory Test,” in ETS, 2015.

[60] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
E�cacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[61] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level Technique
to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[62] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” CAL, 2016.

[63] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “De-
tecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current
Memory Content,” in MICRO, 2017.

[64] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin, C. Al-
kan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Map-
ping Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[65] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[66] K. Kim, “Technology for Sub-50nm DRAM and NAND Flash Manufacturing,” in
IEDM, 2005.

[67] K. Kim and J. Lee, “A New Investigation of Data Retention Time in Truly Nanos-
caled DRAMs,” EDL, 2009.

[68] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[69] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[70] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

[71] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Me-
mory Scheduling: Exploiting Di�erences in Memory Access Behavior,” in MI-

10

50

CRO, 2010.
[72] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-

lator,” in CAL, 2015.
[73] P. M. Kogge, “EXECUBE-a New Architecture for Scaleable MPPs,” in ICPP, 1994.
[74] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-

RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.
[75] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,

“Phase Change Technology and the Future of Main Memory,” IEEE Micro, 2010.
[76] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory

as a Scalable DRAM Alternative,” in ISCA, 2009.
[77] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture

and the Quest for Scalability,” CACM, 2010.
[78] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level

Parallelism in the Presence of Prefetching,” in MICRO, 2009.
[79] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-

trollers,” in MICRO, 2008.
[80] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,

“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[81] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[82] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”
Ph.D. dissertation, Carnegie Mellon Univ., 2016.

[83] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” in TACO,
2016.

[84] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGME-
TRICS, 2017.

[85] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Tra�c by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[86] M. Lee and K. W. Park, “A Mechanism for Dependence of Refresh Time on Data
Pattern in DRAM,” EDL, 2010.

[87] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[88] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[89] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND Flash
Memory Lifetime with Write-Hotness Aware Retention Management,” in MSST,
2015.

[90] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” JSAC, 2016.

[91] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 3D
NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Tem-
perature Awareness,” in HPCA, 2018.

[92] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khes-
sib, K. Vaid, and O. Mutlu, “Characterizing Application Memory Error Vulnera-
bility to Optimize Datacenter Cost via Heterogeneous-Reliability Memory,” in
DSN, 2014.

[93] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni,
Y. Li, and C. J. Radens, “Challenges and Future Directions for the Scaling of Dy-
namic Random-Access Memory (DRAM),” IBM JRD, 2002.

[94] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A Case for E�-
cient Hardware-Software Cooperative Management of Storage and Memory,” in
WEED, 2013.

[95] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[96] Micron, “3D XPoint Memory,” http://www.micron.com/about/innovations/3d-
xpoint-technology, 2016.

[97] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-Core Systems,” in USENIX Security, 2007.

[98] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application
to Multi-core DRAM Controllers,” in PODC, 2008.

[99] W. Mueller et al., “Challenges for the DRAM Cell Scaling to 40nm,” in IEDM,
2005.

[100] J. Mukundan and J. F. Martinez, “MORSE: Multi-objective Recon�gurable Self-
optimizing Memory Scheduler,” in HPCA, 2012.

[101] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,
“Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning,” in MICRO, 2011.

[102] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[103] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory

Becomes Denser,” in DATE, 2017.
[104] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.

[105] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[106] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory
Systems,” SUPERFRI, 2014.

[107] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM
Scaling and Retention Failure,” Intel Technology Journal, 2013.

[108] Y. Nakagome, M. Aoki, S. Ikenaga, M. Horiguchi, S. Kimura, Y. Kawamoto, and
K. Itoh, “The Impact of Data-Line Interference Noise on DRAM Scaling,” JSSC,
1988.

[109] S. Nassif, “Delay Variability: Sources, Impacts and Trends,” in ISSCC, 2000.
[110] Nickel Electronics, “DRAM Memory Testing,” https://www.nickelelectronics.

com/memory-testing/.
[111] M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: A Computation Model

for Intelligent Memory,” in ISCA, 1998.
[112] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,”
in ISCA, 2017.

[113] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, “A Case for Intelligent RAM,” IEEE Micro, 1997.

[114] B. Querbach, R. Khanna, D. Blankenbeckler, Y. Zhang, R. T. Anderson, D. G. Ellis,
Z. T. Schoenborn, S. Deyati, and P. Chiang, “A Reusable BIST with Software
Assisted Repair Technology for Improved Memory and IO Debug, Validation
and Test Time,” in ITC, 2014.

[115] B. Querbach, R. Khanna, S. Puligundla, D. Blankenbeckler, J. Crop, and P. Chiang,
“Architecture of a Reusable BIST Engine for Detection and Auto Correction of
Memory Failures and for IO Debug, Validation, Link Training, and Power Opti-
mization on 14nm SOC,” IEEE D&T, 2016.

[116] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[117] M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[118] Ramulator Source Code, https://github.com/CMU-SAFARI/ramulator.
[119] S. Raoux et al., “Phase-Change Random Access Memory: A Scalable Technology,”

IBM JRD, 2008.
[120] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giu�rida, and H. Bos, “Flip Feng

Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.
[121] M. Redeker, B. F. Cockburn, and D. G. Elliott, “An Investigation into Crosstalk

Noise in DRAM Structures,” in MTDT, 2002.
[122] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM: Enabling

Software-Transparent Crash Consistency in Persistent Memory Systems,” in MI-
CRO, 2015.

[123] P. J. Restle, J. W. Park, and B. F. Lloyd, “DRAM Variable Retention Time,” in IEDM,
1992.

[124] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[125] SAFARI Research Group, “SoftMC – GitHub Repository,” https://github.com/
CMU-SAFARI/SoftMC.

[126] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A Large-
Scale Field Study,” in SIGMETRICS, 2009.

[127] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” https://googleprojectzero.blogspot.com/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html, 2015.

[128] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” in Black Hat, 2015.

[129] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons,
and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in CAL, 2015.

[130] V. Seshadri et al., “RowClone: Fast and Energy-E�cient in-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[131] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[132] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[133] D. E. Shaw, S. J. Stolfo, H. Ibrahim, B. Hillyer, G. Wiederhold, and J. Andrews,
“The NON-VON Database Machine: A Brief Overview,” IEEE DEB, 1981.

[134] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access Time
Memory Controller,” in HPCA, 2014.

[135] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, the Bad, and
the Ugly,” in ASPLOS, 2015.

[136] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi,
“Feng Shui of Supercomputer Memory: Positional E�ects in DRAM and SRAM
Faults,” in SC, 2013.

[137] G. Srinivasan, P. Murley, and H. Tang, “Accurate, Predictive Modeling of Soft
Error Rate Due to Cosmic Rays and Chip Alpha Radiation,” in IRPS, 1994.

[138] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[139] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-

ristor Found,” Nature, 2008.
[140] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting

Memory Scheduler: Achieving High Performance and Fairness at Low Cost,” in

11

51

ICCD, 2014.
[141] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden, D. M. Dreps,

D. Sanner, J. Van Lunteren, and S. Asaad, “ConTutto: A Novel FPGA-Based Pro-
totyping Platform Enabling Innovation in the Memory Subsystem of a Server
Class Processor,” in MICRO, 2017.

[142] Teradyne, “Magnum Memory Test System,” http://www.teradyne.com/products/
semiconductor-test/magnum.

[143] S. Tomishima, Personal Communication, Dec. 2016.
[144] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,

H. Bos, K. Razavi, and C. Giu�rida, “Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms,” in CCS, 2016.

[145] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in
DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA,
2006.

[146] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[147] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, 2012.

[148] Y. Xiao, X. Zhang, Y. Zhang, and M. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

[149] D. S. Yaney, C.-Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson, “A Meta-Stable
Leakage Phenomenon in DRAM Charge Storage - Variable Hold Time,” in IEDM,
1987.

[150] C. Yang, J.-F. Li, Y.-C. Yu, K.-T. Wu, C.-Y. Lo, C.-H. Chen, J.-S. Lai, D.-M. Kwai,
and Y.-F. Chou, “A Hybrid Built-In Self-Test Scheme for DRAMs,” in VLSI-DAT,
2015.

[151] H. Yang, S.-H. Kuo, T.-H. Huang, C.-H. Chen, C. Lin, and M. C.-T. Chao, “Random
Pattern Generation for Post-Silicon Validation of DDR3 SDRAM,” in VTS, 2015.

[152] Y. You and J. Hayes, “A Self-Testing Dynamic RAM Chip,” TED, 1985.
[153] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main

Memory Using Phase Change Memory Technology,” in ISCA, 2009.
[154] W. K. Zuravle� and T. Robinson, “Controller for a Synchronous DRAM That

Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” US Patent No. 5,630,096, 1997.

12

52

RowClone: Accelerating Data Movement and Initialization Using DRAM

Vivek Seshadri1,2 Yoongu Kim2 Chris Fallin2 Donghyuk Lee3,2

Rachata Ausavarungnirun2 Gennady Pekhimenko4,2 Yixin Luo2

Onur Mutlu5,2 Phillip B. Gibbons2,6 Michael A. Kozuch6 Todd C. Mowry2

1Microsoft Research India 2Carnegie Mellon University 3NVIDIA Research
4University of Toronto 5ETH Zürich 6Intel Labs

This paper summarizes the idea of RowClone, which was
published in MICRO 2013 [151], and examines the work’s signi-
�cance and future potential. In existing systems, to perform any
bulk data movement operation (copy or initialization), the data
has to �rst be read into the on-chip processor, all the way into the
L1 cache, and the result of the operation must be written back to
main memory. This is despite the fact that these operations do
not involve any actual computation. RowClone exploits the or-
ganization and operation of commodity DRAM to perform these
operations completely inside DRAM using twomechanisms. The
�rst mechanism, Fast Parallel Mode, copies data between two
rows inside the same DRAM subarray by issuing back-to-back
activate commands to the source and the destination row. The
second mechanism, Pipelined Serial Mode, transfers cache lines
between two banks using the shared internal bus. RowClone
signi�cantly reduces the raw latency and energy consumption
of bulk data copy and initialization. This reduction directly
translates to improvement in performance and energy e�ciency
of systems running copy or initialization-intensive workloads.

Our proposed technique has inspired signi�cant research on
various ways to perform operations in memory and reduce data
movement between the CPU and DRAM [2, 25, 69, 76, 102, 103,
153, 154, 157, 162].

1. Problem: Bulk Data Movement
The main memory subsystem is an increasingly more

signi�cant limiter of system performance and energy e�-
ciency [123, 124] for at least two reasons. First, the available
memory bandwidth between the processor and main memory
is not growing and nor is it expected to grow commensurately
with the compute bandwidth available in modern multi-core
processors [61,64]. Second, a signi�cant fraction (20% to 42%)
of the energy required to access data from memory is consu-
med in driving the high-speed bus connecting the processor
and memory [149] (calculated using [112]). Therefore, judi-
cious use of the available memory bandwidth is critical to
ensure both high system performance and energy e�ciency.

In this work, we focus our attention on optimizing two
important classes of bandwidth-intensive memory operati-
ons that frequently occur in modern systems: 1) bulk data
copy—copying a large quantity of data from one location in
physical memory to another, and 2) bulk data initialization—
initializing a large quantity of data to a speci�c value. We

refer to these two operations as bulk data movement opera-
tions. Prior research [68, 131, 147] has shown that operating
systems and data center workloads spend a signi�cant por-
tion of their time performing bulk data movement operations.
Therefore, accelerating these operations will likely improve
system performance. In fact, the x86 ISA has recently in-
troduced instructions to provide enhanced performance for
bulk copy and initialization (ERMSB [60]), highlighting the
importance of bulk operations.

The main reason bulk data movement operations degrade
system performance and energy e�ciency is that they require
large amounts of data to be transferred back and forth on
the memory bus. This large data transfer has three shortco-
mings. First, because the data is transferred one cache line
at a time across the bus, these operations incur high latency,
directly degrading the performance of the application perfor-
ming the operation. Second, transferring a large amount of
data on the bus interferes with the memory accesses of other
concurrently-running applications, degrading their perfor-
mance as well. Finally, the large data transfer contributes to
a signi�cant fraction of the energy consumed by these bulk
movement operations.

While bulk data movement operations also degrade per-
formance by hogging the CPU and potentially polluting the
on-chip caches, prior works [66,192] have proposed simple so-
lutions to address these problems by adding support for such
operations in the memory controller. However, the techni-
ques proposed by these works do not eliminate the need to
transfer data over the memory bus, which is a increasingly
more critical bottleneck for performance in modern systems.

2. RowClone: Fast In-DRAM Copy
The fact that both bulk data copy and initialization do not

require any computation on the part of the processor enables
the opportunity to perform these operations completely inside
DRAM. Our MICRO 2013 paper [151] presents a new mecha-
nism, RowClone, which exploits the internal organization and
operation of DRAM to perform bulk data copy/initialization
quickly and e�ciently inside DRAM.

Figure 1 illustrates the organization of a DRAM chip. The
chip contains multiple banks, each of which is divided into
subarrays, and each subarray in turn consists of multiple
rows of DRAM cells. Each subarray contains a row bu�er,

53

which is used to extract the data from the DRAM cells. Data
transfer between the DRAM cells and the row bu�er happen
at a row granularity, i.e., even to read a single byte from a
row, the chip copies the entire row of data from the DRAM
cells to the corresponding row bu�er.1

Bank

Chip I/O

Shared Internal Bus

DRAM Chip

Memory Channel

Subarray

Bank I/O

Bank

Row-buUer

Row of DRAM cells

Subarray

Figure 1: DRAM chip microarchitecture. Reproduced
from [151].

2.1. RowClone Mechanisms
RowClone consists of two mechanisms: (1) Fast Parallel

Mode (FPM), which is used to copy data from one row to anot-
her row in the same subarray; and (2) Pipelined Serial Mode
(PSM), which is used to copy data from one row to another
row in a di�erent subarray or bank. We brie�y discuss how
each mechanism performs bulk data copy and bulk data initi-
alization. Section 3 of our MICRO 2013 paper [151] provides
a detailed implementation and discussion of FPM and PSM.
Fast Parallel Mode (FPM). FPM uses the high internal

bandwidth o�ered by DRAM to quickly and e�ciently copy
data between two rows within the same subarray in two
simple steps. First, FPM copies the data from the source
row to the local row bu�er of the subarray. Second, FPM
copies the data from the row bu�er to the destination row.
To perform the copy, FPM simply issues two back-to-back
ACTIVATE commands to the bank, �rst with the source row
address and the second with the destination row address.
Implementing this in existing DRAM chips requires almost
negligible changes. These small changes are to the peripheral
logic that controls back-to-back ACTIVATEs.

FPM imposes two constraints on the copy operation. First,
it requires the source and the destination row to be within
the same subarray. Second, it copies the entire row’s worth
of data. It cannot partially copy data from one row to another.
Despite these constraints, FPM can be used to accelerate many
operations in modern systems (Section 3).
Pipelined Serial Mode (PSM). PSM accelerates copy ope-

rations between rows in di�erent banks/subarrays, As shown
in Figure 1, each DRAM chip uses a shared internal bus to

1We refer the reader to our prior works [25, 26, 27, 28, 53, 54, 77, 78, 79, 80,
81, 82, 96, 97, 98, 99, 100, 108, 109, 132, 151, 154] for a detailed background on
DRAM.

transfer data between the bank and the memory channel (for
both reads and writes). PSM exploits this fact to overlap the
latency of the read and write operations involved in a copy. To
implement PSM, we propose a new DRAM command called
TRANSFER. TRANSFER is equivalent to appropriately overlapping
READ to the source bank and WRITE to the destination bank.
However, unlike READ or WRITE, TRANSFER does not transfer the
data on to the memory channel, saving signi�cant amounts
of energy.
Bulk Data Initialization. For bulk initialization, Row-

Clone initializes one row of the destination with the required
data and then initializes the remaining rows by copying the
data from the pre-initialized row using the appropriate bulk
copy mechanism described above. For bulk zeroing (which
happens frequently), our mechanism reserves a single row in
each subarray, which is pre-initialized to zero. This enables
the memory controller to use FPM to zero out any row in
the system. We refer the reader to Section 3.4 of our MICRO
2013 paper [151] for more details on performing bulk data
initialization with RowClone.

2.2. Latency and Energy Bene�ts
Table 1 shows the reduction in latency and energy con-

sumption due to our mechanisms for di�erent cases of 4KB
copy and zeroing operations. To be fair to the baseline, the re-
sults include only the energy consumed by the DRAM and the
DRAM channel. We draw two conclusions from our results.

Table 1: DRAM latency and memory energy reductions due
to RowClone. Adapted from [151].

Mechanism
Latency Memory Energy

(ns) (↓) (µJ) (↓)

C
op

y

Baseline 1046 1.0x 3.6 1.0x
FPM 90 11.6x 0.04 74.4x

Inter-Bank - PSM 540 1.9x 1.1 3.2x
Intra-Bank - PSM 1050 1.0x 2.5 1.5x

Ze
ro Baseline 546 1.0x 2.0 1.0x

FPM 90 6.0x 0.05 41.5x

First, FPM signi�cantly improves both the latency and the
energy consumed by bulk data operations — 11.6x and 6x
reduction in latency of 4KB copy and zeroing, and 74.4x and
41.5x reduction in memory energy of 4KB copy and zeroing.
Second, although PSM does not provide as much bene�t as
FPM, it still reduces the latency and energy of a 4KB inter-
bank copy by 1.9x and 3.2x, while providing a more generally
applicable mechanism. As we show in Section 4, these latency
and energy bene�ts translate to signi�cant improvements in
both overall system performance and energy e�ciency.

2.3. End-to-End System Design
To fully extract the potential bene�ts of RowClone, chan-

ges are required to the ISA, processor microarchitecture, and
the system software. First, we introduce two new instructions
to the ISA, namely, memcopy and meminit, which enable the

2

54

software to indicate occurrences of bulk data operations to the
processor. Second, for each instance of the memcopy/meminit
instruction, the processor microarchitecture determines if
the operation can be partially/fully accelerated by RowClone
and issues appropriate commands to the memory control-
ler. While existing mechanisms to handle Direct Memory
Access requests can be used to ensure cache coherence with
RowClone, we also propose two simple mechanisms, called
in-cache copy and clean zero cache line insertion, to further
reduce memory bandwidth requirements and improve perfor-
mance. We call this optimized version of RowClone, which
includes in-cache copy and clean zero cache line insertion,
RowClone-ZI. Third, to maximize the use of FPM, we make the
system software aware of subarrays and the minimum gra-
nularity of copy (required by FPM). Section 4 of our MICRO
2013 paper [151] describes these changes in detail.

3. Applications
RowClone can be used to accelerate any bulk copy and

initialization operation to improve both system performance
and energy e�ciency. We quantitatively evaluate the e�-
cacy of RowClone by using it to accelerate two primitives
widely used by modern system software: 1) Copy-on-Write
and 2) Bulk Zeroing. We �rst describe these primitives, and
then discuss several applications that frequently trigger the
primitives.

3.1. Primitives Accelerated by RowClone
Copy-on-Write (CoW) is a technique used by most modern

operating systems (OS) to postpone an expensive copy ope-
ration until it is actually needed. When data of one virtual
page needs to be copied to another, instead of creating a copy,
the OS points both virtual pages to the same physical page
(source) and marks the page as read-only. In the future, when
one of the sharers attempts to write to the page, the OS al-
locates a new physical page (destination) for the writer and
copies the contents of the source page to the newly allocated
page. Fortunately, prior to allocating the destination page, the
OS already knows the location of the source physical page.
Therefore, it can ensure that the destination is allocated in the
same subarray as the source, thereby enabling the processor
to use FPM to perform the copy.
Bulk Zeroing (BuZ) is an operation where a large block of

memory is zeroed out. Our mechanism maintains a reserved
row that is fully initialized to zero in each subarray. For each
row in the destination region to be zeroed out, the processor
uses FPM to copy the data from the reserved zero-row of the
corresponding subarray to the destination row.

3.2. Applications That Use CoW/BuZ
We now describe seven example applications or use-cases

that extensively use the CoW or BuZ operations. Note that
these are just a small number of example scenarios that incur
a large number of copy and initialization operations. Some

other applications and scenarios are provided in one of our
more recent works [155]. Recent work from Google [68]
shows that a considerable fraction of execution time is spent
on memset and memcpy system calls in Google’s data center
workloads.

Process Forking. fork is a frequently-used system call in
modern operating systems (OS). When a process (parent) calls
fork, it creates a new process (child) with the exact same me-
mory image and execution state as the parent. This semantics
of fork makes it useful for di�erent scenarios. Common uses
of the fork system call are to 1) create new processes, and
2) create stateful threads from a single parent thread in multi-
threaded programs. One main limitation of fork is that it
results in a CoW operation whenever the child/parent upda-
tes a shared page. Hence, despite its wide usage, as a result
of the large number of copy operations triggered by fork, it
remains one of the most expensive system calls in terms of
memory performance [150].
Initializing Large Data Structures. Initializing large data

structures often triggers Bulk Zeroing. In fact, many managed
languages (e.g., C#, Java, PHP) require zero initialization of
variables to ensure memory safety [185]. In such cases, to
reduce the overhead of zeroing, memory is zeroed-out in
bulk.
Secure Deallocation. Most operating systems (e.g., Li-

nux [18], Windows [148], Mac OS X [166]) zero out pages
newly allocated to a process. This is done to prevent malici-
ous processes from gaining access to the data that previously
belonged to other processes or the kernel itself. Not doing so
can potentially lead to security vulnerabilities, as shown by
prior works [31, 41, 51, 52].
Process Checkpointing. Checkpointing is an operation du-

ring which a consistent version of a process state is backed-up,
so that the process can be restored from that state in the future.
This checkpoint-restore primitive is useful in many cases in-
cluding high-performance computing servers [15], software
debugging with reduced overhead [168], hardware-level fault
and bug tolerance mechanisms [33, 34, 105, 106, 107], and spe-
culative OS optimizations to improve performance [24, 182].
However, to ensure that the checkpoint is consistent (i.e., the
original process does not update data while the checkpoin-
ting is in progress), the pages of the process are marked with
copy-on-write. As a result, checkpointing often results in a
large number of CoW operations.
Virtual Machine Cloning/Deduplication. Virtual machine

(VM) cloning [88] is a technique to signi�cantly reduce the
startup cost of VMs in a cloud computing server. Similarly,
deduplication is a technique employed by modern hypervis-
ors [180] to reduce the overall memory capacity requirements
of VMs. With this technique, di�erent VMs share physical pa-
ges that contain the same data. Similar to forking, both these
operations likely result in a large number of CoW operations
for pages shared across VMs [155].

3

55

Page Migration. Bank con�icts, i.e., concurrent requests
to di�erent rows within the same bank, typically result in
reduced row bu�er hit rate and hence degrade both system
performance and energy e�ciency [80]. Prior work [175]
proposed techniques to mitigate bank con�icts using page
migration. The PSM mode of RowClone can be used in con-
junction with such techniques to 1) signi�cantly reduce the
migration latency and 2) make the migrations more energy-
e�cient.
CPU-GPU Communication. In many current and future

processors, the GPU is or is expected to be integrated on
the same chip with the CPU. Even in such systems where
the CPU and GPU share the same o�-chip memory, the o�-
chip memory is partitioned between the two devices. As a
consequence, whenever a CPU program wants to o�oad some
computation to the GPU, it has to copy all the necessary data
from the CPU address space to the GPU address space [62].
When the GPU computation is �nished, all the data needs
to be copied back to the CPU address space. This copying
involves a signi�cant overhead. By spreading out the GPU
address space over all subarrays and mapping the application
data appropriately, RowClone can signi�cantly speed up these
copy operations. Note that communication between di�erent
processors and accelerators in a heterogeneous system-on-
chip (SoC) is done similarly to the CPU-GPU communication
and can also be accelerated by RowClone.

4. Results
In this section, we brie�y summarize our evaluation of Row-

Clone. We evaluate three con�gurations: Baseline, an unmo-
di�ed main memory subsystem that cannot perform bulk data
copy or initialization within memory; RowClone, which uses
the FPM and PSM mechanisms described in Section 2.1; and
RowClone-ZI, an optimized version of RowClone that inclu-
des the two optimizations discussed in Section 2.3. Section 6
of our MICRO 2013 paper [151] discusses our full evalua-
tion methodology, including details on the simulator, system
con�guration, and benchmarks used for our evaluations.

4.1. Single-Core Evaluations
Figure 2 shows the performance improvement and re-

duction in DRAM energy consumption due to RowClone-
ZI compared to the baseline for six copy- and initialization-
intensive benchmarks. As we observe from the �gure, these
applications improve signi�cantly with RowClone-ZI. Com-
pared with Baseline, RowClone-ZI improves the IPC by up
to 43%, while reducing DRAM energy consumption by up to
67%.

Section 7 of our MICRO 2013 paper [151] provides more
detailed single-core results, including (1) the individual per-
formance of the FPM and PSM mechanisms using a fork
benchmark (Section 7.2 of [151]); (2) a breakdown of memory
tra�c for each application into read, write, copy, and initiali-
zation operations (Section 7.3 of [151]); (3) the performance,

IPC Improvement Energy Reduction

10%

20%

30%

40%

50%

60%

70%

bootup compile forkbench mcached mysql shell

Im
pr
ov
em

en
to

ve
r

B
as
el
in
e

Figure 2: Performance improvement and energy reduction
of RowClone-ZI compared to a baseline memory subsystem
without bulk copy support.

energy, and bandwidth improvements of both RowClone and
RowClone-ZI (Section 7.3 of [151]); and (4) a comparison
of RowClone to a memory-controller-based DMA approach
for data copy and initialization, similar to [192] (Section 7.5
of [151]).

4.2. Multi-Core Evaluations
As RowClone performs bulk data operations completely

within DRAM, it signi�cantly reduces the memory bandwidth
consumed by these operations. As a result, RowClone can
bene�t other applications that are running concurrently on
the same system, even if these applications do not perform
bulk data operations themselves. We evaluate this bene�t
of RowClone by running our copy/initialization-intensive
applications alongside memory-intensive applications from
the SPEC CPU2006 benchmark suite [169] (i.e., those appli-
cations with last-level cache misses per kilo-instruction, or
MPKI, greater than 1). Table 2 lists the set of applications
used for our multi-programmed workloads.

Table 2: List of benchmarks used for multi-core evaluation.
Reproduced from [151].

Copy/Initialization-intensive benchmarks
bootup, compile, forkbench, mcached, mysql, shell

Memory-intensive benchmarks from SPEC CPU2006
bzip2, gcc, mcf, milc, zeusmp, gromacs, cactusADM, leslie3d, namd,
gobmk, dealII, soplex, hmmer, sjeng, GemsFDTD, libquantum,
h264ref, lbm, omnetpp, astar, wrf, sphinx3, xalancbmk

We generate multi-programmed workloads for two-core,
four-core and eight-core systems. In each workload, half of
the cores run copy/initialization-intensive benchmarks, while
the remaining cores run memory-intensive SPEC benchmarks.
Benchmarks from each category are chosen at random.

Figure 3 plots the performance improvement due to Row-
Clone and RowClone-ZI for the 50 four-core workloads that
we evaluate (sorted based on the performance improvement
due to RowClone-ZI). Two conclusions are in order. First, alt-
hough RowClone degrades performance of certain four-core
workloads (with compile, mcached or mysql benchmarks), it
signi�cantly improves performance for all other workloads

4

56

(by 10% across all workloads). Second, RowClone-ZI elimi-
nates the performance degradation due to RowClone and
consistently outperforms both the baseline and RowClone
for all workloads (20% on average).

Baseline RowClone RowClone-ZI

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

N
or
m
al
iz
ed

W
ei
gh

te
d

Sp
ee
du

p

50 Workloads
Figure 3: System performance improvement of RowClone
for four-core workloads. Reproduced from [151].

To provide more insight into the bene�ts of RowClone
on multi-core systems, we classify our copy/initialization-
intensive benchmarks into two categories: 1) Moderately
copy/initialization-intensive (compile, mcached, and mysql)
and highly copy/initialization-intensive (bootup, forkbench,
and shell). Figure 4 shows the average improvement in weig-
hted speedup for the di�erent multi-core workloads, cate-
gorized based on the number of highly copy/initialization-
intensive benchmarks. As the trends indicate, RowClone’s
performance improvement increases with increasing number
of such benchmarks for all three multi-core systems, indi-
cating the e�ectiveness of RowClone in accelerating bulk
copy/initialization operations.

5

10

15

20

25

30

35

0 1 0 1 2 0 1 2 3 4
2-core 4-core 8-core

W
ei
gh

te
d
Sp

ee
du

p
Im

pr
ov
em

en
to

ve
r
B
as
el
in
e

Number of Highly Copy/Initialization-intensive Benchmarks

Figure 4: E�ect of increasing copy/initialization intensity.
Reproduced from [151].

We conclude that RowClone is an e�ective mechanism to
improve system performance, energy e�ciency and band-
width e�ciency of future, bandwidth-constrained multi-core
systems.

5. Related Work
To our knowledge, this is the �rst paper to propose a con-

crete mechanism to perform bulk data copy and initialization
operations completely in DRAM. In this section, we discuss re-
lated work and qualitatively compare them to RowClone. Ot-
her treatments of related works can be found in [156,158,159].

Patents on Data Copy in DRAM. Several patents [3, 48,
113, 114] propose the abstract notion that the row bu�er in
DRAM can be used to copy data from one row to another.
These patents have four major drawbacks. First, they do not
provide any concrete mechanism to perform the copy opera-
tion. Second, while using the row bu�er to copy data between
two rows is possible only when the two rows are within the
same subarray, these patents make no such distinction. Third,
these patents do not discuss the support required from the ot-
her layers of the system to realize a working system. Fourth,
these patents do not provide any concrete evaluation to show
the bene�ts of performing copy operations in DRAM. In con-
trast, RowClone is more generally applicable, and our MICRO
2013 paper [151] discusses the concrete changes required to
all layers of the system stack, from the DRAM architecture
to the system software, to enable bulk data copy.
O�loading Copy/Initialization Operations. Prior

works [66, 192] propose mechanisms to 1) o�oad bulk data
copy/initialization operations to a separate engine; 2) reduce
the impact of pipeline stalls (by waking up instructions de-
pendent on a copy operation as soon as the necessary blocks
are copied without waiting for the entire copy operation to
complete); and 3) reduce cache pollution by using hints from
software to decide whether to cache blocks involved in the
copy or initialization. While Section 7.5 of our MICRO 2013
paper [151] shows the e�ectiveness of RowClone compared
to o�oading bulk data operations to a separate engine, techni-
ques to reduce pipeline stalls and cache pollution [66] can
be naturally combined with RowClone to further improve
performance.

Low-cost Interlinked Sub-Arrays (LISA) [25] proposes to
connect adjacent subarrays inside a DRAM bank using a set
of isolation transistors. Using this structure, LISA propo-
ses mechanisms to e�ciently copy data across rows in di�e-
rent subarrays within the same bank. LISA and RowClone
can be combined to perform all bulk copy and initialization
operations e�ciently inside DRAM. However, unlike LISA,
RowClone does not require any changes to the DRAM array.

The Compute Cache [2] performs copy, zero, and bitwise
operations completely inside the on-chip SRAM cache. Like
RowClone, the Compute Cache exploits the fact that many
cells are connected to the same bitline to e�ciently perform
these operations across cells connected to the same bitline.
Again, depending on the location of the data, RowClone and
Compute Cache can be combined to further improve system
performance and e�ciency.
Bulk Memory Initialization. Jarrod et al. [63] propose

a mechanism for avoiding the memory access required to
fetch uninitialized blocks on a store miss. They use a specia-
lized cache to keep track of uninitialized regions of memory.
RowClone can potentially be combined with this mechanism.
While Jarrod et al.’s approach can be used to reduce band-
width consumption for irregular initialization (initializing
di�erent pages with di�erent values), RowClone can be used

5

57

to push regular initialization (e.g., initializing multiple pages
with the same values) to DRAM, thereby freeing up the CPU
to perform other useful operations.

Yang et al. [185] propose to reduce the cost of zero initiali-
zation by 1) using non-temporal store instructions to avoid
cache pollution, and 2) using idle cores/threads to perform
zeroing ahead of time. While the proposed optimizations
reduce the negative performance impact of zeroing, their me-
chanism does not reduce memory bandwidth consumption
of the bulk zeroing operations. In contrast, RowClone signi�-
cantly reduces the memory bandwidth consumption and the
associated energy overhead.
Processing-in-Memory. Recent works propose mecha-

nisms that exploit the internal organization and operation
of DRAM [102, 153, 154], SRAM [2, 69], phase-change me-
mory (PCM) [103], or memristors [162] to perform bulk bit-
wise Boolean algebra and/or simple arithmetic operations.
One such mechanism, called Ambit [153, 154], uses a number
of row copy and initialization operations to perform Bool-
ean algebra using DRAM. Ambit makes use of RowClone
to e�ciently perform these row copy and initialization ope-
rations. Another mechanism, the Compute Cache [2], can
perform copy and initialization operations within SRAM. Ot-
her mechanisms for in-memory Boolean algebra or arithme-
tic [69, 102, 103, 162] can be trivially used to perform data
copy and initialization operations (e.g., a data copy can be
performed by performing a bulk addition, where the row to
be copied is added to a row of all zeroes).

Various prior works (e.g., [6,7,16,17,49,55,56,76,83,110,133,
135,188]) have investigated mechanisms to add logic circuitry
closer to memory to perform bandwidth-intensive computati-
ons (e.g., SIMD vector operations) more e�ciently. The main
limitation of such approaches is that adding logic to or near
DRAM signi�cantly increases the cost of main memory. In
contrast, RowClone exploits the existing internal organiza-
tion and operation of DRAM to perform bandwidth-intensive
copy and initialization operations quickly and e�ciently with
low cost.
OtherMethods for LoweringMemory Latency. There

are many works that improve the performance of applications
by reducing the overall memory access latency. These works
enable more parallelism and bandwidth [4,5,27,80,97,100,153,
154,181,189,193], exploit latency variation within DRAM [23,
26, 28, 96, 98, 99], reduce refresh counts [71, 72, 74, 75, 108, 109,
141, 178], enable better communication between the CPU
and other devices through DRAM [100], leverage DRAM
access patterns to reduce access latency [54, 165], reduce
write-related latencies by better designing DRAM and DRAM
control policies [30, 92, 152], reduce overall queuing latencies
in DRAM by better scheduling memory requests [13, 14, 37,
45, 47, 57, 61, 67, 70, 78, 79, 93, 94, 95, 104, 115, 116, 117, 118,
125, 126, 130, 135, 146, 164, 171, 172, 173, 174, 177, 191], employ
prefetching [12, 22, 35, 36, 40, 43, 44, 46, 93, 119, 120, 121, 122,
127, 129, 134, 167], perform memory/cache compression [1,

10, 11, 38, 39, 42, 136, 137, 138, 139, 140, 163, 179, 183, 190], or
perform better caching [73, 142, 144, 160, 161]. RowClone is
orthogonal to all of these approaches, and can be combined
with any of them with them to achieve higher latency and
energy bene�ts.

6. Signi�cance
Our MICRO 2013 paper [151] proposes RowClone, a simple

mechanism to export bulk copy and initialization operations
to DRAM. In this section, we describe the novelty of our
approach, the long term impact of our proposed techniques,
and new research directions triggered by our work.

6.1. Novelty
Prior works investigate mechanisms to add logic closer to

memory to perform bandwidth-intensive operations more
e�ciently. Although this approach has the potential to be
used for a wide range of applications, it has two shortco-
mings. First, adding logic to DRAM increases the cost of
DRAM signi�cantly. Second, this approach does not reduce
the bandwidth requirement of simple bulk copy/initialization
operations.

In contrast, our work is the �rst (to our knowledge) to
propose mechanisms that exploit the internal organization
and operation of DRAM to perform bandwidth-intensive copy
and initialization operations quickly and e�ciently in DRAM.
The changes required by our mechanism in the DRAM chip
are limited to the peripheral logic and are very modest, with
a DRAM die area overhead of only 0.2%. With this small
overhead, our mechanisms signi�cantly reduce the latency,
bandwidth, and energy consumed by bulk data operations.

6.2. Long-Term Impact
We believe four trends in current and future systems make

our proposed solutions even more relevant. We discuss each
trend, and how RowClone can be applied in the context of
the trend.
Increasingly Limited Memory Bandwidth. Processor

manufactures are integrating more and more cores on a single
chip, thereby signi�cantly increasing the compute capability
of the processing chip. However, due to (1) the high cost asso-
ciated with increasing pin counts and (2) limitations in DRAM
scalability, the available memory bandwidth is not expected
to grow at the same rate [61, 64]. This makes mechanisms
like RowClone, which signi�cantly reduce the overall me-
mory bandwidth utilization of the system, likely even more
important in future systems.
Increasing Use of Hardware Accelerators. Many mo-

dern processors already integrate the GPU on the same die as
the CPU. With emerging systems moving towards a system-
on-chip (SoC) model, many components/accelerators (called
agents) are integrated on the same die as the CPU, and share
the o�-chip memory [176, 177]. To reduce the complexity of
managing these agents, each agent is given its own share of

6

58

the physical address space, and agents typically communicate
with each other by copying data in bulk across the individual
device address spaces. By enabling faster bulk data copies,
we expect RowClone to signi�cantly reduce the communica-
tion latency between di�erent agents without increasing the
complexity of the system.
Increasing Use of Virtualization. Modern systems (es-

pecially data centers and cloud computers) are increasingly
employing virtualization to improve the utilization, security,
and availability of systems and services. As described in
our MICRO 2013 paper [151], the use of techniques such as
VM cloning and deduplication [88, 180] to reduce the me-
mory capacity requirements will likely increase the num-
ber of copy operations and zeroing operations (to protect
data across VMs). RowClone can improve the performance
and energy e�ciency of such systems by performing these
copy/initialization operations e�ciently.
Ease of Adoption. Given the low implementation com-

plexity of RowClone, it can be easily adopted in existing
systems. RowClone is not limited only to DDR DRAMs. It
can be used with 3D-stacked DRAM technologies [97, 111]
such as the Hybrid Memory Cube [58, 59] and High Band-
width Memory [65], which are gaining increasing interest
among researchers, DRAM manufacturers, and system desig-
ners [6, 7, 82].

6.3. New Research Directions
Our proposed approach to performing bulk data copy and

initialization in DRAM inspires several important research
directions (and hopefully many more that others will imagine).
We describe a few of them below.

One important research question that our work raises is
how can one redesign system software (e.g., operating system,
hypervisors) and application software to take better advantage
of RowClone? Existing systems assume that copies are expen-
sive and hence trade o� complexity for performance. Howe-
ver, with RowClone, it may be possible to design simpler yet
high performance systems by rethinking software design in
the presence of very fast bulk copy and initialization.

Our MICRO 2013 paper [151] proposes low-cost mecha-
nisms to export bulk copy and initialization to DRAM. These
are by no means the only bandwidth-intensive operations.
There are other operations that unnecessarily move data be-
tween the main memory and the processor, which can be
optimized using low-cost mechanisms. Therefore, another
natural research question is what other bandwidth-intensive
operations can be exported to main memory using low-cost
mechanisms? We believe RowClone can inspire similar me-
chanisms for other such operations. For example, one of our
recent works [157] proposes an e�cient method to perform
gather/scatter operations in DRAM. Another of our recent
works proposes mechanisms to perform bulk bitwise operati-
ons in DRAM [153, 154], building upon and taking advantage
of RowClone.

Recently, there has been increased interest in emerging
non-volatile memory technologies (e.g., PCM [89, 90, 91,
143, 145, 184, 186, 187], STT-MRAM [29, 50, 84, 128], mem-
ristors [32, 170]). Given this trend, exploring the feasibility
of extending RowClone to these new memory technologies is
a relevant and important research direction. For example,
two recent works [103, 162] use the principles discussed in
RowClone to perform bulk Boolean algebra and arithmetic
operations within emerging memories. Similarly, exploring
the idea of RowClone in other storage/memory technologies,
e.g., NAND �ash memory [19, 20, 21], is promising.

Given that memory bandwidth is expected to become an
even more scarce resource in future systems, answers to
these research questions have the potential to greatly mitigate
bandwidth contention, and, thus, signi�cantly improve both
the performance and energy e�ciency of these systems.

6.4. Works Building on RowClone
RowClone has inspired a number of followup works that

propose 1) new mechanisms to perform bulk operations inside
various memory technologies (e.g., DRAM [25,102], SRAM [2,
69], PCM [103], memristors [162]), and 2) mechanisms that
exploit RowClone to speedup other operations (e.g., in-DRAM
bulk bitwise operations [76, 153, 154]). A survey of related
works is provided in [159].

One of our recent works, Ambit [153, 154], proposes a me-
chanism to perform bulk bitwise operations completely inside
DRAM. Ambit operations involve a number of row copy and
initialization operations. Ambit uses RowClone to perform
these operations quickly and e�ciently inside DRAM. In fact,
RowClone is essential for Ambit to obtain the performance
and energy e�ciency improvements. Other recent works that
perform bulk bitwise Boolean algebra and/or simple arithme-
tic operations [2, 8, 9, 69, 85, 86, 87, 101, 102, 103, 162] exploit
the organization and operation of memory arrays, akin to
RowClone, and can be used to perform bulk data copy and
initialization operations.

Data movement is expected to become an even more cri-
tical problem in future systems. We believe RowClone can
inspire other works that propose mechanisms to reduce data
movement, thereby enabling higher system performance and
energy e�ciency.

7. Conclusion
Our MICRO 2013 paper [151] proposes RowClone, a me-

chanism that performs bulk data copy and initialization ope-
rations completely inside DRAM. RowClone consists of two
mechanisms, Fast Parallel Mode and Pipelined Serial Mode,
that are used to copy data using existing peripheral structu-
res within DRAM, requiring no changes to the DRAM cell
array. By enabling e�cient bulk data copy and initializa-
tion, RowClone provides signi�cant performance and DRAM
energy improvements that are between one to two orders of
magnitude higher compared to existing systems.

7

59

RowClone is one of the �rst steps towards reducing un-
necessary data movement between the processor and the
main memory using a low-cost in-memory approach. Cur-
rent trends in system design indicate that our approach will
be more relevant to future, bandwidth-limited systems. We
hope that our work triggers research that leads to 1) simpler
and more e�cient software design and 2) extensions of our
approach to other operations and memory technologies, with
the goal of continuing to greatly improve system performance
and energy e�ciency.

Acknowledgments
We thank Saugata Ghose for his dedicated e�ort in the pre-

paration of this article. We acknowledge the support of AMD,
IBM, Intel, Oracle, Qualcomm, and Samsung. This research
was partially supported by the NSF (grants 0953246, 1147397,
and 1212962), the Intel University Research O�ce Memory
Hierarchy Program, the Intel Science and Technology Cen-
ter for Cloud Computing, and the Semiconductor Research
Corporation.

References
[1] B. Abali, H. Franke, D. Po�, R. Saccone, C. Schulz, L. Herger, and T. Smith, “Me-

mory Expansion Technology (MXT): Software support and performance,” in IBM
JRD, 2001.

[2] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[3] J. Ahn, “Memory device having page copy mode,” U.S. Patent 5,886,944, 1999.
[4] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, “Improving

System Energy E�ciency with Memory Rank Subsetting,” in ACM TACO, 2012.
[5] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore DIMM: an Energy

E�cient Memory Module with Independently Controlled DRAMs,” in IEEE CAL,
2009.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[7] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[8] A. Akerib, O. Agam, E. Ehrman, and M. Meyassed, “Using Storage Cells to Per-
form Computation,” U.S. Patent 8,908,465, 2014.

[9] A. Akerib and E. Ehrman, “In-Memory Computational Device,” U.S. Patent
9,653,166, 2015.

[10] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for High-
Performance Processors,” in ISCA, 2004.

[11] A. R. Alameldeen and D. A. Wood, “Frequent Pattern Compression: A
Signi�cance-Based Compression Scheme for L2 Caches,” Univ. of Wisconsin–
Madison, Computer Sciences Dept., Tech. Rep. 1500, 2004.

[12] A. Alameldeen and D. Wood, “Interactions Between Compression and Prefet-
ching in Chip Multiprocessors,” in HPCA, 2007.

[13] R. Ausavarungnirun, K. Chang, L. Subramanian, G. H. Loh, and O. Mutlu, “Staged
memory scheduling: achieving high performance and scalability in heterogene-
ous systems,” in ISCA, 2012.

[14] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir,
and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to Improve GPGPU Perfor-
mance,” in PACT, 2015.

[15] J. Bent et al., “PLFS: A checkpoint �lesystem for parallel applications,” in SC,
2009.

[16] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for Con-
sumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[17] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and
O. Mutlu, “LazyPIM: An E�cient Cache Coherence Mechanism for Processing-
in-Memory,” in IEEE CAL, 2016.

[18] D. P. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly Media, 2005,
p. 388.

[19] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
2017.

[20] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[21] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[22] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A Study of Integrated Prefetching
and Caching Strategies,” in SIGMETRICS, 1995.

[23] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens, “Exploiting Expendable Process-margins in DRAMs for Run-time
Performance Optimization,” in DATE, 2014.

[24] F. Chang and G. A. Gibson, “Automatic I/O hint generation through speculative
execution,” in OSDI, 1999.

[25] K. K. Chang et al., “Low-cost Inter-linked Subarrays (LISA): Enabling Fast Inter-
subarray Data Movement in DRAM,” in HPCA, 2016.

[26] K. K. Chang, A. Kashyap, H. Hassan, S. Khan, K. Hsieh, D. Lee, S. Ghose, G. Pekhi-
menko, T. Li, and O. Mutlu, “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,” in SIGME-
TRICS, 2016.

[27] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Acces-
ses ,” in HPCA, 2014.

[28] K. K. Chang, A. G. Yaglikci, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[29] M. T. Chang, P. Rosenfeld, S. L. Lu, and B. Jacob, “Technology Comparison for
Large Last-Level Caches (L3Cs): Low-Leakage SRAM, Low Write-Energy STT-
RAM, and Refresh-Optimized eDRAM,” in HPCA, 2013.

[30] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi,
“Staged Reads: Mitigating the Impact of DRAM Writes on DRAM Reads,” in
HPCA, 2012.

[31] J. Chow et al., “Shredding Your Garbage: Reducing data lifetime through secure
deallocation,” in USENIX SS, 2005.

[32] L. Chua, “Memristor—The Missing Circuit Element,” TCT, Sep. 1971.
[33] K. Constantinides et al., “Software-Based Online Detection of Hardware Defects:

Mechanisms, architectural support, and evaluation,” in MICRO, 2007.
[34] K. Constantinides et al., “Online Design Bug Detection: RTL analysis, �exible

mechanisms, and evaluation,” in MICRO, 2008.
[35] R. Cooksey, S. Jourdan, and D. Grunwald, “A Stateless, Content-directed Data

Prefetching Mechanism,” in ASPLOS, 2002.
[36] F. Dahlgren, M. Dubois, and P. Stenström, “Sequential Hardware Prefetching in

Shared-Memory Multiprocessors,” in IEEE TPDS, 1995.
[37] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-

to-core mapping policies to reduce memory system interference in multi-core
systems,” in HPCA, 2013.

[38] R. de Castro, A. Lago, and M. Silva, “Adaptive compressed caching: design and
implementation,” in SBAC-PAD, 2003.

[39] F. Douglis, “The Compression Cache: Using On-line Compression to Extend Phy-
sical Memory,” in Winter USENIX Conference, 1993.

[40] J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-executing
Instructions Under a Cache Miss,” in ICS, 1997.

[41] A. M. Dunn et al., “Eternal Sunshine of the Spotless Machine: Protecting privacy
with ephemeral channels,” in OSDI, 2012.

[42] J. Dusser, T. Piquet, and A. Seznec, “Zero-content Augmented Caches,” in ICS,
2009.

[43] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for bandwidth-e�cient prefet-
ching of linked data structures in hybrid prefetching systems,” in HPCA, 2009.

[44] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware Shared Resource
Management for Multi-core Systems,” in ISCA, 2011.

[45] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.
Patt, “Parallel application memory scheduling,” in MICRO, 2011.

[46] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple
Prefetchers in Multi-core Systems,” in MICRO, 2009.

[47] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling via
Processor-Side Load Criticality Information,” in ISCA, 2013.

[48] P. B. Gillingham and R. Torrance, “DRAM page copy method,” U.S. Patent
5,625,601, 1997.

[49] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi, J. C. Hoe, and
F. Franchetti, “3D-Stacked Memory-Side Acceleration: Accelerator and System
Design,” in WoNDP, 2014.

[50] X. Guo, E. İpek, and T. Soyata, “Resistive Computation: Avoiding the Power Wall
with Low-Leakage, STT-MRAM Based Computing,” in ISCA, 2009.

[51] J. A. Halderman et al., “Lest We Remember: Cold boot attacks on encryption
keys,” in USENIX SS, 2008.

[52] K. Harrison and S. Xu, “Protecting cryptographic keys from memory disclosure
attacks,” in DSN, 2007.

[53] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[54] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

8

60

[55] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[56] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent O�oading and Mapping (TOM): Ena-
bling Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA,
2016.

[57] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” in MICRO, 2004.
[58] Hybrid Memory Cube Consortium, “HMC Speci�cation 1.1,” 2013.
[59] Hybrid Memory Cube Consortium, “HMC Speci�cation 2.0,” 2014.
[60] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Manual,” Apr.

2012.
[61] E. Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.
[62] T. B. Jablin et al., “Automatic CPU-GPU communication management and opti-

mization,” in PLDI, 2011.
[63] L. A. Jarrod et al., “Avoiding Initialization Misses to the Heap,” in ISCA, 2002.
[64] JEDEC, “Server memory roadmap,” http://www.jedec.org/sites/default/�les/

Ricki_Dee_Williams.pdf.
[65] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Standard No. JESD235, 2013.
[66] X. Jiang et al., “Architecture support for improving bulk memory copying and

initialization performance,” in PACT, 2009.
[67] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,

“Exploiting Core-Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[68] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks, “Pro�ling a Warehouse-Scale Computer,” in ISCA, 2015.

[69] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An Energy-
E�cient VLSI Architecture for Pattern Recognition via Deep Embedding of Com-
putation in SRAM,” in ICASSP, 2014.

[70] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM Page-
Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.

[71] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by
Exploiting Current Memory Content,” in MICRO, 2017.

[72] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level Technique
to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[73] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A. Jimenez, “Impro-
ving Cache Performance by Exploiting Read-Write Disparity,” in HPCA, 2014.

[74] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
E�cacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[75] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” in IEEE CAL, 2016.

[76] J. S. Kim et al., “Genome Read In-Memory (GRIM) Filter: Fast Location Filtering
in DNA Read Mapping Using Emerging Memory Technologies,” in APBC, 2018.

[77] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[78] Y. Kim et al., “ATLAS: A scalable and high-performance scheduling algorithm
for multiple memory controllers,” in HPCA, 2010.

[79] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting di�erences in me-
mory access behavior,” in MICRO, 2010.

[80] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM,” in ISCA, 2012.

[81] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[82] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” CAL, 2015.

[83] P. M. Kogge, “EXECUBE - A new architecture for scaleable MPPs,” in ICPP, 1994.
[84] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-

RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.
[85] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,

and U. C. Weiser, “MAGIC—Memristor-Aided Logic,” IEEE TCAS II: Express Briefs,
2014.

[86] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Memristor-Based
IMPLY Logic Design Procedure,” in ICCD, 2011.

[87] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-Based Material Implication (IMPLY) Logic: Design Principles and
Methodologies,” TVLSI, 2014.

[88] H. A. Lagar-Cavilla et al., “SnowFlock: Rapid virtual machine cloning for cloud
computing,” in EuroSys, 2009.

[89] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
as a Scalable DRAM Alternative,” in ISCA, 2009.

[90] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” CACM, 2010.

[91] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, 2010.

[92] C. J. Lee, E. Ebrahimi, V. Narasiman, O. Mutlu, and Y. N. Patt, “DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory

Systems,” Univ. of Texas at Austin, High Performance Systems Group, Tech. Rep.
TR-HPS-2010-002, 2010.

[93] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-
trollers,” in MICRO, 2008.

[94] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware Memory Con-
trollers,” in IEEE TC, 2011.

[95] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[96] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[97] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” in ACM
TACO, 2016.

[98] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[99] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in
HPCA, 2015.

[100] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Tra�c by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[101] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, and S. Kva-
tinsky, “Logic Operations in Memory Using a Memristive Akers Array,” Microe-
lectronics Journal, 2014.

[102] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-
Based Recon�gurable In-Situ Accelerator,” in MICRO, 2017.

[103] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise
Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[104] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-Based Hybrid
Memory Management,” in CLUSTER, 2017.

[105] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous Chip Self-Test
Using Stored Test Patterns,” in DATE, 2008.

[106] Y. Li, O. Mutlu, D. S. Gardner, and S. Mitra, “Concurrent Autonomous Self-Test
for Uncore Components in System-on-Chips,” in VTS, 2010.

[107] Y. Li, O. Mutlu, and S. Mitra, “Operating System Scheduling for E�cient Online
Self-Test in Robust Systems",” in ICCAD, 2009.

[108] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[109] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[110] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent Data Structures for Near-
Memory Computing,” in SPAA, 2017.

[111] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors,” in
ISCA, 2008.

[112] Micron, “DDR3 SDRAM system-power calculator,” 2011.
[113] D. M. Morgan and M. A. Shore, “DRAMs having on-chip row copy circuits for

use in testing and video imaging and method for operating same,” U.S. Patent
5,440,517, 1995.

[114] K. Mori, “Semiconductor memory device including copy circuit,” U.S. Patent
5,854,771, 1998.

[115] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-core Systems,” in USENIX Security, 2007.

[116] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application
to Multi-core Dram Controllers,” in PODC, 2008.

[117] J. Mukundan and J. F. Martínez, “MORSE: Multi-Objective Recon�gurable Self-
Optimizing Memory Scheduler,” in HPCA, 2012.

[118] S. P. Muralidhara et al., “Reducing memory interference in multi-core systems
via application-aware memory channel partitioning,” in MICRO, 2011.

[119] O. Mutlu et al., “E�cient Runahead Execution: Power-e�cient memory latency
tolerance,” IEEE Micro, vol. 26, no. 1, 2006.

[120] O. Mutlu, H. Kim, and Y. Patt, “Address-value delta (AVD) prediction: increasing
the e�ectiveness of runahead execution by exploiting regular memory allocation
patterns,” in MICRO, 2005.

[121] O. Mutlu, H. Kim, and Y. Patt, “Techniques for e�cient processing in runahead
execution engines,” in ISCA, 2005.

[122] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an alternative
to very large instruction windows for out-of-order processors,” in HPCA, 2003.

[123] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory
Systems,” SUPERFRI, 2014.

[124] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[125] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[126] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[127] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An ef-

fective alternative to large instruction windows,” in IEEE Micro, 2003.
[128] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM

Scaling and Retention Failure,” Intel Technol. J., May 2013.

9

61

[129] K. Nesbit, A. Dhodapkar, and J. Smith, “AC/DC: an adaptive data cache prefet-
cher,” in PACT, 2004.

[130] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair Queuing Memory
Systems,” in MICRO, 2006.

[131] J. K. Ousterhout, “Why aren’t operating systems getting faster as fast as har-
dware?” in USENIX STC, 1990.

[132] M. Patel, J. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the Mi-
tigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,” in
ISCA, 2017.

[133] D. Patterson et al., “A case for Intelligent RAM,” IEEE Micro, 1997.
[134] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka, “Informed

Prefetching and Caching,” in SOSP, 1995.
[135] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,

and C. R. Das, “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[136] G. Pekhimenko, E. Bolotin, M. O’Connor, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “Toggle-Aware Compression for GPUs,” in IEEE CAL, 2015.

[137] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “Toggle-Aware Bandwidth Compression for GPUs,” in HPCA, 2016.

[138] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. P. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Exploiting Compressed Block Size as an Indicator of Future Reuse,”
in HPCA, 2015.

[139] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Ko-
zuch, and T. C. Mowry, “Linearly Compressed Pages: A Low-complexity, Low-
latency Main Memory Compression Framework,” in MICRO, 2013.

[140] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mo-
wry, “Base-Delta-Immediate Compression: A Practical Data Compression Me-
chanism for On-Chip Caches,” in PACT, 2012.

[141] M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[142] M. K. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer, “Adaptive Insertion Policies
for High Performance Caching,” in ISCA, 2007.

[143] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing Lifetime and Security of PCM-based Main Memory with Start-gap
Wear Leveling,” in MICRO, 2009.

[144] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-Aware
Cache Replacement,” in ISCA, 2006.

[145] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-change Memory Technology,” in ISCA, 2009.

[146] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[147] M. Rosenblum et al., “The impact of architectural trends on operating system
performance,” in SOSP, 1995.

[148] M. E. Russinovich et al., Windows Internals. Microsoft Press, 2009, p. 701.
[149] G. Sandhu, “DRAM scaling and bandwidth challenges,” in WETI, 2012.
[150] R. F. Sauers et al., HP-UX 11i Tuning and Performance. Prentice Hall, 2004, ch.

8. Memory Bottlenecks.
[151] V. Seshadri et al., “RowClone: Fast and energy-e�cient in-DRAM bulk data copy

and initialization,” in MICRO, 2013.
[152] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.
[153] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” in IEEE CAL, 2015.
[154] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[155] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A. Kozuch,

T. C. Mowry, and T. Chilimbi, “Page Overlays: An Enhanced Virtual Memory
Framework to Enable Fine-Grained Memory Management,” in ISCA, 2015.

[156] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
E�cient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[157] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Im-
prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[158] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM
Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603 [cs:AR], 2016.

[159] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Mo-
vement,” in Advances in Computers, Volume 106, 2017.

[160] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The Evicted-Address
Filter: A Uni�ed Mechanism to Address Both Cache Pollution and Thrashing,”
in PACT, 2012.

[161] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Mitigating Prefetcher-Caused Pollution Using Informed Caching Poli-
cies for Prefetched Blocks,” in TACO, 2015.

[162] A. Sha�ee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Acce-

lerator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.
[163] A. Sha�ee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip: Exploring

Unconventional Bene�ts from Memory Compression,” in HPCA, 2014.
[164] J. Shao and B. T. Davis, “A Burst Scheduling Access Reordering Mechanism,” in

HPCA, 2007.
[165] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access Time

Memory Controller,” in HPCA, 2014.
[166] A. Singh, Mac OS X Internals: A Systems Approach. Addison-Wesley Professio-

nal, 2006.
[167] S. Srinath et al., “Feedback Directed Prefetching: Improving the performance

and bandwidth-e�ciency of hardware prefetchers,” in HPCA, 2007.
[168] S. M. Srinivasan et al., “Flashback: A lightweight extension for rollback and de-

terministic replay for software debugging,” in USENIX ATC, 2004.
[169] Standard Performance Evaluation Corporation, “SPEC CPU2006,” http://www.

spec.org/cpu2006.
[170] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-

ristor Found,” Nature, May 2008.
[171] L. Subramanian et al., “MISE: Providing performance predictability and impro-

ving fairness in shared main memory systems,” in HPCA, 2013.
[172] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting

Memory Scheduler: Achieving high performance and fairness at low cost,” in
ICCD, 2014.

[173] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” in TPDS,
2016.

[174] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-Application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[175] K. Sudan et al., “Micro-pages: Increasing DRAM e�ciency with locality-aware
data placement,” in ASPLOS, 2010.

[176] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt, “Data Marshaling
for Multi-Core Architectures,” in ISCA, 2010.

[177] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH: Deadline-Aware High-
Performance Memory Scheduler for Heterogeneous Systems with Hardware
Accelerators,” in ACM TACO, 2016.

[178] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in DRAM
(RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[179] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with As-
sist Warps,” in ISCA, 2015.

[180] C. A. Waldspurger, “Memory resource management in VMware ESX server,” in
OSDI, 2002.

[181] F. Ware and C. Hampel, “Improving Power and Data E�ciency with Threaded
Memory Modules,” in ICCD, 2006.

[182] B. Wester et al., “Operating system support for application-speci�c speculation,”
in EuroSys, 2011.

[183] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for Compressed Ca-
ching in Virtual Memory Systems,” in ATEC, 1999.

[184] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, Dec. 2010.

[185] X. Yang et al., “Why Nothing Matters: The impact of zeroing,” in OOPSLA, 2011.
[186] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row Bu�er

Locality Aware Caching Policies for Hybrid Memories,” in ICCD, 2012.
[187] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data

Mapping and Bu�ering Techniques for Multilevel Cell Phase-Change Memories,”
TACO, 2014.

[188] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatow-
ski, “TOP-PIM: Throughput-oriented Programmable Processing in Memory,” in
HPCA, 2014.

[189] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM: A high-
bandwidth and low-power DRAM architecture from the rethinking of �ne-
grained activation,” in ISCA, 2014.

[190] Y. Zhang, J. Yang, and R. Gupta, “Frequent value locality and value-centric data
cache design,” in ASPLOS, 2000.

[191] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and High-Performance Memory Cont-
rol for Persistent Memory Systems,” in MICRO, 2014.

[192] L. Zhao et al., “Hardware support for bulk data movement in server platforms,”
in ICCD, 2005.

[193] H. Zheng et al., “Mini-rank: Adaptive DRAM architecture for improving memory
power e�ciency,” in MICRO, 2008.

10

62

LISA: Increasing Internal Connectivity in DRAM
for Fast Data Movement and Low Latency

Kevin K. Chang1,2 Prashant J. Nair3,4 Saugata Ghose2

Donghyuk Lee5,2 Moinuddin K. Qureshi4 Onur Mutlu6,2

1Facebook 2Carnegie Mellon University 3IBM Research
4Georgia Institute of Technology 5NVIDIA Research 6ETH Zürich

This paper summarizes the idea of Low-Cost Interlinked Sub-
arrays (LISA), which was published in HPCA 2016 [10], and
examines the work’s signi�cance and future potential. Our
HPCA 2016 paper introduces a new DRAM design that enables
fast and energy-e�cient bulk data movement across subarrays
in a DRAM chip. While bulk data movement is a key operation
in many applications and operating systems, we observe that
contemporary systems perform this movement ine�ciently, by
transferring data from DRAM to the processor, and then back to
DRAM, across a narrow o�-chip channel. The use of this narrow
channel for bulk data movement results in high latency and
energy consumption. Prior work proposes to avoid these high
costs by exploiting the existing wide internal DRAM bandwidth
for bulk data movement, but the limited connectivity of wires
within DRAM allows fast data movement within only a single
DRAM subarray. Each subarray is only a few megabytes in
size, greatly restricting the range over which fast bulk data
movement can happen within DRAM.

Our HPCA 2016 paper proposes a new DRAM substrate, Low-
Cost Inter-Linked Subarrays (LISA), whose goal is to enable fast
and e�cient data movement across a large range of memory at
low cost. LISA adds low-cost connections between adjacent sub-
arrays. By using these connections to interconnect the existing
internal wires (bitlines) of adjacent subarrays, LISA enables
wide-bandwidth data transfer across multiple subarrays with
little (only 0.8%) DRAM area overhead. As a DRAM substrate,
LISA is versatile, enabling a variety of new applications. We
describe and evaluate three such applications in detail: (1) fast
inter-subarray bulk data copy, (2) in-DRAM caching using a
DRAM architecture whose rows have heterogeneous access laten-
cies, and (3) accelerated bitline precharging by linking multiple
precharge units together. Our extensive evaluations show that
each of LISA’s three applications signi�cantly improves per-
formance and memory energy e�ciency, and their combined
bene�t is higher than the bene�t of each alone, on a variety of
workloads and system con�gurations.

1. Introduction
Bulk data movement, the movement of thousands or mil-

lions of bytes between two memory locations, is a common
operation performed by an increasing number of real-world
applications (e.g., [6, 37, 57, 58, 74, 82, 85, 88, 89, 94, 99, 110]).
Therefore, it has been the target of several architectural opti-

mizations (e.g., [4,6,35,40,58,70,86,88,103,110]). In fact, bulk
data movement is important enough that modern commer-
cial processors are adding specialized support to improve its
performance, such as the ERMSB instruction recently added
to the x86 ISA [28].

In today’s systems, to perform a bulk data movement bet-
ween two locations in memory, the data needs to go through
the processor even though both the source and destination are
within memory. To perform the movement, the data is �rst
read out one cache line at a time from the source location in
memory into the processor caches, over a pin-limited o�-chip
channel (typically 64 bits wide). Then, the data is written back
to memory, again one cache line at a time over the pin-limited
channel, into the destination location. By going through the
processor, this data movement incurs a signi�cant penalty in
terms of latency and energy consumption.

To address the ine�ciencies of traversing the pin-limited
channel, a number of mechanisms have been proposed to
accelerate bulk data movement (e.g., [35, 63, 88, 110]). The
state-of-the-art mechanism, RowClone [88], performs data
movement completely within a DRAM chip, avoiding costly
data transfers over the pin-limited memory channel. Howe-
ver, its e�ectiveness is limited because RowClone can enable
fast data movement only when the source and destination are
within the same DRAM subarray. A DRAM chip is divided
into multiple banks (typically 8), each of which is further
split into many subarrays (16 to 64) [45], shown in Figure 1a,
to ensure reasonable read and write latencies at high den-
sity [8, 32, 33, 45, 101].1 Each subarray is a two-dimensional
array with hundreds of rows of DRAM cells, and contains
only a few megabytes of data (e.g., 4MB in a rank of eight
1Gb DDR3 DRAM chips with 32 subarrays per bank). While
two DRAM rows in the same subarray are connected via a
wide (e.g., 8K bits) bitline interface, rows in di�erent subar-
rays are connected via only a narrow 64-bit data bus within
the DRAM chip (Figure 1a). Therefore, even for previously-
proposed in-DRAM data movement mechanisms such as Row-
Clone [88], inter-subarray bulk data movement incurs long
latency and high memory energy consumption even though
data does not move out of the DRAM chip.

1We refer the reader to our prior works [8, 9, 10, 11, 21, 22, 39, 41, 42, 43,
44, 45, 54, 55, 56, 57, 58, 60, 61, 75, 88, 89] for a detailed background on DRAM.

63

Row Buffer

Slow

Internal

Data Bus

Subarray

Cell

Bitlines

64b

(a) RowClone [88]

8Kb Fast

Isolation

Transistor

(b) LISA

Figure 1: Transferring data between subarrays using the in-
ternal data bus takes a long time in state-of-the-art DRAM
design, RowClone [88] (a). Ourwork, LISA, enables fast inter-
subarray datamovementwith a low-cost substrate (b). Repro-
duced from [10].

While it is clear that fast inter-subarray data movement can
have several applications that improve system performance
and memory energy e�ciency [6, 37, 55, 74, 82, 85, 88, 89, 110],
there is currently no mechanism that performs such data
movement quickly and e�ciently. This is because no wide
datapath exists today between subarrays within the same bank
(i.e., the connectivity of subarrays is low in modern DRAM).
Our goal is to design a low-cost DRAM substrate that enables
fast and energy-e�cient data movement across subarrays.

2. Low-Cost Inter-Linked Subarrays (LISA)
We make two key observations that allow us to improve the

connectivity of subarrays within each bank in modern DRAM.
First, accessing data in DRAM causes the transfer of an entire
row of DRAM cells to a bu�er (i.e., the row bu�er, where the
row data temporarily resides while it is read or written) via
the subarray’s bitlines. Each bitline connects a column of cells
to the row bu�er, interconnecting every row within the same
subarray (Figure 1a). Therefore, the bitlines essentially serve
as a very wide bus that transfers a row’s worth of data (e.g.,
8K bits in a chip) at once. Second, subarrays within the same
bank are placed in close proximity to each other. Thus, the
bitlines of a subarray are very close to (but are not currently
connected to) the bitlines of neighboring subarrays (as shown
in Figure 1a).
Key Idea. Based on these two observations, we intro-

duce a new DRAM substrate, called Low-cost Inter-linked
SubArrays (LISA). LISA enables low-latency, high-bandwidth
inter-subarray connectivity by linking neighboring subarrays’
bitlines together with isolation transistors, as illustrated in Fi-
gure 1b. We use the new inter-subarray connection in LISA to
develop a new DRAM operation, row bu�er movement (RBM),
which moves data that is latched in an activated row bu�er in
one subarray into an inactive row bu�er in another subarray,
without having to send data through the narrow internal data
bus in DRAM. RBM exploits the fact that the activated row
bu�er has enough drive strength to induce charge perturba-
tion within the idle (i.e., precharged) bitlines of neighboring
subarrays, allowing the destination row bu�er to sense and
latch this data when the isolation transistors are enabled. We
describe the detailed operation of RBM in our HPCA 2016
paper [10].

By using a rigorous DRAM circuit model that conforms
to the JEDEC standards [32] and ITRS speci�cations [30, 31],
we show that RBM performs row bu�er movement at 26x
the bandwidth of a modern 64-bit DDR4-2400 memory chan-
nel (500 GB/s vs. 19.2 GB/s), even after we conservatively
add a large (60%) timing margin to account for process and
temperature variation.
Die Area Overhead. To evaluate the area overhead of

adding isolation transistors, we use area values from prior
work, which adds isolation transistors to disconnect bitlines
from sense ampli�ers [73]. That work shows that adding an
isolation transistor to every bitline incurs a total of 0.8% die
area overhead in a 28nm DRAM process technology. Similar
to prior work that adds isolation transistors to DRAM [57,
73], our LISA substrate also requires additional control logic
outside the DRAM banks to control the isolation transistors,
which incurs a small amount of area and is non-intrusive to
the cell arrays.

3. Applications of LISA
We exploit LISA’s fast inter-subarray movement capability

to enable many applications that can improve system perfor-
mance and energy e�ciency. In our HPCA 2016 paper [10],
we implement and evaluate three applications of LISA, which
signi�cantly improve system performance in di�erent ways.

3.1. Rapid Inter-Subarray Bulk Data Copying
(LISA-RISC)

Due to the narrow memory channel width, bulk copy ope-
rations used by applications and operating systems are per-
formance limiters in today’s systems [35,37,55,88,110]. These
operations are commonly performed due to the memcpy and
memmov. Recent work reported that these two operations con-
sume 4-5% of all of Google’s data center cycles [37], making
them an important target for lightweight hardware accelera-
tion.

Our goal is to design a new mechanism that enables low-
latency and energy-e�cient memory copy between rows in
di�erent subarrays within the same bank. To this end, we
propose a new in-DRAM copy mechanism that uses LISA to
exploit the high-bandwidth links between subarrays. The
key idea, step by step, is to: (1) activate a source row in a
subarray; (2) rapidly transfer the data in the activated source
row bu�ers to the destination subarray’s row bu�ers, through
LISA’s RBM operation; and (3) activate the destination row,
which enables the contents of the destination row bu�ers to be
latched into the destination row. We call this inter-subarray
row-to-row copy mechanism LISA-Rapid Inter-Subarray Copy
(LISA-RISC).
3.1.1. DRAM Latency and Energy Consumption. Fi-
gure 2 shows the DRAM latency and DRAM energy con-
sumption of memcpy (i.e, the baseline system), RowClone [88]
(state-of-the-art work), and LISA-RISC for copying a row of
data (8KB). The exact latency and energy numbers are listed

2

64

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400

E
ne

rg
y

(µ
J)

Latency (ns)

InterSA

InterBankIn
tra

SA

1 7 15 hops
Improvement of LISA-RISC memcpy

RowClone
LISA-RISC

Figure 2: Latency and DRAM energy of 8KB copy. Reprodu-
ced from [10].

Copy Commands (8KB) Latency (ns) Energy (µJ)

memcpy (via mem. channel) 1366.25 6.2
RC-InterSA / Bank / IntraSA 1363.75 / 701.25 / 83.75 4.33 / 2.08 / 0.06
LISA-RISC (1 / 7 / 15 hops) 148.5 / 196.5 / 260.5 0.09 / 0.12 / 0.17

Table 1: Copy latency and DRAM energy. Reproduced from
[10].

in Table 1. For LISA-RISC, we de�ne a hop as the number of
subarrays that LISA-RISC needs to copy data across to move
the data from the source subarray to the destination subarray.
For example, if the source and destination subarrays are adja-
cent to each other, the number of hops is 1. The DRAM chips
we evaluate have 16 subarrays per bank, so the maximum
number of hops is 15.

We make two observations from these numbers. First, alt-
hough inter-subarray RowClone (RC-InterSA) incurs similar
latencies as memcpy, it consumes 1.43x less energy, as it does
not transfer data over the channel and DRAM I/O for each
copy operation. However, as we discuss in Section 4.1 of our
HPCA 2016 paper [10], RC-InterSA incurs a higher system
performance penalty because it is a blocking long-latency me-
mory command. Second, copying between subarrays using
LISA reduces the copy latency by 9x and copy energy by
48x compared to RowClone, even though the total latency
of LISA-RISC grows linearly with the hop count. An addi-
tional bene�t of using LISA-RISC is that its inter-subarray
copy operations are performed completely inside a bank. As
the internal DRAM data bus is untouched, other banks can
concurrently serve memory requests, exploiting bank-level
parallelism.

3.1.2. Evaluation. We brie�y summarize the system per-
formance improvement due to LISA-RISC on a quad-core
system. We evaluate our system using Ramulator [41, 83], an
open-source cycle-accurate DRAM simulator, driven by tra-
ces generated from Pin [64]. Our workload evaluation results
show that LISA-RISC outperforms RowClone and memcpy:
its average performance improvement and energy reduction
over the best performing inter-subarray copy mechanism
(i.e., memcpy) are 66.2% and 55.4%, respectively, on a quad-
core system, across 50 workloads that perform bulk copies.
We refer the reader to Section 9 of our HPCA 2016 paper [10]
for detailed evaluation and analysis.

3.2. In-DRAM Caching Using
Heterogeneous Subarrays (LISA-VILLA)

Our second application aims to reduce the DRAM access la-
tency for frequently-accessed (hot) data. We propose to intro-
duce heterogeneity within a bank by designing heterogeneous-
latency subarrays. We call this heterogeneous DRAM design
VarIabLe LAtency DRAM (VILLA-DRAM). To design a low-
cost fast subarray, we take an approach similar to prior work,
attaching fewer cells to each bitline to reduce the parasitic ca-
pacitance and resistance. This reduces the latency of the three
fundamental DRAM operations–activation, precharge, and re-
storation–when accessing data in the fast subarrays [57,67,94].
Activation “opens” a row of DRAM cells to access stored data.
Precharge “closes” an activated row. Restoration restores the
charge level of each DRAM cell in a row to prevent data loss.
Together, these three operations predominantly de�ne the
latency of a memory request [8,9,10,11,21,22,39,41,42,43,44,
45, 54, 55, 56, 57, 58, 60, 61, 75, 88, 89]. In this work, we focus on
managing the fast subarrays in hardware, as doing so o�ers
better adaptivity to dynamic changes in the hot data set.

In order to take advantage of VILLA-DRAM, we rely on
LISA-RISC to rapidly copy rows across subarrays, which sig-
ni�cantly reduces the caching latency. We call this synergistic
design, which builds VILLA-DRAM using LISA, LISA-VILLA.
Nonetheless, the cost of transferring data to a fast subarray
is still non-negligible, especially if the fast subarray is far
from the subarray where the data to be cached resides. The-
refore, an intelligent cost-aware mechanism is required to
make astute decisions on which data to cache and when.
3.2.1. Caching Policy for LISA-VILLA. We design a simple
epoch-based caching policy to evaluate the bene�ts of caching
a row in LISA-VILLA. Every epoch, we track the number of
accesses to rows by using a set of 1024 saturating counters
for each bank.2 The counter values are halved every epoch
to prevent staleness. At the end of an epoch, we mark the 16
most frequently-accessed rows as hot, and cache them when
they are accessed the next time. For our cache replacement
policy, we use the bene�t-based caching policy proposed by
Lee et al. [57]. Speci�cally, it uses a bene�t counter for each
row cached in the fast subarray: whenever a cached row is
accessed, its counter is incremented. The row with the least
bene�t is replaced when a new row needs to be inserted. Note
that a large body of work proposes various caching policies
(e.g., [20, 23, 26, 34, 38, 59, 66, 78, 79, 87, 91, 100, 104, 106]), each
of which can potentially be used with LISA-VILLA.
3.2.2. Evaluation. Figure 3 shows the system performance
improvement of LISA-VILLA over a baseline without any fast
subarrays in a four-core system. It also shows the hit rate
in VILLA-DRAM, i.e., the fraction of accesses that hit in the
fast subarrays. We make two main observations. First, by

2The hardware cost of these counters is low, requiring only 6KB of
storage in the memory controller (see Section 7.1 of our HPCA 2016 pa-
per [10]).

3

65

exploiting LISA-RISC to quickly cache data in VILLA-DRAM,
LISA-VILLA improves system performance for a wide variety
of workloads — by up to 16.1%, with a geometric mean of
5.1%. This is mainly due to reduced DRAM latency of accesses
that hit in the fast subarrays. The performance improvement
heavily correlates with the VILLA cache hit rate. Second, the
VILLA-DRAM design, which consists of heterogeneous subar-
rays, is not practical without LISA. Figure 3 shows that using
RC-InterSA (i.e., RowClone copying data across subarrays)
to move data into the cache reduces performance by 52.3%
due to slow data movement, which overshadows the bene�ts
of caching. The results indicate that LISA is an important
substrate to enable not only fast bulk data copy, but also a
fast in-DRAM caching scheme.

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40 50
 0
 10
 20
 30
 40
 50
 60
 70

N
or

m
al

iz
ed

 W
S

V
IL

L
A

 H
it R

ate (%
)

Workloads

LISA-VILLA
Cache Hit Rate

 0
 0.2
 0.4
 0.6
 0.8

 1

GMean

N
or

m
al

iz
ed

 W
S

RC-InterSA
LISA-VILLA

Figure 3: Performance improvement and hit rate with LISA-
VILLA, and performance comparison to using RC-InterSA
with VILLA-DRAM. Reproduced from [10].

3.3. Fast Precharge Using Linked Precharge Units
(LISA-LIP)

Our third application aims to accelerate the process of pre-
charge. The precharge time for a subarray is determined
by the drive strength of the precharge unit (i.e., a circuitry
in a subarray’s row bu�er for precharging the connected
subarray). We observe that in modern DRAM, while a subar-
ray is being precharged, the precharge units (PUs) of other
subarrays remain idle.

We propose to exploit these idle PUs to accelerate a pre-
charge operation by connecting them to the subarray that is
being precharged. Our mechanism, LISA-LInked Precharge
(LISA-LIP), precharges a subarray using two sets of PUs: one
from the row bu�er that is being precharged, and a second set
from a neighboring subarray’s row bu�er (which is already
in the precharged state), by enabling the links between the
two subarrays.

To evaluate the accelerated precharge process, we use the
same DRAM circuit model described in Section 2 and simu-
late the linked precharge operation in SPICE. Our SPICE
simulation reports that LISA-LIP signi�cantly reduces the
precharge latency by 2.6x compared to the baseline (5ns vs.
13ns). Our system evaluation shows that LISA-LIP improves
performance by 10.3% on average, across 50 four-core wor-
kloads. We refer the reader to Section 6 of our HPCA 2016
paper [10] for a detailed analysis of LISA-LIP.

3.4. Evaluation: Putting Everything Together
As all of the three proposed applications are complemen-

tary to each other, we evaluate the e�ect of putting them

together on a four-core system. Figure 4 shows the system
performance improvement of adding LISA-VILLA to LISA-
RISC, as well as combining all three optimizations, compared
to our baseline using memcpy and standard DDR3-1600 me-
mory across 50 workloads. We refer the reader to our full
paper [10] for the detailed con�guration and workloads. We
draw several key conclusions. First, the performance bene�ts
from each scheme are additive. On average, adding LISA-
VILLA improves performance by 16.5% over LISA-RISC alone,
and adding LISA-LIP further provides an 8.8% gain over LISA-
(RISC+VILLA). Second, although LISA-RISC alone provides a
majority of the performance improvement over the baseline
(59.6% on average), the use of both LISA-VILLA and LISA-LIP
further improves performance, resulting in an average per-
formance gain of 94.8% and memory energy reduction (not
plotted) of 49.0%. Taken together, these results indicate that
LISA is an e�ective substrate that enables a wide range of
high-performance and energy-e�cient applications in the
DRAM system.

 0.5

 1

 2

 4

 8

 0 10 20 30 40 50

N
or

m
al

iz
ed

 W
S

(l
og

2)

Workloads

LISA-(RISC+VILLA+LIP)
LISA-(RISC+VILLA)

LISA-RISC

Figure 4: Combined weighted speedup (WS) [14, 93] impro-
vement of LISA applications. Reproduced from [10].

We conclude that LISA is an e�ective substrate that can gre-
atly improve system performance and reduce system energy
consumption by synergistically enabling multiple di�erent
applications. Our HPCA 2016 paper [10] provides many more
experimental results and analyses con�rming this �nding.

4. Related Work
To our knowledge, this is the �rst work to propose a DRAM

substrate that supports fast data movement between subar-
rays in the same bank, which enables a wide variety of appli-
cations for DRAM systems. We now discuss prior works that
focus on each of the optimizations that LISA enables.

4.1. Bulk Data Transfer Mechanisms
Prior works [7, 16, 17, 36, 108] propose to add scratchpad

memories to reduce CPU pressure during bulk data transfers,
which can also enable sophisticated data movement (e.g.,
scatter-gather [90]), but they still require data to �rst be
moved on-chip. A patent proposes a DRAM design that can
copy a page across memory blocks [84], but lacks concrete
analysis and evaluation of the underlying copy operations.
Intel I/O Acceleration Technology [27] allows for memory-to-
memory DMA transfers across a network, but cannot transfer
data within main memory.

Zhao et al. [110] propose to add a bulk data movement
engine inside the memory controller to speed up bulk-copy
operations. Jiang et al. [35] design a di�erent copy engine,

4

66

placed within the cache controller, to alleviate pipeline and
cache stalls that occur when these transfers take place. Ho-
wever, these works do not directly address the problem of
data movement across the narrow memory channel.

A concurrent work by Lu et al. [63] proposes a hete-
rogeneous DRAM design similar to VILLA-DRAM, called
DAS-DRAM, but with a very di�erent data movement me-
chanism from LISA. It introduces a row of migration cells into
each subarray to move rows across subarrays. Unfortunately,
the latency of DAS-DRAM is not scalable with movement dis-
tance, because it requires writing the migrating row into each
intermediate subarray’s migration cells before the row rea-
ches its destination, which prolongs data transfer latency. In
contrast, LISA provides a direct path to transfer data between
row bu�ers between adjacent subarrays without requiring
intermediate data writes into any subarray.

4.2. Cached DRAM
Several prior works (e.g., [20,23,26,38,109]) propose to add

a small SRAM cache to a DRAM chip to lower the access la-
tency for data that is kept in the SRAM cache (e.g., frequently
or recently used data). There are two main disadvantages of
these works. First, adding an SRAM cache into a DRAM chip
is very intrusive: it incurs a high area overhead (38.8% for
64KB in a 2Gb DRAM chip) and design complexity [45, 57].
Second, transferring data from DRAM to SRAM uses a nar-
row global data bus, internal to the DRAM chip, which is
typically 64-bit wide. Thus, installing data into the DRAM
cache incurs high latency. Compared to these works, our
LISA-VILLA design enables low latency without signi�cant
area overhead or complexity.

4.3. Heterogeneous-Latency DRAM
Prior works propose DRAM architectures that provide he-

terogeneous latency either spatially (dependent on where in
the memory an access targets) or temporally (dependent on
when an access occurs).
Spatial Heterogeneity. Prior work introduces spatial he-

terogeneity into DRAM, where one region has a fast access
latency but fewer DRAM rows, while the other has a slower
access latency but many more rows [57, 94]. Recent works
show that latency heterogeneity inherent in DRAM chips
due to process or design-induced variation can also naturally
enable such heterogeneous-latency substrates [9, 54]. The
fast region in DRAM can be utilized as a caching area, for
the frequently or recently accessed data. We brie�y describe
two state-of-the-art works that o�er di�erent heterogeneous-
latency DRAM designs.

CHARM [94] introduces heterogeneity within a rank by
designing a few fast banks with (1) shorter bitlines for faster
data sensing, and (2) closer placement to the chip I/O for faster
data transfers. To exploit these low-latency banks, CHARM
uses an OS-managed mechanism to statically map hot data to
these banks, based on pro�led information from the compiler

or programmers. Unfortunately, this approach cannot adapt
to program phase changes, limiting its performance gains.
If it were to adopt dynamic hot data management, CHARM
would incur high migration costs over the narrow 64-bit bus
that internally connects the fast and slow banks.

TL-DRAM [57] provides heterogeneity within a subarray
by dividing it into fast (near) and slow (far) segments that have
short and long bitlines, respectively, using isolation transis-
tors. The fast segment can be managed as an OS-transparent
hardware cache. The main disadvantage is that it needs to
cache each hot row in two near segments as each subarray
uses two row bu�ers on opposite ends to sense data in the
open-bitline architecture (as discussed in our HPCA 2016
paper [10]). This prevents TL-DRAM from using the full
near segment capacity. As we can see, neither CHARM nor
TL-DRAM strike a good design balance for heterogeneous-
latency DRAM. Our proposal, LISA-VILLA, is a new hetero-
geneous DRAM design that o�ers fast data movement with a
low-cost and easy-to-implement design.
Temporal Heterogeneity. Prior work observes that

DRAM latency can vary depending on when an access occurs.
The key observation is that a recently-accessed or refreshed
row has nearly full electrical charge in the cells, and thus
the following access to the same row can be performed fas-
ter [21, 22, 92]. We brie�y describe two state-of-the-art works
that focus on providing heterogeneous latency temporally.

ChargeCache [22] enables faster access to recently-accessed
rows in DRAM by tracking the addresses of recently-accessed
rows. NUAT [92] enables accesses to recently-refreshed rows
at low latency because these rows are already highly-charged.
In contrast to ChargeCache and NUAT, LISA does not require
data to be recently-accessed/refreshed in order to reduce
DRAM latency. Adaptive-Latency DRAM (AL-DRAM) [56]
adapts the DRAM latency of each DRAM module to tempe-
rature, observing that each module can be operated faster at
lower temperatures. LISA is orthogonal to AL-DRAM. The
ideas of LISA can be employed in conjunction with works
that exploit the temporal heterogeneity of DRAM latency.

4.4. Other Latency Reduction Mechanisms
Many prior works propose memory scheduling techniques,

which generally reduce latency to access DRAM [3, 13, 15,
29, 43, 44, 51, 52, 53, 68, 69, 71, 72, 96, 97, 98, 102]. Other works
propose mechanisms to perform in-memory computation to
reduce data movement and access latency [1, 2, 5, 6, 18, 24, 25,
40, 46, 62, 76, 77, 88, 89, 95, 107]. LISA is complementary to
these works, and it can work synergistically with in-memory
computation mechanisms by enabling fast aggregation of
data.

5. Signi�cance
Our HPCA 2016 paper [10] proposes a new DRAM sub-

strate that signi�cantly improves the performance and e�-
ciency of bulk data movement in modern systems. In this

5

67

section, we brie�y discuss the expected future impact of our
work, and discuss several research directions that our work
motivates.

5.1. Potential Industry Impact
We believe that our LISA substrate can have a large impact

on mobile systems as well as data centers that consume a
signi�cant amount of cycle time performing bulk data mo-
vement. A recent study [37] by Google reports that memcpy()
and memmove() library functions alone represent 4-5% of their
data center cycles even though Google has a signi�cant wor-
kload diversity running within their data centers. Another re-
cent study shows that 62.7% of system energy is spent on data
movement on consumer devices (e.g., smartphones, weara-
ble devices, web-based computers such as Chromebooks) [6].
In this work, we demonstrate that one potential application
of using the LISA substrate is to accelerate memcpy() and
memmove(), as discussed in Section 3.1. Our detailed DRAM ci-
rcuit model reports that LISA reduces the latency and DRAM
energy of these functions by 9x and 69x compared to today’s
systems, respectively. Hence, we expect LISA can improve
the e�ciency and performance of both mobile and data center
systems.

5.2. Future Research Directions
This work opens up several avenues of future research

directions. In this section, we describe several directions that
can enable researchers to tackle other problems related to
memory systems based on the LISA substrate.
Reducing Subarray Con�icts via Remapping. When

two memory requests access two di�erent rows in the same
bank, they have to be served serially, even if they are to
di�erent subarrays. To mitigate such bank con�icts, Kim
et al. [45] propose subarray-level parallelism (SALP), which
enables multiple subarrays to remain activated at the same
time. However, if two accesses are to the same subarray, they
still have to be served serially. This problem is exacerbated
when frequently-accessed rows reside in the same subarray.
To help alleviate such subarray con�icts, LISA can enable
a simple mechanism that e�ciently remaps or moves the
con�icting rows to di�erent subarrays by exploiting fast RBM
operations.
Enabling LISA to Perform 1-to-N Memory Copy or

Move Operations. A typical memcpy or memmove call only
allows the data to be copied from one source location to one
destination location. To copy or move data from one source
location to multiple di�erent destinations, repeated calls are
required. The problem is that such repeated calls incur long
latency and high bandwidth consumption. One potential
application that can be enabled by LISA is performing memcpy
or memmove from one source location to multiple destinations
completely in DRAM without requiring multiple calls of these
operations.

By using LISA, we observe that moving data from the
source subarray to the destination subarray latches the source

row’s data in all the intermediate subarrays’ row bu�er. As a
result, activating these intermediate subarrays would copy
their row bu�ers’ data into the speci�ed row within these
subarrays. By extending LISA to perform multi-point (1-to-
N) copy or move operations, we can signi�cantly increase
system performance of several commonly-used system ope-
rations. For example, forking multiple child processes can
utilize 1-to-N copy operations to e�ciently copy memory
pages from the parent’s address space to all the children. As
another example, LISA can extend the range of in-DRAM
bulk bitwise operations [85, 89]. Thus, LISA can e�ciently
enable architectural support to a new, useful system and pro-
gramming primitive: 1-to-N bulk memory copy/movement.
In-Memory Computation with LISA. One important

requirement of e�cient in-memory computation is being
able to move data from its stored location to the computation
units with very low latency and energy. We believe using
the LISA substrate can enable a new in-memory computa-
tion framework. The idea is to add a small computation unit
inside each or a subset of banks, and connect these computa-
tion units to the neighboring subarrays which store the data.
Doing so allows the system to utilize LISA to move bulk data
from the subarrays to the computation units with low latency
and low area overhead.
Extending LISA to Non-VolatileMemory. In this work,

we only focus on the DRAM technology. A class of emerging
memory technology is non-volatile memory (NVM), which
has the capability of retaining data without power supply. We
believe that the LISA substrate can be extended to NVM (e.g.,
PCM [48, 49, 50, 80, 81, 104, 105] and STT-MRAM [12, 19, 47])
since the memory organization of NVM mostly resembles
that of DRAM. A potential application of LISA in NVM is an
e�cient �le copy operation that does not incur costly I/O
data transfer. We believe LISA can provide further bene�ts
when main memory becomes persistent [65].

6. Conclusion

We present a new DRAM substrate, low-cost inter-linked
subarrays (LISA), that expedites bulk data movement across
subarrays in DRAM. LISA achieves this by creating a new
high-bandwidth datapath at low cost between subarrays, via
the insertion of a small number of isolation transistors. We
describe and evaluate three applications that are enabled by
LISA. First, LISA signi�cantly reduces the latency and me-
mory energy consumption of bulk copy operations between
subarrays over state-of-the-art mechanisms [88]. Second,
LISA enables an e�ective in-DRAM caching scheme on a new
heterogeneous DRAM organization, which uses fast subar-
rays for caching hot data in every bank. Third, we reduce
precharge latency by connecting two precharge units of adja-
cent subarrays together using LISA. We experimentally show
that the three applications of LISA greatly improve system
performance and memory energy e�ciency when used indi-

6

68

vidually or together, across a variety of workloads and system
con�gurations.

We conclude that LISA is an e�ective substrate that enables
several e�ective applications. We believe that this substrate,
which enables low-cost interconnections between DRAM
subarrays, can pave the way for other applications that can
further improve system performance and energy e�ciency
through fast data movement in DRAM. We greatly encourage
future work to 1) investigate new applications and bene�ts of
LISA, and 2) develop new low-cost interconnection substrates
within a DRAM chip to improve internal connectivity and
data transfer ability.

Acknowledgments
We thank the anonymous reviewers and SAFARI group

members for their helpful feedback. We acknowledge the
support of Google, Intel, NVIDIA, Samsung, and VMware.
This research was supported in part by the ISTC-CC, SRC,
CFAR, and NSF (grants 1212962, 1319587, and 1320531). Kevin
Chang was supported in part by the SRCEA/Intel Fellowship.

References
[1] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph

Processing,” in ISCA, 2015.
[2] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware

Processing-in-Memory Architecture,” in ISCA, 2015.
[3] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High Perfor-

mance and Scalability in Heterogeneous Systems,” in ISCA, 2012.
[4] S. Blagodurov et al., “A Case for NUMA-Aware Contention Management on Mul-

ticore Systems,” in USENIX ATC, 2011.
[5] A. Boroumand et al., “LazyPIM: An E�cient Cache Coherence Mechanism for

Processing-in-Memory,” CAL, 2016.
[6] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data

Movement Bottlenecks,” in ASPLOS, 2018.
[7] J. Carter et al., “Impulse: Building a Smarter Memory Controller,” in HPCA, 1999.
[8] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes

with Accesses,” in HPCA, 2014.
[9] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[10] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[11] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGME-
TRICS, 2017.

[12] M. T. Chang et al., “Technology Comparison for Large Last-Level Caches (L3Cs):
Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-Optimized
eDRAM,” in HPCA, 2013.

[13] E. Ebrahimi et al., “Parallel Application Memory Scheduling,” in MICRO, 2011.
[14] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-

gram Workloads,” IEEE Micro, 2008.
[15] S. Ghose et al., “Improving Memory Scheduling via Processor-Side Load Critica-

lity Information,” in ISCA, 2013.
[16] M. Gschwind, “Chip Multiprocessing and the Cell Broadband Engine,” in CF,

2006.
[17] J. Gummaraju et al., “Architectural Support for the Stream Execution Model on

General-Purpose Processors,” in PACT, 2007.
[18] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and System

Design,” in WONDP, 2014.
[19] X. Guo et al., “Resistive Computation: Avoiding the Power Wall with Low-

Leakage, STT-MRAM Based Computing,” in ISCA, 2010.
[20] C. A. Hart, “CDRAM in a Uni�ed Memory Architecture,” in Intl. Computer Con-

ference, 1994.
[21] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure

for Enabling Experimental DRAM Studies,” in HPCA, 2017.
[22] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality,” in HPCA, 2016.
[23] H. Hidaka et al., “The Cache DRAM Architecture,” IEEE Micro, 1990.
[24] K. Hsieh et al., “Transparent O�oading and Mapping (TOM): Enabling

Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[25] K. Hsieh et al., “Accelerating pointer chasing in 3D-stacked memory: Challenges,
mechanisms, evaluation,” in ICCD, 2016.

[26] W.-C. Hsu and J. E. Smith, “Performance of Cached DRAM Organizations in
Vector Supercomputers,” in ISCA, 1993.

[27] Intel Corp., “Intel®I/O Acceleration Technology,” http://www.intel.com/content/
www/us/en/wireless-network/accel-technology.html.

[28] Intel Corp., “Intel 64 and IA-32 Architectures Optimization Reference Manual,”
2012.

[29] E. Ipek et al., “Self-Optimizing Memory Controllers: A Reinforcement Learning
Approach,” in ISCA, 2008.

[30] ITRS, http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/2013ITRS/
2013Tables/FEP_2013Tables.xlsx, 2013.

[31] ITRS, http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/2013ITRS/
2013Tables/Interconnect_2013Tables.xlsx, 2013.

[32] JEDEC, “DDR3 SDRAM Standard,” 2010.
[33] JEDEC, “DDR4 SDRAM Standard,” 2012.
[34] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM Caching for CMP Server

Platforms,” in HPCA, 2010.
[35] X. Jiang et al., “Architecture Support for Improving Bulk Memory Copying and

Initialization Performance,” in PACT, 2009.
[36] J. A. Kahle et al., “Introduction to the Cell Multiprocessor,” IBM JRD, 2005.
[37] S. Kanev et al., “Pro�ling a Warehouse-Scale Computer,” in ISCA, 2015.
[38] G. Kedem and R. P. Koganti, “WCDRAM: A Fully Associative Integrated Cached-

DRAM with Wide Cache Lines,” Duke Univ. Dept. of Computer Science, Tech.
Rep. CS-1997-03, 1997.

[39] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclona-
ble Functions by Exploiting the Latency–Reliability Tradeo� in Modern DRAM
Devices,” in HPCA, 2018.

[40] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[41] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.
[42] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimen-

tal Study of DRAM Disturbance Errors,” in ISCA, 2014.
[43] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers,” in HPCA, 2010.
[44] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Di�erences in

Memory Access Behavior,” in MICRO, 2010.
[45] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in

DRAM,” in ISCA, 2012.
[46] P. M. Kogge, “EXECUBE-A New Architecture for Scaleable MPPs,” in ICPP, 1994.
[47] E. Kultursay et al., “Evaluating STT-RAM as an energy-e�cient main memory

alternative,” in ISPASS, 2013.
[48] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM Alter-

native,” in ISCA, 2009.
[49] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for Scalabi-

lity,” CACM, vol. 53, no. 7, pp. 99–106, 2010.
[50] B. C. Lee et al., “Phase-Change Technology and the Future of Main Memory,”

IEEE Micro, vol. 30, no. 1, pp. 143–143, 2010.
[51] C. J. Lee et al., “Prefetch-Aware DRAM Controllers,” in MICRO, 2008.
[52] C. J. Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing Write-

Caused Interference in Memory Systems,” Univ. of Texas at Austin, High Per-
formance Systems Group, Tech. Rep. TR-HPS-2010-002, 2010.

[53] C. J. Lee et al., “Improving Memory Bank-Level Parallelism in the Presence of
Prefetching,” in MICRO, 2009.

[54] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Cha-
racterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,
2017.

[55] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Tra�c
by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[56] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case,” in HPCA, 2015.

[57] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-
chitecture,” in HPCA, 2013.

[58] D. Lee et al., “Simultaneous Multi Layer Access: A High Bandwidth and Low
Cost 3D-Stacked Memory Interface,” TACO, 2016.

[59] Y. Li et al., “Utility-Based Hybrid Memory Management,” in CLUSTER, 2017.
[60] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Pro�ling Mechanisms,” in ISCA,
2013.

[61] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[62] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,” in SPAA,

2017.
[63] S.-L. Lu et al., “Improving DRAM Latency with Dynamic Asymmetric Subarray,”

in MICRO, 2015.
[64] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with Dyna-

mic Instrumentation,” in PLDI, 2005.
[65] J. Meza et al., “A Case for E�cient Hardware/Software Cooperative Management

of Storage and Memory,” in WEED, 2013.
[66] J. Meza et al., “Enabling E�cient and Scalable Hybrid Memories Using Fine-

Granularity DRAM Cache Management,” CAL, 2012.
[67] Micron Technology, Inc., “576Mb: x18, x36 RLDRAM3,” 2011.

7

69

[68] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-core Systems,” in USENIX Security, 2007.

[69] J. Mukundan and J. F. Martinez, “MORSE: Multi-objective Recon�gurable Self-
Optimizing Memory Scheduler,” in HPCA, 2012.

[70] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[71] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[72] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[73] S. O et al., “Row-Bu�er Decoupling: A Case for Low-Latency DRAM Microarchi-

tecture,” in ISCA, 2014.
[74] J. K. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast as Har-

dware?” in USENIX Summer Conf., 1990.
[75] M. Patel et al., “The Reach Pro�ler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Pro�ling at Aggressive Conditions,” in ISCA, 2017.
[76] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[77] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-In-Memory Capabilities,” in PACT, 2016.
[78] M. Qureshi et al., “A Case for MLP-Aware Cache Replacement,” in ISCA, 2006.
[79] M. K. Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,”

in ISCA, 2007.
[80] M. K. Qureshi et al., “Enhancing Lifetime and Security of PCM-based Main Me-

mory with Start-gap Wear Leveling,” in MICRO, 2009.
[81] M. K. Qureshi et al., “Scalable High Performance Main Memory System Using

Phase-change Memory Technology,” in ISCA, 2009.
[82] M. Rosenblum et al., “The Impact of Architectural Trends on Operating System

Performance,” in SOSP, 1995.
[83] SAFARI Research Group, “Ramulator – GitHub Repository,” https://github.com/

CMU-SAFARI/ramulator.
[84] S.-Y. Seo, “Methods of Copying a Page in a Memory Device and Methods of Ma-

naging Pages in a Memory System,” U.S. Patent Application 20140185395, 2014.
[85] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[86] V. Seshadri et al., “Page overlays: An enhanced virtual memory framework to

enable �ne-grained memory management,” in ISCA, 2015.
[87] V. Seshadri et al., “The Evicted-Address Filter: A Uni�ed Mechanism to Address

Both Cache Pollution and Thrashing,” in PACT, 2012.
[88] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[89] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[90] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Im-

prove the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[91] V. Seshadri et al., “Mitigating Prefetcher-Caused Pollution Using Informed Ca-
ching Policies for Prefetched Blocks,” TACO, vol. 11, no. 4, pp. 51:1–51:22, 2015.

[92] W. Shin et al., “NUAT: A Non-Uniform Access Time Memory Controller,” in
HPCA, 2014.

[93] A. Snavely and D. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Mul-
tithreading Processor,” in ASPLOS, 2000.

[94] Y. H. Son et al., “Reducing Memory Access Latency with Asymmetric DRAM
Bank Organizations,” in ISCA, 2013.

[95] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[96] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity

in Memory Access Scheduling,” in IEEE TPDS, 2016.
[97] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving High

Performance and Fairness at Low Cost,” in ICCD, 2014.
[98] L. Subramanian et al., “Mise: Providing performance predictability and impro-

ving fairness in shared main memory systems,” in HPCA, 2013.
[99] K. Sudan et al., “Micro-Pages: Increasing DRAM E�ciency with Locality-Aware

Data Placement,” in ASPLOS, 2010.
[100] G. Tyson et al., “A Modi�ed Approach to Data Cache Management,” in MICRO,

1995.
[101] A. N. Udipi et al., “Rethinking DRAM Design and Organization for Energy-

Constrained Multi-Cores,” in ISCA, 2010.
[102] H. Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler

for Heterogeneous Systems with Hardware Accelerators,” TACO, vol. 12, no. 4,
pp. 65:1–65:28, 2016.

[103] S. Wong et al., “A Hardware Cache memcpy Accelerator,” in FPT, 2006.
[104] H. Yoon et al., “Row Bu�er Locality Aware Caching Policies for Hybrid Memo-

ries,” in ICCD, 2012.
[105] H. Yoon et al., “E�cient Data Mapping and Bu�ering Techniques for Multilevel

Cell Phase-Change Memories,” TACO, vol. 11, no. 4, pp. 40:1–40:25, 2014.
[106] X. Yu et al., “Banshee: Bandwidth-E�cient DRAM Caching via Software/Har-

dware Cooperation,” in MICRO, 2017.
[107] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in

Memory,” in HPDC, 2014.
[108] L. Zhang et al., “The Impulse Memory Controller,” IEEE TC, vol. 50, no. 11, pp.

1117–1132, 2001.
[109] Z. Zhang et al., “Cached DRAM for ILP Processor Memory Access Latency Re-

duction,” IEEE Micro, vol. 21, no. 4, Jul. 2001.
[110] L. Zhao et al., “Hardware Support for Bulk Data Movement in Server Platforms,”

in ICCD, 2005.

8

70

Experimental Characterization, Optimization, and Recovery
of Data Retention Errors in MLC NAND Flash Memory

Yu Cai1 Yixin Luo1 Erich F. Haratsch2 Ken Mai1 Saugata Ghose1 Onur Mutlu3,1

1Carnegie Mellon University 2Seagate Technology 3ETH Zürich

This paper summarizes our work on experimentally charac-
terizing, mitigating, and recovering data retention errors in
multi-level cell (MLC) NAND �ash memory, which was publis-
hed in HPCA 2015 [10], and examines the work’s signi�cance
and future potential. Retention errors, caused by charge leakage
over time, are the dominant source of �ash memory errors. Un-
derstanding, characterizing, and reducing retention errors can
signi�cantly improve NAND �ash memory reliability and endu-
rance. In this work, we �rst characterize, with real 2Y-nm MLC
NAND �ash chips, how the threshold voltage distribution of
�ash memory changes with di�erent retention ages – the length
of time since a �ash cell was programmed. We observe from
our characterization results that 1) the optimal read reference
voltage of a �ash cell, using which the data can be read with
the lowest raw bit error rate (RBER), systematically changes
with its retention age, and 2) di�erent regions of �ash memory
can have di�erent retention ages, and hence di�erent optimal
read reference voltages.

Based on our �ndings, we propose two new techniques. First,
Retention Optimized Reading (ROR) adaptively learns and ap-
plies the optimal read reference voltage for each �ash memory
block online. The key idea of ROR is to periodically learn a
tight upper bound of the optimal read reference voltage, and
from there approach the optimal read reference voltage. Our
evaluations show that ROR can extend �ash memory lifetime by
64% and reduce average error correction latency by 10.1%, with
only 768 KB storage overhead in �ash memory for a 512 GB
�ash-based SSD. Second, Retention Failure Recovery (RFR) reco-
vers data with uncorrectable errors o�ine by identifying and
probabilistically correcting �ash cells with retention errors. Our
evaluation shows that RFR reduces RBER by 50%, which es-
sentially doubles the error correction capability, and thus can
e�ectively recover data from otherwise uncorrectable �ash er-
rors.

1. Introduction
Over the past decade, the capacity of NAND �ash memory

has been increasing continuously, as a result of aggressive pro-
cess scaling and the advent of multi-level cell (MLC) techno-
logy. This trend has enabled NAND �ash memory to replace
spinning disks for a wide range of applications – from high
performance clusters and large-scale data centers to consu-
mer PCs, laptops, and mobile devices. Unfortunately, as �ash
density increases, �ash memory cells become more vulnerable
to various types of device and circuit level noise [3, 4, 5, 8, 86]
– e.g., retention noise [3, 4, 5, 8, 12, 13, 70, 80, 91], read dis-

turb noise [3, 4, 5, 6, 15, 91], cell-to-cell program interference
noise [3, 4, 5, 6, 8, 11, 14], and program/erase (P/E) cycling
noise [3, 4, 5, 8, 9]. These are sources of errors that can signi�-
cantly degrade NAND �ash memory reliability.

A traditional solution to overcome �ash errors, regardless
of their source, is to use error-correcting codes (ECC) [3, 4, 5,
30,66]. By storing a certain amount of redundant bits per unit
data, ECC can detect and correct a limited number of raw bit
errors. With the help of ECC, �ash memory can hide these
errors from the users until the number of errors per unit data
exceeds the correction capability of the ECC. Flash memory
designers have been relying on stronger ECC to compensate
for lifetime reductions due to technology scaling. However,
stronger ECC, which has higher capacity and implementation
overhead, has diminishing returns on the amount of �ash
lifetime improvement [12, 13]. As such, we intend to look for
more e�cient ways of reducing �ash errors.

Retention errors, caused by charge leakage over time after
a �ash cell is programmed, are the dominant source of �ash
memory errors [3, 4, 5, 8, 12, 13, 109]. The amount of charge
stored in a �ash memory cell determines the threshold voltage
level of the cell, which in turn represents the logical data value
stored in the cell. As illustrated in Figure 1, the threshold
voltage (Vth) range of a 2-bit MLC NAND �ash cell is divided
into four regions by three read reference voltages, Va, Vb, and
Vc . The region in which the threshold voltage of a �ash cell
falls represents the cell’s current state, which can be ER (or
erased), P1, P2, or P3. Each state decodes into a 2-bit value
that is stored in the �ash cell (e.g., 11, 10, 00, or 01).1

Vth

ER
(11)

P1
(10)

P2
(00)

P3
(01)

Va Vb Vc Vpass

Figure 1: Threshold voltage distribution in 2-bit MLC NAND
�ashmemory. Stored data values are represented as the tuple
(LSB, MSB). Reproduced from [15].

As the manufacturing process technology for NAND �ash
memory scales to smaller feature sizes, the capacitance of
a �ash cell, and the number of electrons stored in the cell,
decrease. State-of-the-art MLC �ash memory cells can store
only ∼100 electrons [10, 81]. Gaining or losing several elec-
trons in a �ash cell can signi�cantly change the cell’s voltage

1A detailed background on NAND �ash memory design and operation,
and on data retention errors in NAND �ash memory, can be found in our
prior works [3, 4, 5, 11, 12].

71

level and eventually alter the state of the cell. In addition,
MLC technology reduces the size of the threshold voltage
window [9], i.e., the span of threshold voltage values corre-
sponding to each logical state, in order to store more states
in a single cell. This also makes the state of a cell more likely
to shift due to charge loss caused by retention noise. As such,
for NAND �ash memory, retention errors are one of the most
important limiting factors of more aggressive process scaling
and MLC technology.

One way to reduce retention errors is to periodically read,
correct, and reprogram the �ash memory before the number
of errors accumulated over time exceed the error correction
capability of the ECC, i.e., the maximum number of raw bit
errors tolerable by the ECC [12,13,69,90]. However, this �ash
correct and refresh (FCR) technique has two major limitations:
1) FCR uses a �xed read reference voltage to read data under
di�erent retention ages, which is suboptimal, and 2) FCR
requires the �ash controller to be consistently powered on
so that errors can be corrected, limiting its applicability to
enterprise deployments that have always-on power supplies.

In our HPCA 2015 paper [10], we pursue a better under-
standing of retention error behavior to improve NAND �ash
reliability and lifetime, and �nd better (and complementary)
ways to mitigate �ash retention errors. We characterize 1) the
distortion of threshold voltage distribution at di�erent reten-
tion ages, i.e., the idle time after the data is programmed to
the �ash memory, for state-of-the-art 2Y-nm (20- to 24-nm)
NAND �ash memory chips at room temperature, and 2) the
retention age distribution of �ash pages using disk traces
taken from real workloads. Our key �ndings are:
1. Due to threshold voltage distribution distortion, the op-

timal read reference voltages of �ash cells, at which the
minimum raw bit error rate (RBER) can be achieved, syste-
matically shift to lower values as retention age increases.

2. Pages within the same �ash block (the granularity at which
�ash memory can be erased) tend to have similar retention
ages and hence similar optimal read reference voltages,
whereas pages across di�erent �ash blocks have di�erent
optimal read reference voltages.
Based on our �ndings, we propose two mechanisms to

mitigate data retention errors. First, we propose an online
technique called Retention Optimized Reading (ROR). They
key idea of ROR is to reduce the raw bit error rate by adapti-
vely learning and applying the optimal read reference voltage
for each �ash block. Our evaluations show that ROR extends
�ash lifetime by 64% and reduces average error correction
latency by 10.1%, with only 768 KB storage overhead for a
512 GB �ash-based SSD. Second, we propose an o�ine error
recovery technique called Retention Failure Recovery (RFR).
The key idea of RFR is to identify fast- and slow-leaking
cells and probabilistically determine the original value of an
erroneous cell based on its leakage-speed property and its
threshold voltage. Our evaluations show that RFR can e�ecti-
vely reduce the average raw bit error rate (RBER) by 50%,

essentially doubling the error correction capability of �ash
memory, and allowing for the recovery of data otherwise
uncorrectable by ECC.

We �rst summarize our experimental characterization re-
sults (Section 2), and then introduce the Retention Optimized
Reading (Section 3) and Retention Failure Recovery (Section 4)
techniques.

2. Flash Data Retention Characterization
We use an FPGA-based �ash memory testing platform to

characterize real state- of-the-art 2Y-nm NAND �ash me-
mory chips [7, 8]. As absolute threshold voltage values are
proprietary information to NAND �ash vendors, we present
our results using normalized voltages, where the nominal
maximum value of Vth is equal to 512 in our normalized scale,
and where 0 represents GND. Section 3.1 of our HPCA 2015
paper [10] provides a detailed description of our experimental
methodology.

Figure 2 shows the threshold voltage distribution of �ash
memory at di�erent retention ages for 8,000 P/E cycles. We
make two observations from the �gure. First, for the higher-
voltage states (P2 and P3), their threshold voltage distribu-
tions systematically shift to lower voltage values as the re-
tention age grows. Second, the distributions of each state
become wider with higher retention age, and that the distri-
butions of states at higher voltage (e.g., P3) shift faster than
those of states at lower voltage (e.g., P1).Characterized threshold voltage distribution

8

Finding: Cell’s threshold voltage decreases over time

P1 P2 P3

0-day

40-day

0-day
40-day

Figure 2: Threshold voltage distribution of 2Y-nm MLC
NAND �ash memory vs. retention age, at 8K P/E cycles un-
der room temperature. Reproduced from [10].

We �nd that these changes due to retention leakage have
an impact to the optimal read reference voltage (OPT), which is
the read reference voltage between two states that minimizes
the raw bit error rate (RBER). Figure 3 shows the optimal
read reference voltage over retention age. We make two
observations from the �gure. First, Figure 3a shows a slightly
decreasing trend of P1–P2 OPT (the optimal read reference
voltage used to distinguish between cells in the P1 state and
cells in the P2 state) over retention age. Second, we observe
that P2–P3 OPT decreases much more rapidly with retention
age than P1–P2 OPT, as shown in Figure 3b.

As the distributions continue to shift with growing reten-
tion age, the OPT for one retention age will be di�erent than
the OPT for a di�erent age, suggesting that a dynamically
changing OPT is ideal. To quantify how the choice of read

2

72

(a) P1-P2 OPT (b) P2-P3 OPT

Figure 3: E�ect of retention age on the optimal read refe-
rence voltage between (a) the P1 and P2 states, and (b) the
P2 and P3 states. Reproduced from [10].

reference voltage a�ects RBER, we apply the optimal read
reference voltages (OPTs) determined for {0, 1, 2, 6, 9, 17,
21, 28}-day retention ages to read 28-day-old data. Figure 4
shows the RBER obtained when reading the 28-day-old data
with di�erent OPTs, normalized to the RBER obtained when
reading the data with the 28-day OPT. This �gure shows
that picking the correct value of OPT for each retention age
results in a lower RBER. In turn, this allows us to extend the
lifetime (i.e., the number of P/E cycles the device can tolerate)
of the NAND �ash memory if we always use the correct OPT
based on the retention age of the data that is being read.

0
1
2
3
4
5

0-day
OPT

1-day
OPT

2-day
OPT

4-day
OPT

6-day
OPT

9-day
OPT

17-day
OPT

21-day
OPT

28-day
OPT

N
o

rm
al

iz
ed

 R
B

ER

Figure 4: Normalized RBER when reading 28-day-old data
with di�erent optimal read reference voltages (normalized
to 28-day OPT). Reproduced from [10].

In Section 3 of our HPCA 2015 paper [10], we perform
several other experimental characterization studies of �ash
memory data retention behavior, and make the following
eight new �ndings:

1. The threshold voltage distributions of the P2 and P3 states
systematically shift to lower voltages with retention age.

2. The threshold voltage distribution of each state becomes
wider with higher retention age.

3. The threshold voltage distribution of a higher-voltage state
shifts faster than that of a lower-voltage state.

4. Both P1–P2 OPT and P2–P3 OPT become smaller over
retention age.

5. P2–P3 OPT changes more signi�cantly over retention age
than P1–P2 OPT.

6. The optimal read reference voltage corresponding to one
retention age is suboptimal (i.e., it results in a higher RBER)
for reading data with a di�erent retention age.

7. RBER becomes lower when the retention age for which the
used read reference voltage is optimized becomes closer
to the actual retention age of the data.

8. The lifetime of NAND �ash memory can be extended if
the optimal read reference voltage that corresponds to the
retention age of the data is used.

3. Retention Optimized Reading (ROR)
To optimize �ash memory performance without compromi-

sing �ash lifetime, we �rst breakdown and analyze the com-
ponents of the �ash memory read latency. A read operation
typically makes use of the read-retry operation [3, 4, 5, 9, 28],
which performs multiple data read attempts using di�erent
read reference voltages until the read succeeds (i.e., ECC
successfully corrects all of the raw bit errors). A detailed
analysis of the �ash memory read latency can be found in
Section 4.1 of our HPCA 2015 paper [10]. We summarize the
following four observations from this analysis:
• The read latency of NAND �ash memory can be reduced

by minimizing the number of reads performed during read-
retry.

• The number of reads can be reduced by using a closer-to-
optimal starting read reference voltage in the read-retry
process.

• The optimal read reference voltages of pages in the same
block are close, while those of pages in di�erent blocks are
not always close.

• The optimal read reference voltage of pages in a block is
upper-bounded by the optimal read reference voltage of
the page in the block that was programmed last.
Based on these observations, we propose Retention Optimi-

zed Reading (ROR), which consists of two components: 1) an
online pre-optimization algorithm that learns the starting
read reference voltage for each block, and 2) an improved
read-retry technique that uses the starting read reference
voltage to reduce the search space of OPT (i.e., the optimal
read reference voltage) for the block. Section 4.2 of our HPCA
2015 paper [10] provides a detailed description of the compo-
nents of ROR. We brie�y summarize the components below.

The �rst component, the online pre-optimization algo-
rithm, is triggered both daily and after power-on for each
block. This algorithm consists of the following four steps:
• Step 1: The �ash controller �rst reads the highest-

numbered page in a �ash block (e.g., page 255 in a block
that contains 256 pages), with any default read reference
voltage Vdefault , and attempts to correct the errors in the
raw data read from the page. We chose the highest-
numbered page in the block because it is programmed
last, and, thus, has the lowest retention age and the hig-
hest OPT value within the block. Hence, we use the OPT
for the highest-numbered page as a tight upper bound of
OPT for the block. Next, we record the number of raw
bit errors as the current lowest error count (NERR), and
the applied read reference voltage as Vref = Vdefault . If we
cannot �nd the error count (i.e., the error is uncorrectable),
we record the maximum number of errors correctable by
ECC as NERR.

3

73

• Step 2: The controller tries to read the page using a lower
read reference voltage. Since we want to �nd the optimal
read reference voltage for the highest-numbered page in
the block, we approach it from the current starting read
reference voltage step by step. Since OPT typically decre-
ases over retention age, we �rst attempt to lower the read
reference voltage. We decrease the read reference voltage
to (Vref – ∆V) and read the highest-numbered page. If the
number of corrected errors in the new data is less than or
equal to the old NERR, we update NERR and Vref with the
new values. We repeat Step 2 until the number of corrected
errors in the new data is greater than the previous value
of NERR, or the lowest possible read reference voltage is
reached.

• Step 3: The controller tries to read the page using a higher
read reference voltage. Since the optimal threshold voltage
might increase in rare cases, we also attempt to increase
the read reference voltage. We increase the read reference
voltage to (Vref + ∆V) and read the highest-numbered
page in the block. Again, if the number of corrected errors
in the new data is less than or equal to NERR, we update
NERR and Vref with the new values. We repeat Step 3 until
the number of corrected errors in the new data is greater
than the previous value of NERR, or the highest possible
read reference voltage is reached.

• Step 4: Record the optimal read reference voltage. After
Step 3, the most recently-used value of Vref is the opti-
mal read reference voltage for the highest-numbered page.
Thus, we record this voltage as the upper bound of the
optimal read reference voltages for the block.
The second component is an improved read-retry techni-

que that takes advantage of the recorded starting read re-
ference voltage. During a normal read operation, the �ash
controller �rst attempts to read the data with the recorded
starting read reference voltage. Then, since the recorded star-
ting read reference voltage is the upper bound of the OPTs
within the block, we iteratively decrease the read reference
voltage until the read operation succeeds. Note that the star-
ting read reference voltages are accessed frequently (on each
read operation) by the �ash controller, so we store them in
the SSD’s DRAM bu�er to allow fast access.

Our key evaluation results show that ROR achieves the
same �ash lifetime improvements as naive read-retry, which
has a read latency that is 64% longer than a baseline that uses
a �xed read reference voltage. Due to a reduction in raw bit
error rate, ROR reduces the ECC decoding latency by 10.1%
on average compared to the baseline, which is equivalent to
a 2.4% reduction in overall �ash read latency. Compared with
the original read-retry technique, which we explain in detail
in Section 4.1 of our HPCA 2015 paper [10], ROR reduces
the read-retry operation count by 70.4%, and thus reduces
the overall read latency by the same fraction. This reduction
is due to two reasons: 1) ROR starts the read-retry process
at a close-to-optimal starting read reference voltage that is

estimated and recorded daily and upon power-on; and 2) ROR
approaches OPT in a known, informed direction from this
starting read reference voltage.

Section 4.4 of our HPCA 2015 paper [10] provides more
results from our evaluation of ROR. In our HPCA 2015 pa-
per, we show that the performance overhead of ROR, which
is periodically triggered by an online pre-optimization algo-
rithm, can be largely hidden by executing the algorithm only
when the SSD is idle, or in the background at a lower priority.
This is because, even considering the worst-case scenario, we
obtain an estimated pre-optimization latency of 3, 15, and 23
seconds for �ash memory with a 1-day, 7-day, and 30-day-
equivalent retention age, respectively. Since the �ash pages
within a block is programmed at similar times, the optimal
read reference voltages of these pages are close. So we store
one byte per block for each starting read reference voltage
learned for the ER-P1 OPT, the P1–P2 OPT, and the P2–P3
OPT. We also show that ROR requires only 768 KB of storage
overhead, to store the entire read reference voltage table for
an assumed 512 GB �ash drive.

4. Retention Failure Recovery (RFR)
Even with ROR, the retention error rate will eventually

exceed the ECC limit as retention age keeps increasing. At
that point, some reads will have more raw errors than can be
corrected by ECC, preventing the drive from returning the
data to the user. Traditionally, this would be the point of data
loss and thus the end of �ash memory lifetime.

We show that retention failure is avoidable under various
circumstances. In Section 5.1 of our HPCA 2015 paper [10],
we show that high temperature can signi�cantly increase the
number of retention errors in a short period of time, which
leads to unexpected data loss. For example, if the required
refresh period of the �ash memory is one week at room tem-
perature, uncorrectable errors may start to accumulate after
a mere 36 minutes. We also discuss why completely avoiding
such retention failure is unrealistic. No previous technique
can prevent data loss after retention failure happens.

We introduce Retention Failure Recovery (RFR), which ena-
bles us to recover data from a failed �ash page o�ine after
the number of errors in the page exceed the total number of
errors that ECC can correct. Due to process variation, di�e-
rent �ash cells on the same chip can have di�erent charge
leakage speeds. We describe a technique to classify fast- and
slow-leaking cells in just a few days, which enables RFR to
probabilistically infer the original value stored in each �ash
cell. Our evaluation, based on data from real NAND �ash
chips, shows that RFR can reduce raw bit error rate by 50%,
and thus ECC can then be used to recover a majority of the
data in pages with retention failures.

Figure 5 shows how the threshold voltage of a retention-
prone cell (i.e., a fast-leaking cell, labeled P in the �gure)
decreases over time (i.e., the cell shifts to the left) due to
retention leakage, while the threshold voltage of a retention-

4

74

resistant cell (i.e., a slow-leaking cell, labeled R in the �gure)
does not change signi�cantly over time. Retention Failure
Recovery (RFR) uses this classi�cation of retention-prone
versus retention-resistant cells to correct the data from the
failed page without the assistance of ECC. Without loss of
generality, let us assume that we are studying susceptible cells
near the intersection of two threshold voltage distributions
X and Y, where Y contains higher voltages than X. Figure 5
highlights the region of cells considered susceptible by RFR
using a box, labeled Susceptible. A susceptible cell within
the box that is retention prone likely belongs to distribution
Y, as a retention-prone cell shifts rapidly to a lower voltage
(see the circled cell labeled P within the susceptible region in
the �gure). A retention-resistant cell in the same susceptible
region likely belongs to distribution X (see the boxed cell
labeled R within the susceptible region in the �gure).

Susceptible

P

P

Vth

Pr
ob

ab
ili

ty
 D

en
sit

y

P R

Read as X Read as Y

R

P
Programmed to X
Programmed to Y

Original distribution

Distribution after
retention time

Charge leakage
due to retention

R
R

Figure 5: Some retention-prone (P) and retention-resistant
(R) cells are incorrectly read after charge leakage due to re-
tention time. RFR identi�es and corrects the incorrectly read
cells based on their leakage behavior. Reproduced from [3].

RFR identi�es fast- vs. slow-leaking cells, and uses selective
bit �ipping to correct retention failures, thus reducing RBER.
With reduced raw bit errors, the read data may be recon-
structed by ECC with a higher probability. RFR consists of
the following four o�ine steps, which are triggered when an
uncorrectable error is found:

• Step 1: Identify data with a retention failure. Once the �ash
controller fails to read a �ash page, a retention failure is
identi�ed on that page.

• Step 2: Identify susceptible cells using three read operati-
ons. We read the failed page using three read reference
voltages: OPT (the optimal read reference voltage) minus
some margin δ (Step 2.1), OPT (Step 2.2), and OPT plus
δ (Step 2.3). The value of δ is large enough to include
the entire Susceptible region shown in Figure 5. Figure 6a
illustrates the identi�cation of susceptible (i.e., risky) cells,
which are denoted as type 1 , type 2 , type 3 , and type 4

cells.
• Step 3: Identify fast- and slow-leaking cells. We compare

the threshold voltage of susceptible cells before and after
several days of retention to classify them as fast- and slow-
leaking cells. Figures 6b and 6c illustrate how the cells
shift di�erently after additional retention loss. Among the
susceptible cells, type 1 and type 2 cells are slow-leaking
cells, whereas type 3 and type 4 cells are fast-leaking
cells.

• Step 4: Selectively �ip bits based on the identi�cation re-
sults from Step 3. Using the leakage speed information,
we now know that type 2 and type 3 cells are likely mis-
read. Thus, we simply �ip those cells to correct these likely
errors.

After addl. retention

OPTOPT-δ OPT+δ(b)

(c)

P2

P2 P3

P3

(a)
Read with 2.1 OPT-δ, 2.2 OPT, 2.3 OPT+δ

(a, b, c)

(1, 0, 0)

1 3or

(1, 1, 0)

2 4or

P2 (0, 0, 0)

P3 (1, 1, 1)

Slow-leaking
cell prog. to P2

Fast-leaking
cell prog. to P3

Not prone
to error

2

1 4

3

213

4

Before addl.
retention

Misread

Risky cells

Figure 6: (a) Classi�cation of risky (i.e., susceptible) cells to
identify misread bits, (b) cells before additional retention
loss, and (c) cells after additional retention loss. Reproduced
from [10].

We evaluate RFR on data programmed to random values
that has 28-day equivalent retention age. In Step 3, we intro-
duce an additional 12 days’ worth of equivalent retention age.
Figure 7 shows the resulting raw bit error rate of RFR over a
range of P/E cycles (compared to that of the baseline). This
�gure shows that RFR reduces the RBER by 50%, averaged
across all evaluated wearout levels (P/E cycles). Thus, we
expect the number of raw bit errors to be halved, increasing
the chances that these errors are correctable by ECC.

Baseline (no RFR)

RFR

× 104

Figure 7: E�ect of the RFR technique on raw bit error rate.
Reproduced from [10].

5. Related Work

To our knowledge, our HPCA 2015 paper [10] is the �rst to
1) experimentally characterize and comprehensively analyze
how the threshold voltage distribution changes over di�erent
retention ages, as well as the implication of these changes on
the read reference voltage and lifetime, using real state-of-the-
art 2Y-nm MLC NAND �ash memory chips; and 2) proposes
two novel techniques to mitigate the impact of retention age
online and to recover from data loss by exploiting retention
behavior. In this section, we brie�y discuss various related
works.

5

75

5.1. Works on NAND Flash Memory
NAND Flash Memory Retention Error Characteriza-

tion. Multiple prior works characterize NAND �ash data
retention, but mainly in terms of RBER [8, 12, 13, 80]. These
works show that 1) retention errors are the dominant errors
in NAND �ash memory, and 2) the retention error rate incre-
ases with the retention age and the P/E cycle. Papandreou et
al. [91] characterize the retention e�ect on threshold voltage
distributions under high temperature baking, and �nd that
the distribution shifts to lower voltage over retention time,
and so does the optimal read reference voltage. In contrast,
our HPCA 2015 paper [10] characterizes data retention under
room temperature, which is closer to how NAND �ash me-
mories are typically used [10]. Our recent work characterizes
how data retention a�ects the threshold voltage distribution
for TLC NAND �ash memory [3,4,5], making similar �ndings
as our HPCA 2015 paper [10].
NAND Flash Memory Error Characterization. Prior

works study di�erent types of NAND �ash memory errors
in MLC, planar NAND �ash memory, including P/E cycling
errors [9, 71, 80, 91, 93], programming errors [6, 71, 93], cell-
to-cell program interference errors [9, 11, 14], retention er-
rors [9,10,12,80,91], and read disturb errors [15,80,91]. These
works characterize how raw bit error rate and threshold
voltage distributions change with various types of noise. Our
recent work characterizes the same types of errors in planar
TLC NAND �ash memory and has similar �ndings [3, 4, 5].
Thus, we believe that most of the �ndings on MLC NAND
�ash memory can be generalized to any types of planar NAND
�ash memory devices (e.g., SLC, MLC, TLC, or QLC). Recent
works [77, 89, 101] have also studied SSD errors in the �eld,
and have shown the system-level implications of these er-
rors in large-scale data centers. Unlike our characterization,
these in-the-�eld studies do not have access to the underlying
NAND �ash memory within the SSDs that they test, and, thus,
are unable to show detailed data retention behavior.
3D NAND Flash Memory Error Characterization. Re-

cently, manufacturers have begun to produce SSDs that con-
tain three-dimensional (3D) NAND �ash memory [36, 42, 78,
79, 92, 117]. In 3D NAND �ash memory, multiple layers of
�ash cells are stacked vertically to increase the density and
to improve the scalability of the memory [117]. In order to
achieve this stacking, manufacturers have changed a number
of underlying properties of the �ash memory design. We
refer readers to our prior work for a detailed comparison
between 3D NAND �ash memory and planar NAND �ash
memory [3, 4, 5]. Previous works [22, 82] compare the reten-
tion loss between 3D charge trap NAND �ash memory and
planar NAND �ash memory through real device characteri-
zation, and �nd that 3D charge trap cells leak charge faster
than planar NAND cells and thus experience the phenome-
non of early retention loss. Our recent work [72] characterizes
the impact of dwell time, i.e., the idle time between conse-
cutive program cycles, and environmental temperature on

the retention loss speed and program variation of 3D charge
trap NAND �ash memory, and proposes techniques to miti-
gate these issues to improve �ash memory lifetime. Recent
work [113] characterizes the latency and raw bit error rate of
3D NAND �ash memory devices based on �oating gate cells,
and makes similar observations as those for planar NAND
�ash memory devices based on �oating gate cells. Prior works
have reported several di�erences between 3D NAND and pla-
nar NAND through circuit level measurements, including
the fact that 3D NAND �ash cells exhibit 1) smaller program
variation at high P/E cycle [92], 2) smaller program interfe-
rence [92], and 3) early retention loss [22, 22, 82]. The �eld
(both academia and industry) is currently in much need of
detailed rigorous experimental characterization and analysis
of state-of-the-art 3D NAND �ash memory devices.
Retention Error Mitigation Using Periodic Refresh.

Prior works [12, 13, 69, 90] propose to use periodic refresh
to mitigate retention errors. Cai et al. [12, 13] introduce
1) remapping-based refresh, which periodically reads data
from each valid �ash block, corrects any data errors, and
remaps the data to a di�erent physical location, 2) in-place re-
fresh, which incrementally replenishes the lost charge of each
page at its current location, and 3) adaptive refresh, which
allows the controller to adaptively adjust the rate that the re-
fresh mechanisms are invoked based on the wearout (i.e., the
current P/E cycle count) of the NAND �ash memory [12, 13];
or the temperature of the SSD [8, 10]. However, these techni-
ques 1) require the system to be consistently powered on,
and 2) are unaware of the fact that the optimal read reference
voltage changes with di�erent retention age. Note that these
works always apply a �xed read reference voltage regardless
of the retention age of the cell, which is suboptimal for rea-
ding �ash blocks at di�erent retention ages. In contrast, our
ROR technique optimizes the read reference voltage of each
�ash block based on its retention age, leading to signi�cant
lifetime improvements. Several works [23, 70, 104] �nd that
refresh operations consume a large number of P/E cycles,
and propose techniques that exploit workload write-hotness
to relax the guaranteed retention time of NAND �ash me-
mory without requiring refresh. For example, WARM [70]
partitions write-hot and write-cold data using a lightweight
mechanism designed for �ash memory, and eliminates the
need to refresh write-hot data, leading to signi�cant lifetime
improvements over existing periodic refresh mechanisms.
Our techniques can be combined with such refresh elimina-
tion techniques for higher lifetime and performance.
Read Reference Voltage Optimization. A few

works [11, 14, 91] propose optimizing the read reference
voltage. Cai et al. [14] propose a technique to calculate the
optimal read reference voltage from the mean and variance of
the threshold voltage distributions, which are characterized
by the read-retry technique [9]. The cost of such a techni-
que is relatively high, as it requires periodically reading �ash
memory with all possible read reference voltages to discover

6

76

the threshold voltage distributions. Papandreou et al. [91]
propose to apply a per-block close-to-optimal read reference
voltage by periodically sampling and averaging 6 OPTs within
each block, learned by exhaustively trying all possible read re-
ference voltages. In contrast, ROR can �nd the actual optimal
read reference voltage at a much lower latency, thanks to the
new �ndings and observations in our HPCA 2015 paper [10].
We show that ROR greatly outperforms naive read-retry. The
latter is signi�cantly simpler than the mechanism proposed
in [91].

Recently, Luo et al. [71] propose to accurately predict the
optimal read reference voltage using an online �ash channel
model for each chip learned online. Cai et al. [15] propose
a new technique called Vpass tuning, which tunes the pass-
through voltage, i.e., a high reference voltage applied to turn
on unread cells in a block, to mitigate read disturb errors. Du
et al. [27] propose to tune the optimal read reference volta-
ges for ECC soft decoding to improve the ECC correction
capability (i.e., the maximum number of errors that ECC can
correct). Fukami et al. [28] propose to use read-retry to im-
prove the reliability of the chip-o� forensic analysis of NAND
�ash memory devices. Our proposals are complementary to
all these techniques.
Error Recovery. To our knowledge, our HPCA 2015 pa-

per [10] proposes the �rst mechanism that can recover data
even after ECC is unable to successfully correct all of the
errors due to retention loss. One of our works [15] builds
on our HPCA 2015 paper and adapts the RFR mechanism to
opportunistically recover from read disturb errors instead of
retention errors. FlashDe�brillator (FD) [39] improves upon
RFR to recover from data retention errors online. FD reco-
vers data retention errors online by applying a sequence of
diagnostic pulses that recharge the fast-leaking cells. This
helps recover otherwise uncorrectable errors in two ways:
(1) fast-leaking cells may be recharged back to the correct
state, (2) fast-leaking cells recharge faster than slow-leaking
cells, thus fast-leaking cells can be identi�ed as the cells
whose threshold voltages increase faster during the diagnos-
tic pulses. These two more recent works [15,39] directly build
upon our HPCA 2015 paper.

5.2. Data Retention Errors in DRAM
DRAM uses the charge within a capacitor to represent one

bit of data. Much like the �oating gate within NAND �ash
memory, charge leaks from the DRAM capacitor over time,
leading to data retention issues. Unlike a NAND �ash cell,
where leakage typically leads to data loss after several days
to years of retention time, leakage from a DRAM cell leads to
data loss after a retention time on the order of milliseconds to
seconds [67].

The retention time of a DRAM cell depends upon several
factors [67], including (1) manufacturing process variation
and (2) temperature. Manufacturing process variation a�ects
the amount of current that leaks from each DRAM cell’s

capacitor and access transistor [67]. As a result, the retention
time of the cells within a single DRAM chip vary signi�cantly,
resulting in strong cells that have high retention times and
weak cells that have low retention times within each chip. The
operating temperature a�ects the rate at which charge leaks
from the capacitor. As the operating temperature increases,
the retention time of a DRAM cell decreases exponentially [29,
67].

Due to the rapid charge leakage from DRAM cells, a
DRAM controller periodically refreshes all DRAM cells in
place [17, 38, 44, 67, 68, 94, 97] (similar to the periodic refresh
techniques used in NAND �ash memory, but at a much smal-
ler time scale). DRAM standards require a DRAM cell to be
refreshed once every 64 ms [38]. As the density of DRAM con-
tinues to increase over successive product generations (e.g.,
by 128x between 1999 and 2017 [16, 18]), enabled by the sca-
ling of DRAM to smaller manufacturing process technology
nodes [73, 84, 85, 87], the performance and energy overheads
required to refresh an entire DRAM module have grown sig-
ni�cantly [17, 68, 84, 85, 87]. It is expected that the refresh
problem will get signi�cantly worse and limit DRAM den-
sity scaling, as described in a recent work by Samsung and
Intel [43] and by our group [68]. Prior analysis shows that
when DRAM chip density reaches 64 Gbit, nearly 50% of the
data throughput is lost due to the high amount of time spent
on refreshing all of the rows in the chip, and nearly 50% of the
DRAM chip power is spent on refresh operations [68]. Thus,
data retention problems and refresh pose a clear challenge to
DRAM scalability.

Various experimental studies of real DRAM chips (e.g.,
[32,44,45,50,62,67,68,94,97]) have studied the data retention
time of DRAM cells in modern chips, and have shown that
the vast majority of DRAM cells can retain data without loss
for much longer than the 64 ms retention time speci�ed by
DRAM standards. A number of works take advantage of
this variability in data retention time behavior across DRAM
cells, by reducing the frequency at which the vast majority
of DRAM rows within a module are refreshed (e.g., [2, 37, 44,
46, 67, 68, 94, 97, 110]), or by reducing the interference caused
by refresh requests on demand requests (e.g., [17, 83, 108]).

More �ndings on the nature of DRAM data retention and
associated errors, as well as relevant experimental data from
modern DRAM chips, can be found in our prior works [16,17,
32, 44, 45, 46, 47, 62, 67, 68, 84, 94, 97]. We also refer the readers
to prior works on the design and operation of the underlying
DRAM architecture [17, 18, 19, 20, 32, 33, 49, 51, 52, 53, 54, 55, 60,
61, 62, 63, 64, 67, 68, 94, 102, 103].

5.3. Errors in Emerging Nonvolatile Memory
Technologies

DRAM operations are several orders of magnitude faster
than SSD operations, but DRAM has two major disadvantages.
First, DRAM o�ers orders of magnitude less storage density
than NAND-�ash-memory-based SSDs. Second, DRAM is

7

77

volatile (i.e., the stored data is lost on a power outage). Emer-
ging nonvolatile memories, such as phase-change memory
(PCM) [57, 58, 59, 76, 98, 112, 115, 121], spin-transfer torque
magnetic RAM (STT-RAM or STT-MRAM) [56, 88], metal-
oxide resistive RAM (RRAM) [111], and memristors [26, 107],
are expected to bridge the gap between DRAM and SSDs,
providing DRAM-like access latency and energy, and at
the same time SSD-like large capacity and nonvolatility
(and hence SSD-like data persistence). These technologies
are also expected to be used as part of hybrid memory sy-
stems (also called heterogeneous memory systems), where
one part of the memory consists of DRAM modules and
another part consists of modules of emerging technolo-
gies [21, 24, 25, 41, 65, 74, 75, 95, 98, 99, 100, 115, 116, 118, 119].

PCM-based devices are expected to have a limited life-
time, as PCM can only endure a certain number of wri-
tes [57, 98, 112], similar to the P/E cycling errors in NAND-
�ash-memory-based SSDs (though PCM’s write endurance
is higher than that of SSDs). PCM su�ers from (1) resistance
drift [35, 96, 112], where the resistance used to represent the
value becomes higher over time (and eventually can intro-
duce a bit error), similar to how charge leakage in NAND
�ash memory and DRAM lead to retention errors over time;
and (2) write disturb [40], where the heat generated during
the programming of one PCM cell dissipates into neighbo-
ring cells and can change the value that is stored within the
neighboring cells. STT-RAM su�ers from (1) retention failu-
res, where the value stored for a single bit (as the magnetic
orientation of the layer that stores the bit) can �ip over time;
and (2) read disturb (a conceptually di�erent phenomenon
from the read disturb in DRAM and �ash memory), where
reading a bit in STT-RAM can inadvertently induce a write
to that same bit [88].

Due to the nascent nature of emerging nonvolatile memory
technologies and the lack of availability of large-capacity de-
vices built with them, extensive and dependable experimental
studies have yet to be conducted on the reliability of real PCM,
STT-RAM, RRAM, and memristor chips. However, we believe
that error mechanisms conceptually or abstractly similar to
those we discussed for �ash memory and DRAM are likely to
be prevalent in emerging technologies as well (as supported
by some recent studies [1, 40, 48, 88, 105, 106, 120]), albeit with
di�erent underlying mechanisms and error rates. We expect
that the ROR and RFR techniques we propose in our HPCA
2015 paper [10] can be easily adapted to NVM technologies.

6. Signi�cance
Our HPCA 2015 paper [10] provides extensive characte-

rization data and proposes novel mechanisms to mitigate
retention errors in modern NAND �ash memory and recover
data when ECC fails. We believe that our characterization and
mechanisms will have a signi�cant impact on the community,
as evidenced by multiple recent works directly building upon
our HPCA 2015 paper [15, 39, 72].

6.1. Long-Term Impact
We believe our work will have long-term impact for the

following three reasons. First, as NAND �ash memory beco-
mes denser in the future, data retention will become a bigger
issue, and thus a better understanding of its implication and
characteristics will be important to help maintain NAND
�ash reliability after scaling [3, 4, 5, 84]. Second, we propose
an online technique that reduces �ash read latency, and we
give insights into the �ash read-retry algorithm, thereby ho-
pefully inspiring future works to further optimize �ash read
latency. Third, we propose an o�ine technique that leverages
underlying �ash characteristics to enable recovery from a
retention failure even after the drive fails to correct it, thereby
hopefully inspiring future works to look for more ways to
prevent data loss.
DataRetention. Our work provides a comprehensive ana-

lysis of the retention loss e�ect on real NAND �ash memory
chips, which enhances the understanding of the retention loss
e�ect in the research community. We hope that our analysis
and solutions can inspire more works to handle data reten-
tion in better ways. As planar NAND �ash memory becomes
denser, each �ash memory cell holds less charge and beco-
mes more vulnerable to retention loss [8, 12]. Thus, in the
future, we expect data retention to become a more important
problem [3, 4, 5, 84], and expect that industry will be more
open to adapt new solutions like our proposals, ROR and RFR.
In fact, several �ash-based SSDs currently use refresh as a
solution to mitigate retention errors [31, 34, 114]. Our work
shows that we can go signi�cantly beyond refresh to tolerate
the data retention problem in NAND �ash memory.
Read Performance Optimization. The read perfor-

mance advantage of �ash memory over hard disk drives ma-
kes �ash-based SSDs more appealing than hard disk drives.
However, many existing solutions, such as read-retry [9, 28],
trade o� �ash performance for reliability. Our HPCA 2015 pa-
per [10] is the �rst to point out the read performance problem,
and to provide a detailed analysis and new solution to this
problem. We hope that our work can enhance the research
community’s understanding of �ash read performance and
bring more attention to �ash read performance, which is cri-
tically important to overall system performance. Techniques
that are developed in DRAM to reduce read latency [17,18,19,
20,33,51,52,53,54,60,61,62,63,64,68,94,102,103] can prompt
inspiration for NAND �ash memory.
Data Recovery. Prior to our work, after a retention failure

happens, an uncorrectable error and resulting data corruption
was considered to be unrecoverable from, resulting in data
loss. To our knowledge, our HPCA 2015 paper [10] is the �rst
to show that it is actually possible to recover this data using
our RFR mechanism. As the reliability of NAND �ash me-
mory decreases, and the popularity of �ash-based SSDs incre-
ases, SSD failures are expected to increase, creating a greater
need for recovery techniques that can retrieve previously-
unrecoverable data. In light of this, recent works [15,39] have

8

78

directly built upon RFR to provide additional data recovery
mechanisms. We hope that our work draws more attention
to �ash memory data recovery, and inspires further solutions
to this important problem.

6.2. New Research Directions
Our HPCA 2015 paper [10] presents characterization re-

sults for data retention in real NAND �ash chips. By making
such data and knowledge available, we believe that the �ash
memory and SSD research communities can have a better
understanding of data retention, and can therefore develop
better solutions to tackle the retention problem in the fu-
ture. We hope that our work will continue to inspire future
works in �ash memory that can provide a comprehensive
characterization and analysis of other NAND �ash memory
behavior using real chips, such as program/erase cycling and
cell-to-cell program disturbance. We also hope that our ROR
and RFR techniques bring more attention to both the �ash
read performance problem and data recovery problem, and
that they will inspire researchers from both academia and
industry to develop and adopt new solutions.

7. Conclusion
Our HPCA 2015 paper [10] comprehensively characteri-

zes and analyzes how the threshold voltage distribution and
the optimal read reference voltages of state-of-the-art 2Y-nm
MLC NAND �ash memory change over di�erent retention
ages. Based on these analyses, the paper proposes two new
techniques. Retention Optimized Reading (ROR) improves
reliability, lifetime, and performance of MLC NAND �ash me-
mory at modest storage cost by optimizing the read reference
voltage of each �ash memory block based on its retention age.
We demonstrate signi�cant bene�ts with ROR in terms of
reduced RBER, extended �ash lifetime, and reduction in �ash
read latency. Retention Failure Recovery (RFR) recovers data
with uncorrectable errors by identifying and probabilistically
correcting �ash cells with retention errors. We demonstrate
large raw bit error rate reductions with RFR. We hope that
our comprehensive characterization of data retention in �ash
memory will enable better understanding of �ash retention
errors and motivate other new techniques to overcome these
errors. We believe the importance of our two new techniques
(ROR and RFR) will grow as NAND �ash memory scales to
smaller feature sizes and becomes even less reliable in the
future.

Acknowledgments
We thank Nandita Vijaykumar and the anonymous revie-

wers for feedback. This work is partially supported by the
Intel Science and Technology Center, CMU Data Storage Sys-
tems Center, and NSF grants 1212962 and 1320531.

References
[1] A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, and E. Elefther-

iou, “Multilevel-Cell Phase-Change Memory: A Viable Technology,” JETCAS,
2016.

[2] S. Baek, S. Cho, and R. Melhem, “Refresh Now and Then,” IEEE Trans. Computers,
Aug. 2014.

[3] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
Sep. 2017.

[4] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[5] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[6] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[7] Y. Cai, E. F. Haratsch, M. P. McCartney, and K. Mai, “FPGA-Based Solid-State
Drive Prototyping Platform,” in FCCM, 2011.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[9] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution
in NAND Flash Memory: Characterization, Analysis, and Modeling,” in DATE,
2013.

[10] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[11] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[12] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime,” in
ICCD, 2012.

[13] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Error
Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal, 2013.

[14] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai, “Neig-
hbor Cell Assisted Error Correction in MLC NAND Flash Memories,” in SIGME-
TRICS, 2014.

[15] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read Disturb Errors
in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery,” in
DSN, 2015.

[16] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-
mory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[17] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes With
Accesses,” in HPCA, 2014.

[18] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[19] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[20] K. K. Chang, A. G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose, A. Kashyap,
H. Hassan, D. Lee, M. O’Connor, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[21] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal,
and R. Iyer, “Leveraging Heterogeneity in DRAM Main Memories to Accelerate
Critical Word Access,” in MICRO, 2012.

[22] B. Choi et al., “Comprehensive Evaluation of Early Retention (Fast Charge Loss
Within a Few Seconds) Characteristics in Tube-Type 3-D NAND Flash Memory,”
in VLSIT, 2016.

[23] W. Choi, M. Arjomand, M. Jung, and M. Kandemir, “Exploiting Data Longevity
for Enhancing the Lifetime of Flash-based Storage Class Memory,” in SIGME-
TRICS, 2017.

[24] C.-C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level Memory Orga-
nization with Capacity of Main Memory and Flexibility of Hardware-Managed
Cache,” in MICRO, 2014.

[25] C.-C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for Mitigating Band-
width Bloat in Gigascale DRAM Caches,” in ISCA, 2015.

[26] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[27] Y. Du, Q. Li, L. Shi, D. Zou, H. Jin, and C. J. Xue, “Reducing LDPC Soft Sensing

Latency by Lightweight Data Refresh for Flash Read Performance Improvement,”
in DAC, 2017.

[28] A. Fukami, S. Ghose, Y. Luo, Y. Cai, and O. Mutlu, “Improving the Reliability of
Chip-O� Forensic Analysis of NAND Flash Memory Devices,” Digital Investiga-
tion, 2017.

[29] T. Hamamoto, S. Sugiura, and S. Sawada, “On the Retention Time Distribution
of Dynamic Random Access Memory (DRAM),” IEEE Trans. Electron Devices, Jun.
1998.

[30] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Labs Techni-
cal Journal, 1950.

9

79

[31] P. Hansson, “When SSD Performance Goes Awry,” http://www.techspot.com/
article/997-samsung-ssd-read-performance-degradation/, 2015.

[32] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[33] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and
O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality,” in HPCA, 2016.

[34] G. Hippo, “Hippotizer V4,” http://cdn.manula.com/user/8056/9036_9608_en_
1479375721.pdf?v=20170201164158, 2017.

[35] D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and Drift Dynamics of
Resistance and Threshold Voltages in Phase-Change Memories,” TED, 2007.

[36] J. Im et al., “A 128Gb 3b/Cell V-NAND Flash Memory with 1Gb/s I/O Rate,” in
ISSCC, 2015.

[37] C. Isen and L. John, “ESKIMO — Energy Savings Using Semantic Knowledge of
Inconsequential Memory Occupancy for DRAM Subsystem,” in MICRO, 2009.

[38] JEDEC Solid State Technology Assn., DDR4 SDRAM Standard, Publication
JESD79-4A, 2013.

[39] J. Jeong, Y. Song, and J. Kim, “FlashDe�brillator: A Data Recovery Technique for
Retention Failures in NAND Flash Memory,” in NVMSA, 2015.

[40] L. Jiang, Y. Zhang, and J. Yang, “Mitigating Write Disturbance in Super-Dense
Phase Change Memories,” in DSN, 2014.

[41] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. Soli-
hin, and R. Balasubramonian, “CHOP: Adaptive Filter-Based DRAM Caching for
CMP Server Platforms,” in HPCA, 2010.

[42] D. Kang et al., “7.1 256Gb 3b/cell V-NAND Flash Memory With 48 Stacked WL
Layers,” in ISSCC, 2016.

[43] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi,
“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
Memory Forum, 2014.

[44] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu, “The E�cacy
of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

[45] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level Technique
to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[46] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” IEEE Comput. Archit. Lett., 2016.

[47] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “De-
tecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current
Memory Content,” in MICRO, 2017.

[48] W.-S. Khwa et al., “A Resistance-Drift Compensation Scheme to Reduce MLC
PCM Raw BER by Over 100x for Storage-Class Memory Applications,” in ISSCC,
2016.

[49] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[50] K. Kim and J. Lee, “A New Investigation of Data Retention Time in Truly Nanos-
caled DRAMs,” IEEE Electron Device Lett., Aug. 2009.

[51] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[52] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[53] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

[54] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Me-
mory Scheduling: Exploiting Di�erences in Memory Access Behavior,” in MI-
CRO, 2010.

[55] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” CAL, 2015.

[56] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.

[57] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
as a Scalable DRAM Alternative,” in ISCA, 2009.

[58] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” Commun. ACM, Jul. 2010.

[59] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, Feb.
2010.

[60] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[61] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO,
2016.

[62] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[63] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[64] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Tra�c by Leveraging a Dual-Data-
Port DRAM,” in PACT, 2015.

[65] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-Based Hybrid
Memory Management,” in CLUSTER, 2017.

[66] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2004.
[67] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of

Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Pro�ling Mechanisms,” in ISCA, 2013.

[68] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

[69] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND Flash-Based SSDs via Re-
tention Relaxation,” in FAST, 2012.

[70] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND Flash
Memory Lifetime With Write-Hotness Aware Retention Management,” in MSST,
2015.

[71] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” JSAC, 2016.

[72] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 3D
NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Tem-
perature Awareness,” in HPCA, 2018.

[73] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni,
Y. Li, and C. J. Radens, “Challenges and Future Directions for the Scaling of Dy-
namic Random-Access Memory (DRAM),” IBM J. Research Develop., Mar. 2002.

[74] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A Case for E�-
cient Hardware-Software Cooperative Management of Storage and Memory,” in
WEED, 2013.

[75] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling E�cient and
Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Management,”
IEEE Comput. Archit. Lett., Feb. 2012.

[76] J. Meza, J. Li, and O. Mutlu, “Evaluating Row Bu�er Locality in Future Non-
Volatile Main Memories,” Carnegie Mellon Univ., SAFARI Research Group, Tech.
Rep. TR-SAFARI-2012-002, 2012.

[77] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale Study of Flash Memory
Failures In The Field,” in SIGMETRICS, 2015.

[78] R. Micheloni, Ed., 3D Flash Memories. Dordrecht, Netherlands: Springer Net-
herlands, 2016.

[79] R. Micheloni, S. Aritome, and L. Crippa, “Array Architectures for 3-D NAND
Flash Memories,” Proc. IEEE, Sep. 2017.

[80] N. Mielke, T. Marquart, N.Wu, J.Kessenich, H. Belgal, E. Schares, and F. Triverdi,
“Bit Error Rate in NAND Flash Memories,” in IRPS, 2008.

[81] I. Min, “Enterprise NAND Flash Memory with 1x-nm Technology,” in FMS, 2014.
[82] K. Mizoguchi, T. Takahashi, S. Aritome, and K. Takeuchi, “Data-Retention Cha-

racteristics Comparison of 2D and 3D TLC NAND Flash Memories,” in IMW,
2017.

[83] J. Mukundan, H. Hunter, K.-H. Kim, J. Stuecheli, and J. F. Martínez, “Understan-
ding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems,”
in ISCA, 2013.

[84] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[85] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[86] O. Mutlu, “Error Analysis and Management for MLC NAND Flash Memory,” in

FMS, 2014.
[87] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[88] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM

Scaling and Retention Failure,” Intel Technology Journal, 2013.
[89] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caul�eld, A. Sivasubramaniam,

B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD Failures in Datacenters: What?
When? and Why?” in SYSTOR, 2016.

[90] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-Nonvolatile SSD: Trading Flash
Memory Nonvolatility to Improve Storage System Performance for Enterprise
Applications,” in HPCA, 2012.

[91] N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp,
T. Gri�n, G. Tressler, and A. Walls, “Using adaptive read voltage thresholds to
enhance the reliability of mlc nand �ash memory systems,” in GLSVLSI, 2014.

[92] K. Park et al., “Three-Dimensional 128 Gb MLC Vertical NAND Flash Memory
With 24-WL Stacked Layers and 50 MB/s High-Speed Programming,” J. Solid-
State Circuits, Jan. 2015.

[93] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the
Threshold Voltage Distributions of Sub-20nm NAND Flash Memory,” in GLO-
BECOM, 2014.

[94] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,”
in ISCA, 2017.

[95] S. Phadke and S. Narayanasamy, “MLP Aware Heterogeneous Memory System,”
in DATE, 2011.

10

80

[96] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez,
“Low-Field Amorphous State Resistance and Threshold Voltage Drift in Chalco-
genide Materials,” TED, 2004.

[97] M. K. Qureshi, D. H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[98] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[99] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-O� in Architecting
DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and Practi-
cal Design,” in MICRO, 2012.

[100] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid Memory
Systems,” in ICS, 2011.

[101] B. Schroeder, A. Merchant, and R. Lagisetty, “Reliability of NAND-based SSDs:
What �eld studies tell us,” Proc. IEEE, 2017.

[102] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[103] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[104] L. Shi, K. Wu, M. Zhao, C. J. Xue, D. Liu, and E. H.-M. Sha, “Retention Trimming
for Lifetime Improvement of Flash Memory Storage Systems,” TCAD, 2016.

[105] S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani, and N. Rama-
swamy, “Challenges for High-Density 16Gb ReRAM with 27nm Technology,” in
VLSIC, 2015.

[106] S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, and N. Ra-
maswamy, “A Copper ReRAM Cell for Storage Class Memory Applications,” in
VLSIT, 2014.

[107] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-
ristor Found,” Nature, 2008.

[108] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John, “Elastic Refresh: Techni-
ques to Mitigate Refresh Penalties in High Density Memory,” in MICRO, 2010.

[109] S. Tanakamaru, C. Hung, A. Esumi, M. Ito, K. Li, and K. Takeuchi, “95%-Lower-
BER 43%-Lower-Power Intelligent Solid-State Drive (SSD) With Asymmetric Co-
ding and Stripe Pattern Elimination Algorithm,” in ISSCC, 2011.

[110] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware Placement in
DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM,” in HPCA,
2006.

[111] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, 2012.

[112] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[113] Q. Xiong, F. Wu, Z. Lu, Y. Zhu, Y. Zhou, Y. Chu, C. Xie, and P. Huang, “Charac-
terizing 3D Floating Gate NAND Flash,” in SIGMETRICS, 2017.

[114] K. Yamada, “How to Fix Slow Speeds of Samsung TLC SSDs in Ultrabooks,” http:
//www.makeuseof.com/tag/�x-slow-ultrabook-ssd/, 2015.

[115] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multi-Level Cell Phase-Change Memo-
ries,” TACO, 2014.

[116] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row Bu�er
Locality Aware Caching Policies for Hybrid Memories,” in ICCD, 2012.

[117] J. H. Yoon, “3D NAND Technology: Implications to Enterprise Storage Applica-
tions,” in FMS, 2015.

[118] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
E�cient DRAM Caching via Software/Hardware Cooperation,” in MICRO, 2017.

[119] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die-Stacking
for Power/Thermal Friendly, Fast and Durable Memory Architectures,” in PACT,
2009.

[120] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja, “Memory Module-Level Testing and
Error Behaviors for Phase Change Memory,” in ICCD, 2012.

[121] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main
Memory Using Phase Change Memory Technology,” in ISCA, 2009.

11

81

Read Disturb Errors in MLC NAND Flash Memory

Yu Cai1 Yixin Luo1 Saugata Ghose1 Erich F. Haratsch2 Ken Mai1 Onur Mutlu3,1

1Carnegie Mellon University 2Seagate Technology 3ETH Zürich

This paper summarizes our work on experimentally cha-
racterizing, mitigating, and recovering read disturb errors in
multi-level cell (MLC) NAND �ash memory, which was publis-
hed in DSN 2015 [16], and examines the work’s signi�cance and
future potential. NAND �ash memory reliability continues to
degrade as the memory is scaled down and more bits are pro-
grammed per cell. A key contributor to this reduced reliability
is read disturb, where a read to one row of cells impacts the
threshold voltages of unread �ash cells in di�erent rows of the
same block. Such disturbances may shift the threshold voltages
of these unread cells to di�erent logical states than originally
programmed, leading to read errors that hurt endurance.
For the �rst time in open literature, this work experimen-

tally characterizes read disturb errors on state-of-the-art 2Y-nm
(i.e., 20-24 nm) MLC NAND �ash memory chips. Our �ndings
(1) correlate the magnitude of threshold voltage shifts with
read operation counts, (2) demonstrate how program/erase cycle
count and retention age a�ect the read-disturb-induced error
rate, and (3) identify that lowering pass-through voltage levels
reduces the impact of read disturb and extend �ash lifetime.
Particularly, we �nd that the probability of read disturb errors
increases with both higher wear-out and higher pass-through
voltage levels.
We leverage these �ndings to develop two new techniques.

The �rst technique mitigates read disturb errors by dynamically
tuning the pass-through voltage on a per-block basis. Using real
workload traces, our evaluations show that this technique incre-
ases �ash memory endurance by an average of 21%. The second
technique recovers from previously-uncorrectable �ash errors
by identifying and probabilistically correcting cells susceptible
to read disturb errors. Our evaluations show that this recovery
technique reduces the raw bit error rate by 36%.

1. Introduction
NAND �ash memory currently sees widespread usage as a

storage device, having been incorporated into systems ran-
ging from mobile devices and client computers to data cen-
ter storage, as a result of its increasing capacity and decre-
asing cost per bit. The increasing capacity and lower cost
are mainly driven by aggressive transistor scaling and multi-
level cell (MLC) technology, where a single �ash cell can
store more than one bit of data. However, as NAND �ash
memory capacity increases, �ash memory su�ers from dif-
ferent types of circuit-level noise, which greatly impact its
reliability. These include program/erase cycling noise [8, 9],
cell-to-cell program interference noise [8, 11, 14], retention
noise [8,10,12,13,49,59], and read disturb noise [19,26,59,87].

Among all of these types of noise, read disturb noise has lar-
gely been understudied in the past for MLC NAND �ash,
with no open-literature work available prior to our DSN 2015
paper [16] that characterizes and analyzes the read disturb
phenomenon.

One reason for this prior neglect has been the heretofore
low occurrence of read-disturb-induced errors in older �ash
technologies. In single-level cell (SLC) NAND �ash, read dis-
turb errors were only expected to appear after an average of
one million reads to a single �ash block [26, 54]. Even with
the introduction of MLC NAND �ash, �rst-generation MLC
devices were expected to exhibit read disturb errors after
100,000 reads [29, 54]. As a result of manufacturing process
technology scaling, some modern MLC NAND �ash devices
are now prone to read disturb errors after as few as 20,000
reads, with this number expected to drop even further with
continued scaling [29,54]. The exposure of these read disturb
errors can be exacerbated by the uneven distribution of reads
across �ash blocks in contemporary workloads [65,89], where
certain �ash blocks experience high temporal locality and
can, therefore, more rapidly exceed the read count at which
read disturb errors are induced. We refer the reader to our
prior works for a more detailed background [4, 5, 6, 16].

Read disturb errors are an intrinsic result of the �ash archi-
tecture. Inside each �ash cell, data is stored as the threshold
voltage of the cell, based on the logical value that the cell
represents. As shown in Figure 1, during a read operation
to the cell, a read reference voltage (i.e., Va, Vb, or Vc) is app-
lied to the transistor corresponding to this cell. If this read
reference voltage is higher than the threshold voltage of the
cell, the transistor is turned on. The region in which the
threshold voltage of a �ash cell falls represents the cell’s cur-
rent state, which can be ER (or erased), P1, P2, or P3. Each
state decodes into a 2-bit value that is stored in the �ash cell
(e.g., 11, 10, 00, or 01). Note that the threshold voltage of
all �ash cells in a chip is bounded by an upper limit, Vpass ,
which is the pass-through voltage. More detailed explanations
of how NAND �ash memory cells work and the data reten-
tion errors in NAND �ash memory can be found in our prior
works [4, 5, 6, 10].

Within a �ash block, the transistors of multiple cells, each
from a di�erent �ash page, are tied together as a single bitline,
which is connected to a single output wire. Only one cell is
read at a time per bitline. In order to read one cell (i.e., to
determine whether it is turned on or o�), the transistors for
the cells not being read must be kept on to allow the value from
the cell being read to propagate to the output. This requires

82

Vth

ER
(11)

P1
(10)

P2
(00)

P3
(01)

Va Vb Vc Vpass

Figure 1: Threshold voltage distribution in 2-bit MLC NAND
�ash. Stored data values are represented as the tuple (LSB,
MSB). Reproduced from [16].

the transistors to be powered with a pass-through voltage,
which is a read reference voltage guaranteed to be higher than
any stored threshold voltage (see Figure 1). Though these
other cells are not being read, this high pass-through voltage
induces electric tunneling that can shift the threshold voltages
of these unread cells to higher values, thereby disturbing the
cell contents on a read operation to a neighboring page. As we
scale down the size of �ash cells, the transistor oxide becomes
thinner, which in turn increases this tunneling e�ect. With
each read operation having an increased tunneling e�ect,
it takes fewer read operations to neighboring pages for the
unread �ash cells to become disturbed (i.e., shifted to higher
threshold voltages) and move into a di�erent logical state.

In light of the increasing sensitivity of �ash memory to
read disturb errors, our goal is to (1) develop a thorough un-
derstanding of read disturb errors in state-of-the-art MLC
NAND �ash memories, by performing experimental charac-
terization of such errors on existing commercial 2Y-nm (i.e.,
20-24 nm) �ash memory chips, and (2) develop mechanisms
that can tolerate read disturb errors, making use of insights
gained from our read disturb error characterization. The key
�ndings from our quantitative characterization are:
• The e�ect of read disturb on threshold voltage distributions

and raw bit error rates increases with both the number of re-
ads to neighboring pages and the number of program/erase
cycles on a block.

• Cells with lower threshold voltages are more susceptible
to errors as a result of read disturb.

• As the pass-through voltage decreases, (1) the read disturb
e�ect of each individual read operation becomes smaller,
but (2) the read errors can increase due to reduced ability
in allowing the read value to pass through the unread cells.

• If a page is recently written, a signi�cant margin within the
ECC correction capability (i.e., the total number of bit errors
it can correct for a single read) is unused (i.e., the page
can still tolerate more errors), which enables the page’s
pass-through voltage to be lowered safely).
We exploit these studies on the relation between the read

disturb e�ect and the pass-through voltage (Vpass), to design
two mechanisms that reduce the reliability impact of read dis-
turb. First, we propose a low-cost dynamic mechanism called
Vpass Tuning, which, for each block, �nds the lowest pass-
through voltage that retains data correctness. Vpass Tuning
extends �ash endurance by exploiting the �nding that a lower
Vpass reduces the read disturb error count. Our evaluations
using real workload traces show that Vpass Tuning extends

�ash lifetime by 21%. Second, we propose Read Disturb Reco-
very (RDR), a mechanism that exploits the di�erences in the
susceptibility of di�erent cells to read disturb to extend the ef-
fective correction capability of error-correcting codes (ECC).
RDR probabilistically identi�es and corrects cells suscepti-
ble to read disturb errors. Our evaluations show that RDR
reduces the raw bit error rate by 36%.

2. Characterizing Read Disturb in
Real NAND Flash Memory Chips

We use an FPGA-based NAND �ash testing platform in
order to characterize read disturb on state-of-the-art �ash
chips [4,5,6,7]. We use the read-retry operation present within
MLC NAND �ash devices to accurately read the cell threshold
voltage [4, 5, 6, 9, 10, 11, 12, 14, 15, 22, 69]. As threshold voltage
values are proprietary information, we present our results
using a normalized threshold voltage, where the nominal value
of Vpass is equal to 512 in our normalized scale, and where 0
represents GND.

One limitation of using commercial �ash devices is the in-
ability to alter the Vpass value, as no such interface currently
exists. We work around this by using the read-retry mecha-
nism, which allows us to change the read reference voltage
Vref one wordline at a time. Since both Vpass and Vref are
applied to wordlines, we can mimic the e�ects of changing
Vpass by instead changing Vref and examining the impact on
the wordline being read. We perform these experiments on
one wordline per block, and repeat them over ten di�erent
blocks.

We present our major �ndings below. For a complete des-
cription of all of our observations, we refer the reader to our
DSN 2015 paper [16].

2.1. Quantifying Read Disturb Perturbations
First, we quantify the amount by which read disturb shifts

the threshold voltage, by measuring threshold voltage values
for unread cells after 0, 250K, 500K, and 1 million read ope-
rations to other cells within the same �ash block. Figure 2a
shows the distribution of the threshold voltages for cells in
a �ash block after 0, 250K, 500K, and 1 million read operati-
ons. Figure 2b zooms in on this to illustrate the distribution
for values in the ER state. We �nd that the magnitude of the
threshold voltage shift for a cell due to read disturb (1) increases
with the number of read disturb operations, and (2) is higher if
the cell has a lower threshold voltage.

2.2. E�ect of Read Disturb on Raw Bit Error Rate
Second, we aim to relate these threshold voltage shifts to

the raw bit error rate (RBER), which refers to the probability
of reading an incorrect state from a �ash cell. We measure
whether �ash cells that are more worn out (i.e., cells that
have been programmed and erased more times) are impacted
di�erently due to read disturb. Figure 3 shows the RBER over
an increasing number of read disturb operations for di�erent

2

83

Normalized Threshold Voltage

× 10-3

6

5

4

3

2

1

0
0 50 100 150 200 250 300 350 400 450 500

P
D

F

× 10-4

0.8

1

0.2

0

P
D

F 0.6

0.4

Normalized Vth

20 40 60 80 100

0 (No Read Disturbs)

0.25M Read Disturbs

0.5M Read Disturbs

1M Read Disturbs

ER P1 P2 P3 ER

P1

Figure 2: (a) Threshold voltage distribution of all programmed states before and after read disturb; (b) Threshold voltage
distribution between erased state and P1 state. Reproduced from [16].

× 10-3
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

R
aw

 B
it

 E
rr

o
r

R
at

e
 (

R
B

ER
)

0 20K 40K 60K 80K 100K
Read Disturb Count

P/E Cycles Slope
15K 1.90×10-8

10K 9.10×10-9

8K 7.50×10-9

5K 3.74×10-9

4K 2.37×10-9

3K 1.63×10-9

2K 1.00×10-9

Figure 3: Raw bit error rate vs. read disturb count under dif-
ferent levels of program and erase (P/E) wear. Reproduced
from [16].

amounts of P/E cycle wear (i.e., the amount of wearout in
P/E cycles) on �ash blocks. Each level shows a linear RBER
increase as the read disturb count increases. We �nd that
(1) for a given amount of P/E cycle wear on a block, the raw bit
error rate increases roughly linearly with the number of read
disturb operations, and that (2) the e�ects of read disturb are
greater for cells that have experienced a larger number of P/E
cycles.

2.3. Pass-Through Voltage Impact on
Read Disturb

Third, we show that the cause of read disturb can be re-
duced by reducing (i.e., relaxing) the pass-through voltage
using a circuit-level model of the �ash cell, and verify this
observation using real measurements. Figure 4 shows the
measured change in RBER as a function of the number of
read operations, for selected relaxations of Vpass . Note that
the x-axis uses a log scale. For a �xed number of reads, even a
small decrease in the Vpass value can yield a signi�cant decre-
ase in RBER. As an example, at 100K reads, lowering Vpass by
2% can reduce the RBER by as much as 50%. Conversely, for
a �xed RBER, a decrease in Vpass exponentially increases the
number of tolerable read disturbs. However, decreasing Vpass
can prevent some cells’ values from propagating correctly
along the bitline on a read, as an unread �ash cell transistor
may be incorrectly turned o�, thus generating new errors.

× 10-3

R
B

ER

1.6

1.4

1.2

1.0

0.8

0.6

104 105 108 109

Read Disturb Count
106 107

94% Vpass

95% Vpass

96% Vpass

97% Vpass

98% Vpass

99% Vpass

100% Vpass

0.4

94%95%96%97%98%99%100%

Figure 4: Raw bit error rate vs. read disturb count for di�e-
rent Vpass values, for �ash memory under 8K program/erase
cycles of wear. Reproduced from [16].

Unlike read disturb errors, these bitline propagation errors
(or read errors) do not alter the threshold voltage of the �ash
cell.

2.4. E�ect of Pass-Through Voltage on
Raw Bit Error Rate

Fourth, setting Vpass to a value slightly lower than the
maximum Vth leads to a trade-o�. On the one hand, it can
substantially reduce the e�ects of read disturb. On the other
hand, it causes a small number of unread cells to incorrectly
stay o� instead of passing through a value, potentially leading
to a read error. Therefore, if the number of read disturb errors
can be dropped signi�cantly by lowering Vpass , the small
number of read errors introduced may be warranted. If too
many read errors occur, we can always fall back to using the
maximum threshold voltage for Vpass without consequence.
Naturally, this trade-o� depends on the magnitude of these
error rate changes. We now explore the gains and costs, in
terms of overall RBER, for relaxing Vpass below the maximum
threshold voltage of a block.

To identify the extent to which relaxing Vpass a�ects the
raw bit error rate, we experimentally sweep over Vpass , re-
ading the data after a range of di�erent retention ages, as
shown in Figure 5. First, we observe that across all of our
studied retention ages, Vpass can be lowered to some degree wit-
hout inducing any read errors. For greater relaxations, though,

3

84

the error rate increases as more unread cells are incorrectly
turned o� during read operations. We also note that, for a
given Vpass value, the additional read error rate is lower if the
read is performed a longer time after the data is programmed
into the �ash (i.e., if the retention age is longer). This is because
of the retention loss e�ect, where cells slowly leak charge
and thus have lower threshold voltage values over time. Na-
turally, as the threshold voltage of every cell decreases, a
relaxed Vpass becomes more likely to correctly turn on the
unread cells.

× 10-3

A
d

d
l.

 R
B

ER
 D

u
e

 t
o

 R
e

la
xe

d
 V

p
as

s

Relaxed Vpass

0.75

0.5

0.25

480 485 490 495 500 505 510

1.0

0-day
1-day
2-day
6-day
9-day
17-day
21-day

0

Figure 5: Additional raw bit error rate induced by relaxing
Vpass , shown across a range of data retention ages. Reprodu-
ced from [16].

2.5. Error Correction with Reduced
Pass-Through Voltage

Fifth, while we have shown, in Section 3.6 of our DSN
2015 paper [16], that Vpass can be lowered to some degree
without introducing new raw bit errors, we would ideally
like to further decrease Vpass to lower the read disturb impact
more. This can enable �ash devices to tolerate many more
reads. The ECC used for NAND �ash memory can tolerate
an RBER of up to 10–3 [12, 13], which occurs only during
worst-case conditions such as long retention time. Our goal
is to identify how many additional raw bit errors the current
level of ECC provisioning in �ash chips can sustain. Figure 6
shows how the expected RBER changes over a 21-day period
for our tested �ash chip without read disturb, using a block
with 8,000 P/E cycles of wear. An RBER margin (20% of the
total ECC correction capability) is reserved to account for
variations in the distribution of errors and other potential
errors (e.g., program and erase errors). For each retention
age, the maximum percentage of safe Vpass reduction (i.e.,
the lowest value of Vpass at which all read errors can still
be corrected by ECC) is listed on the top of Figure 6. As we
can see, by exploiting the previously-unused ECC correction
capability, Vpass can be safely reduced by as much as 4% when
the retention age is low (less than 4 days).

Our key insight from this study is that a lowered Vpass
can reduce the e�ects of read disturb, and that the read errors
induced from lowering Vpass can be tolerated by the built-in
error correction mechanism within modern �ash controllers.
More results and more detailed analysis are in our DSN 2015
paper [16].

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
N-day Retention

1.0

0.8

0.6

0.4

0.2

0

R
B
ER

× 10-3

4% Vpass

Reduction
3% Vpass

Reduction
2% Vpass

Reduction
1% Vpass

Reduction
No Vpass

Reduction

Reserved Margin

ECC Correction Capability

Figure 6: Overall raw bit error rate and tolerable Vpass re-
duction vs. retention age, for a �ash block with 8K P/E cycles
of wear. Reproduced from [16].

3. Mitigation: Pass-Through Voltage Tuning
To minimize the e�ect of read disturb, we propose a me-

chanism called Vpass Tuning, which learns the minimum pass-
through voltage for each block, such that all data within the
block can be read correctly with ECC. Figure 7 provides an
exaggerated illustration of how the unused ECC capability
changes over the retention period (i.e., the refresh interval).
At the start of each retention period, there are no retention
errors or read disturb errors, as the data has just been resto-
red. In these cases, the large unused ECC capability allows us
to design an aggressive read disturb mitigation mechanism,
as we can safely introduce correctable errors. Thanks to read
disturb mitigation, we can reduce the e�ect of each individual
read disturb, thus lowering the total number of read disturb
errors accumulated by the end of the refresh interval. This
reduction in read disturb error count leads to lower error
count peaks at the end of each refresh interval, as shown in
Figure 7 by the distance between the solid black line and the
dashed red line. Since �ash lifetime is dictated by the number
of data errors (i.e., when the total number of errors exceeds
the ECC correction capability, the �ash device has reached
the end of its life), lowering the error count peaks extends
lifetime by extending the time before these peaks exhaust the
ECC correction capability.

Er
ro

r
R

at
e

Time

Refresh Interval

Error Reduc�on
from Mi�ga�onBlock Refreshed

ECC Correc�on Capability

Figure 7: Exaggerated example of how read disturb mitiga-
tion reduces error rate peaks for each refresh interval. Solid
black line is the unmitigated error rate, and dashed red line is
the error rate after mitigation. (Note that the error rate does
not include read errors introduced by reducing Vpass , as the
unused error correction capability can tolerate errors caused
by Vpass Tuning.) Reproduced from [16].

Our learning mechanism works online and is triggered on
a daily basis. Vpass Tuning can be fully implemented within
the �ash controller, and has two components:

4

85

1. It �rst �nds the size of the ECC margin M (i.e., the unused
correction capability within ECC) that can be exploited to
tolerate additional read errors for each block. In order to do
this, our mechanism discovers the page with approximately
the highest number of raw bit errors.

2. Once it knows the available margin M , our mechanism
calibrates the pass-through voltage Vpass on a per-block
basis to �nd the lowest value of Vpass that introduces no
more than M additional raw errors.
The �rst component of our mechanism must �rst approxi-

mately discover the page with the highest error count, which
we call the predicted worst-case page. After manufacturing,
we statically �nd the predicted worst-case page by program-
ming pseudo-randomly generated data to each page within
the block, and then immediately reading the page to �nd the
error count, as prior work on error analysis has done [8]. For
each block, we record the page number of the page with the
highest error count. Our mechanism obtains the error count,
which we de�ne as our maximum estimated error (MEE), by
performing a single read to this page and reading the er-
ror count provided by ECC (once a day). We conservatively
reserve 20% of the spare ECC correction capability in our
calculations. Thus, if the maximum number of raw bit er-
rors correctable by ECC is C, we calculate the available ECC
margin for a block as M = (1 – 0.2) × C – MEE.

The second component of our mechanism identi�es the
greatest Vpass reduction that introduces no more than M raw
bit errors. The general Vpass identi�cation process requires
three steps:
Step 1: Aggressively reduce Vpass to Vpass – ∆, where ∆ is the
smallest resolution by which Vpass can change.
Step 2: Apply the new Vpass to all wordlines in the block.
Count the number of 0’s read from the page (i.e., the number
of bitlines incorrectly switched o�) as N . If N ≤ M (recall
that M is the extra available ECC correction margin), the
read errors resulting from this Vpass value can be corrected by
ECC, so we repeat Steps 1 and 2 to try to further reduce Vpass .
If N > M , it means we have reduced Vpass too aggressively,
so we proceed to Step 3 to roll back to an acceptable value of
Vpass .
Step 3: Increase Vpass to Vpass + ∆, and verify that the intro-
duced read errors can be corrected by ECC (i.e., N ≤ M). If
this veri�cation fails, we repeat Step 3 until the read errors
are reduced to an acceptable range.

The implementation can be simpli�ed greatly in practice,
as the error rate changes are relatively slow over time. Over
the course of the seven-day refresh interval, our mechanism
must perform one of two actions each day:
Action 1: When a block is not refreshed, our mechanism
checks once daily if Vpass should increase, to accommodate the
slowly-increasing number of errors due to dynamic factors
(e.g., retention errors, read disturb errors).

Action 2: When a block is refreshed, all retention and read
disturb errors accumulated during the previous refresh inter-
val are corrected. At this time, our mechanism checks how
much Vpass can be lowered by.

Our mechanism repeats the Vpass identi�cation process for
each block that contains valid data to learn the minimum pass-
through voltage we can use. It also repeats the entire Vpass
learning process daily to adapt to threshold voltage chan-
ges due to retention loss [11, 14]. As such, the pass-through
voltage of all blocks in a �ash drive can be �ne-tuned con-
tinuously to reduce read disturb and thus improve overall
�ash lifetime. Our DSN 2015 paper [16] describes this me-
chanism in more detail, and discusses a fallback mechanism
for extreme cases where the additional errors accumulating
between tunings exceed our 20% margin of unused error cor-
rection capability. For more detail, we refer the reader to
Section 4 of our DSN 2015 paper [16].

Our mechanism can reduce Vpass by as much as 4%.
Through a series of optimizations, described in more detail in
Section 4 of our DSN 2015 paper [16], it only incurs an average
daily performance overhead of 24.34 sec for a 512GB SSD,
and uses only 128KB storage overhead to record per-block
data.

We evaluate Vpass Tuning with I/O traces collected from a
wide range of real workloads with di�erent use cases [38, 43,
65, 83, 89]. Figure 8 shows how our mechanism can increase
the endurance (measured as the number of program/erase
cycles that take place before the NAND �ash memory can
no longer be used). We �nd that for a variety of our wor-
kloads, our Vpass tuning mechanism increases �ash memory
endurance by an average of 21.0%, thanks to its success in
reducing the number of raw bit errors that occur due to read
disturb.

0
2000
4000
6000
8000

10000
12000

P/
E

C
yc

le
 E

n
d

u
ra

n
ce Baseline Vpass TuningVpass Tuning

Figure 8: Endurance improvement with Vpass Tuning. Repro-
duced from [16].

4. Read Disturb Oriented Error Recovery
Even if we mitigate the impact of read disturb errors, a

�ash device will eventually exhaust its lifetime. At that point,
some reads will have more raw errors to correct than can be
corrected by ECC, preventing the drive from returning the
correct data to the user. Traditionally, this is referred to as
the point of data loss.

We propose to take advantage of our understanding of
read disturb behavior, by designing a mechanism that can
recover data even after the device has exceeded its lifetime.

5

86

This mechanism, which we call Read Disturb Recovery (RDR),
(1) identi�es �ash cells that are susceptible to generating errors
due to read disturb (i.e., disturb-prone cells), and (2) probabi-
listically corrects the data stored in these cells without the
assistance of ECC. After these probabilistic corrections, the
number of errors for a read will be brought back down, to a
point at which ECC can successfully correct the remaining
errors and return valid data to the user.

To understand why identifying disturb-prone cells can
help with correcting errors, we study why read disturb errors
occur to begin with. Figure 9a shows the state of four �ash
cells before read disturb happens. The two blue cells are
both programmed with a two-bit value of 11, and the two
red cells are programmed with a two-bit value of 00, with
each two-bit value being assigned to a di�erent range of
threshold voltages (Vth). Between each assigned range is
a margin. When read disturb occurs, the blue cells, which
are disturb-prone, experience large Vth shifts upwards, while
the blue cells, which are disturb-resistant, do not shift much,
as shown in Figure 9b. Now that the distributions of these
two-bit values overlap, a read error will occur for these four
cells.

Vth

ER
(11)

P1
(10)

Va

Vth

ER
(11)

P1
(10)

Va

(a) No read disturb (b) After some read disturb

Figure 9: Vth distributions before and after read disturb. Re-
produced from [16].

Identifying Susceptible Cells. In order to identify
susceptible cells, RDR induces a signi�cant number of ad-
ditional read disturbs (e.g., 100K) within the �ash cells that
contain uncorrectable errors. We do this by characterizing
the degree of the threshold voltage shift (∆Vth) induced by
the additional read disturbs, and comparing the shift to a delta
threshold voltage (∆Vref) at the intersection of the two proba-
bility density functions. We classify cells with a higher thres-
hold voltage change (∆Vth > ∆Vref) as disturb-prone cells.
We classify cells with a lower or negative threshold voltage
change (∆Vth < ∆Vref) as disturb-resistant cells. Section 5.2
of our DSN 2015 paper [16] provides more detailed results
and analysis of disturb-prone and disturb-resistant cells.

Correcting Susceptible Cells. For �ash cells with thres-
hold voltages close to the boundary between two di�erent
data values, RDR predicts that the disturb-prone cells belong
to the lower of the two voltage distributions (ER in Figure 9).
Likewise, disturb-resistant cells near the boundary likely be-
long to the higher voltage distribution (P1 in Figure 9). This
does not eliminate all errors, but decreases the raw bit errors
in disturb-prone cells. RDR attempts to correct the remai-
ning raw bit errors using ECC. Section 5.3 of our DSN 2015
paper [16] provides more detail on the RDR mechanism.

We evaluate how the overall RBER changes when we use
RDR. Fig. 10 shows experimental results for error recovery in
a �ash block with 8,000 P/E cycles of wear. When RDR is app-
lied, the reduction in overall RBER grows with the read disturb
count, from a few percent for low read disturb counts up to 36%
for 1 million read disturb operations. As data experiences a
greater number of read disturb operations, the read disturb
error count contributes to a signi�cantly larger portion of
the total error count, which our recovery mechanism targets
and reduces. We therefore conclude that RDR can provide a
large e�ective extension of the ECC correction capability.

× 10-3

12

10

8

6

4

2

0

R
B

ER

Read Disturb Count
0 0.2M 0.4M 0.6M 0.8M 1M

No Recovery RDR

Figure 10: Raw bit error rate vs. number of read disturb ope-
rations, with and without RDR, for a �ash block with 8,000
P/E cycles of wear. Reproduced from [16].

5. Related Work
We break down related work on NAND �ash memory

(Section 5.1) into six major categories: (1) read disturb error
characterization, (2) NAND �ash memory error characteri-
zation, (3) 3D NAND error characterization, (4) read disturb
error mitigation, (5) voltage optimization, and (6) error reco-
very. We then introduce related work on read disturb errors
in DRAM (Section 5.2) and emerging memory technologies
(Section 5.3).

5.1. Related Works on NAND Flash Memory
Read Disturb Error Characterization. Prior to this

work [16], the read disturb phenomenon for NAND �ash
memory has not been well explored in openly-available li-
terature. Prior work [42] experimentally characterizes and
proposes solutions for read disturb errors in DRAM. The me-
chanisms for disturbance and techniques to mitigate them
are di�erent between DRAM and NAND �ash due to device-
level di�erences [61]. Recent work has characterized concen-
trated read disturb e�ect and �nd that there are more read
disturb errors on the direct neighbors to the page being re-
peatedly read [97]. Recent work has found that read disturb
errors signi�cantly reduce the reliability of unprogrammed
and partially-programmed wordlines within a �ash block,
and can cause security vulnerabilities [15, 67]. These unpro-
grammed and partially programmed wordlines have lower
threshold voltages (e.g., all cells in unprogrammed wordlines
are in erased state), they are more sensitive to read disturb ef-
fect. When the wordlines are fully-programmed, NAND �ash
memory chip cannot correct any of these read disturb errors
and thus program the misread �ash cells into an incorrect
state.

6

87

NAND Flash Memory Error Characterization. There
are many past works from us and other research groups that
analyze many di�erent types of NAND �ash memory er-
rors in MLC, planar NAND �ash memory, including P/E cy-
cling errors [9, 52, 59, 68, 72], programming errors [15, 52, 72],
cell-to-cell program interference errors [9, 11, 14], retention
errors [9, 10, 12, 59, 68], and read disturb errors [16, 59, 68],
and propose many di�erent mitigation mechanisms. These
works complement our DSN 2015 paper. A survey of these
works (and many other related ones) can be found in our
recent works [4, 5, 6]. These works characterize how raw bit
error rate and threshold voltage change over various types
of noise. Our recent work characterizes the same types of
errors in TLC, planar NAND �ash memory and has similar
�ndings [4,5,6]. Thus, we believe that most of the �ndings on
MLC NAND �ash memory can be generalized to any types
of planar NAND �ash memory devices (e.g., SLC, MLC, TLC,
or QLC). Recent work has also studied SSD errors in the �eld,
and has shown the system-level implications of these errors
to large-scale data centers [56, 66, 77].
3D NAND Error Characterization. Recently, manu-

facturers have begun to produce SSDs that contain three-
dimensional (3D) NAND �ash memory [33, 37, 57, 58, 70, 96].
In 3D NAND �ash memory, multiple layers of �ash cells are
stacked vertically to increase the density and to improve
the scalability of the memory [96]. In order to achieve this
stacking, manufacturers have changed a number of under-
lying properties of the �ash memory design. However, the in-
ternal organization of a �ash block remains unchanged. Thus,
read disturb errors are similar in 3D NAND �ash memory.
But the rate of read disturb errors are signi�cantly reduced
in today’s 3D NAND because it currently uses a larger manu-
facturing process technology [23, 25]. We refer the reader to
our prior work for a more detailed comparison between 3D
NAND and planar NAND [4, 5, 6]. Recent work characterizes
the latency and raw bit error rate of 3D NAND devices based
on �oating gate cells [94] and make similar observations as
in planar NAND devices based on �oating gate cells. Recent
work has reported several di�erences between 3D NAND
and planar NAND through circuit level measurements. These
di�erences include 1) smaller program variation at high P/E
cycle [70], 2) smaller program interference [70], 3) early re-
tention loss [17, 17, 60]. We characterize the impact of dwell
time, i.e., idle time between consecutive program cycles, and
environment temperature on the retention loss speed and pro-
gramming accuracy in 3D charge trap NAND �ash cells [53].
The �eld (both academia and industry) is currently in much
need of rigorous experimental characterization and analysis
of 3D NAND �ash memory devices.
Read Disturb Error Mitigation. Prior work proposes to

mitigate read disturb errors by caching recently read data to
avoid a read operation [85]. Prior work also proposes to miti-
gate read disturb errors using an idea similar to remapping-
based refresh [12], known as read reclaim. The key idea

of read reclaim is to remap the data in a block to a new
�ash block, if the block has experienced a high number of re-
ads [21,29,30,40]. To bound the number of read disturb errors,
some �ash vendors specify a maximum number of tolerable
reads for a �ash block, at which point read reclaim rewrites
the data to a new block (just as is done for remapping- based
refresh).

Two mechanisms are currently being implemented within
Ya�s (Yet Another Flash File System) to handle read disturb
errors, though they are not yet available [54]. The �rst mecha-
nism is similar to read reclaim [29], where a block is rewritten
after a �xed number of page reads are performed to the block
(e.g., 50,000 reads for an MLC chip). The second mechanism
periodically inserts an additional read (e.g., a read every 256
block reads) to a page within the block, to check whether that
page has experienced a read disturb error, in which case the
page is copied to a new block.

Recent work proposes to remap read-hot pages to blocks
con�gured as SLC, which are resistant to read disturb [48,100].
Ha et al. combine this read-hot page mapping technique with
our Vpass Tuning technique and read reclaim [30] to further
reduce read disturb errors. This shows that the techniques
proposed by prior work are orthogonal to our read disturb
mitigation techniques, and can be combined with our work
for even greater protection.
Voltage Optimization. While the pass-through voltage

optimization is speci�c to read disturb error mitigation, a
few works that propose optimizing the read reference voltage
have the same spirit [11, 14, 68]. Cai et al. propose a techni-
que to calculate the optimal read reference voltage from the
mean and variance of the threshold voltage distributions [14],
which are characterized by the read-retry technique [9]. The
cost of such a technique is relatively high, as it requires perio-
dically reading �ash memory with all possible read reference
voltages to discover the threshold voltage distributions. Pa-
pandreou et al. propose to apply a per-block close-to-optimal
read reference voltage by periodically sampling and avera-
ging 6 OPTs within each block, learned by exhaustively trying
all possible read reference voltages [68]. In contrast, ROR
can �nd the actual optimal read reference voltage at a much
lower latency, thanks to the new �ndings and observations
in our DSN 2015 paper [10]. We already showed in our DSN
2015 paper that ROR greatly outperforms naive read-retry,
which is signi�cantly simpler than the mechanism proposed
in [68].

Recently, Luo et al. propose to accurately predict the op-
timal read reference voltage using an online �ash channel
model for each chip learned online [52]. Cai et al. proposes
a new technique called Vpass tuning, which tunes the pass-
through voltage, i.e., a high reference voltage applied to turn
on unread cells in a block, to mitigate read disturb errors [16].
Du et al. proposes to tune the optimal read reference volta-
ges for ECC code soft decoding to improve ECC correction
capability [20]. Fukami et al. proposes to use read-retry to

7

88

improve the reliability of chip-o� forensic analysis of NAND
�ash memory devices [22].
Error Recovery. To our knowledge, no prior work other

than our DSN 2015 paper can recover the data from an uncor-
rectable error that is beyond the error correction capability
of ECC caused by read disturb [16]. We have proposed a
mechanism called RFR to opportunistically recover from un-
correctable data retention errors [4, 5, 6, 16]. RFR, similar to
RDR proposed in this work, identi�es fast- and slow-leaking
cells, rather than disturb-prone and disturb-resistant cells,
and probabilistically correct uncorrectable retention errors
o�ine.

5.2. Read Disturb Errors in DRAM
Commodity DRAM chips that are sold and used in the �eld

today exhibit read disturb errors [42], also called RowHam-
mer-induced errors [61], which are conceptually similar to
the read disturb errors found in NAND �ash memory. Repe-
atedly accessing the same row in DRAM can cause bit �ips
in data stored in adjacent DRAM rows. In order to access
data within DRAM, the row of cells corresponding to the
requested address must be activated (i.e., opened for read
and write operations). This row must be precharged (i.e., clo-
sed) when another row in the same DRAM bank needs to be
activated. Through experimental studies on a large number
of real DRAM chips, we show that when a DRAM row is
activated and precharged repeatedly (i.e., hammered) enough
times within a DRAM refresh interval, one or more bits in
physically-adjacent DRAM rows can be �ipped to the wrong
value [42].

We tested 129 DRAM modules manufactured by three
major manufacturers (A, B, and C) between 2008 and 2014,
using an FPGA-based experimental DRAM testing infrastruc-
ture [31] (more detail on our experimental setup, along with
a list of all modules and their characteristics, can be found in
our original RowHammer paper [42]). Figure 11 shows the
rate of RowHammer errors that we found, with the 129 modu-
les that we tested categorized based on their manufacturing
date. We �nd that 110 of our tested modules exhibit RowHam-
mer errors, with the earliest such module dating back to 2010.
In particular, we �nd that all of the modules manufactured
in 2012–2013 that we tested are vulnerable to RowHammer.
Like with many NAND �ash memory error mechanisms, es-
pecially read disturb, RowHammer is a recent phenomenon
that especially a�ects DRAM chips manufactured with more
advanced manufacturing process technology generations.

Figure 12 shows the distribution of the number of rows
(plotted in log scale on the y-axis) within a DRAM module
that �ip the number of bits along the x-axis, as measured for
example DRAM modules from three di�erent DRAM manu-
facturers [42]. We make two observations from the �gure.
First, the number of bits �ipped when we hammer a row
(known as the aggressor row) can vary signi�cantly within
a module. Second, each module has a di�erent distribution

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Figure 11: RowHammer error rate vs. manufacturing dates
of 129 DRAMmodules we tested. Reproduced from [42].

of the number of rows. Despite these di�erences, we �nd
that this DRAM failure mode a�ects more than 80% of the
DRAM chips we tested [42]. As indicated above, this read
disturb error mechanism in DRAM is popularly called Row-
Hammer [61].

0 10 20 30 40 50 60 70 80 90 100 110 120
Victim Cells per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 12: Number of victim cells (i.e., number of bit errors)
when an aggressor row is repeatedly activated, for three re-
presentative DRAM modules from three major manufactu-
rers. We label the modules in the format Xyyww

n , where X is
the manufacturer (A, B, or C), yyww is the manufacture year
(yy) and week of the year (ww), and n is the number of the
selected module. Reproduced from [42].

Various recent works show that RowHammer can be
maliciously exploited by user-level software programs to
(1) induce errors in existing DRAM modules [42, 61] and
(2) launch attacks to compromise the security of various sy-
stems [2, 3, 27, 28, 34, 61, 74, 76, 78, 79, 90, 93]. For example,
by exploiting the RowHammer read disturb mechanism, a
user-level program can gain kernel-level privileges on real
laptop systems [78, 79], take over a server vulnerable to Ro-
wHammer [28], take over a victim virtual machine running
on the same system [2], and take over a mobile device [90].
Thus, the RowHammer read disturb mechanism is a prime
(and perhaps the �rst) example of how a circuit-level failure
mechanism in DRAM can cause a practical and widespread
system security vulnerability.

Note that various solutions to RowHammer exist [41,42,61],
but we do not discuss them in detail here. Our recent
work [61] provides a comprehensive overview. A very pro-
mising proposal is to modify either the memory controller
or the DRAM chip such that it probabilistically refreshes the
physically-adjacent rows of a recently-activated row, with
very low probability. This solution is called Probabilistic Ad-

8

89

jacent Row Activation (PARA) [42]. Our prior work shows
that this low-cost, low-complexity solution, which does not
require any storage overhead, greatly closes the RowHammer
vulnerability [42].

The RowHammer e�ect in DRAM worsens as the manufac-
turing process scales down to smaller node sizes [42,61,62,63].
More �ndings on RowHammer, along with extensive expe-
rimental data from real DRAM devices, can be found in our
prior works [41, 42, 61].

5.3. Errors in Emerging Memory Technologies

Emerging nonvolatile memories [55], such as phase-change
memory (PCM) [45, 46, 47, 75, 92, 95, 99], spin-transfer torque
magnetic RAM (STT-RAM or STT-MRAM) [44, 64], metal-
oxide resistive RAM (RRAM) [91], and memristors [18, 84], are
expected to bridge the gap between DRAM and NAND-�ash-
memory-based SSDs, providing DRAM-like access latency
and energy, and at the same time SSD-like large capacity and
nonvolatility (and hence SSD-like data persistence). While
their underlying designs are di�erent from DRAM and NAND
�ash memory, these emerging memory technologies have
been shown to exhibit similar types of errors.

PCM-based devices are expected to have a limited lifetime,
as PCM can only endure a certain number of writes [45,75,92],
similar to the P/E cycling errors in SSDs (though PCM’s write
endurance is higher than that of SSDs). PCM su�ers from
(1) resistance drift [32, 73, 92], where the resistance used to
represent the value becomes higher over time (and eventu-
ally can introduce a bit error), similar to how charge leakage
in NAND �ash memory and DRAM lead to retention errors
over time; and (2) write disturb [35], where the heat gene-
rated during the programming of one PCM cell dissipates
into neighboring cells and can change the value that is stored
within the neighboring cells, similar in concept to cell-to-cell
program interference in NAND �ash memory.

STT-RAM su�ers from (1) retention failures, where the
value stored for a single bit (as the magnetic orientation of
the layer that stores the bit) can �ip over time [36,82,86]; and
(2) read disturb (a conceptually di�erent phenomenon from
the read disturb in DRAM and �ash memory), where reading
a bit in STT-RAM can inadvertently induce a write to that
same bit [64].

Due to the nascent nature of emerging nonvolatile memory
technologies and the lack of availability of large-capacity de-
vices built with them, extensive and dependable experimental
studies have yet to be conducted on the reliability of real PCM,
STT-RAM, RRAM, and memristor chips. However, we believe
that error mechanisms conceptually or abstractly similar to
those for �ash memory and DRAM are likely to be preva-
lent in emerging technologies as well (as supported by some
recent studies [1, 35, 39, 64, 80, 81, 98]), albeit with di�erent
underlying mechanisms and error rates.

6. Signi�cance
Our DSN 2015 paper [16] is the �rst openly-available

work to (1) characterize the impact of read disturb errors
on commercially-available NAND �ash memory devices, and
(2) propose novel solutions to the read disturb errors that
minimize them or recover them after error occurrence. We
believe that our characterization results, analyses, and me-
chanisms can have a wide impact on future research on read
disturb and NAND �ash memory reliability.

6.1. Long-Term Impact

As �ash devices continue to become more pervasive,
there is renewed concern about the fewer number of wri-
tes that these �ash devices can endure as they continue to
scale [19, 29, 54]. This lower write endurance is a result of
the larger number of errors introduced from manufacturing
process technology scaling, and the use of multi-level cell
technology. Today’s planar NAND �ash devices can endure
only on the order of 100 program and erase cycles [71] wit-
hout the assistance of aggressive error mitigation techniques
such as data refresh [12, 50].

While there are several solutions for other types of NAND
�ash memory errors, read disturb has in the past been largely
neglected because it has only become a signi�cant problem
at these smaller process technology nodes [29, 54]. Our work
has the potential to change this relative lack of attention to
read disturb for several reasons:
• We demonstrate on existing devices that read disturb is a

signi�cant problem today, and that it contributes a large
number of errors that further reduce NAND �ash memory
endurance.

• We provide key insights as to why these errors occur, as
well as why they will only worsen as technology scaling
progresses.

• We show that it is possible to develop lightweight solutions
that can alleviate the impact of read disturb.
Unfortunately, unless error mitigation techniques for read

disturb are deployed in production NAND �ash memory,
read disturb will continue to negatively impact �ash lifetime.
While today’s 3D NAND �ash devices use larger process
technologies that are less prone to read disturb e�ects [6,
51], future 3D NAND �ash chips are expected to return to
using smaller process technologies that remain susceptible
to read disturb, as manufacturers continue to aggressively
increase �ash device densities [24, 88, 96]. With �ash devices
expected to remain a large component of the storage market
for the foreseeable future, and with continued demand for
higher �ash densities, we expect that our work on read disturb
can inspire manufacturers and researchers to adopt e�ective
solutions to the read disturb problem.

The recovery mechanism that we propose, RDR, provides a
new protective scheme for data storage that people have not
considered before. Today, an increasingly larger volume of

9

90

data is stored in data centers belonging to cloud service pro-
viders, who must provide a strong guarantee of data integrity
for their end users. With �ash storage continuing to expand
in data centers [56, 66, 77], RDR (as well as other recovery
solutions that RDR might inspire) can reduce the probabi-
lity of unrecoverable data loss for high-density storage. In
fact, the availability of a recovery mechanism like RDR can
also in�uence more data centers to adopt �ash memory for
storage.

6.2. New Research Directions
In our DSN 2015 paper [16], we present a number of new

quantitative results on the impact of read disturb errors on
NAND �ash reliability, as well as how several key factors af-
fect the number of errors induced by read disturb, such as the
pass-through voltage, the number of program/erase cycles,
and the retention age. Such a detailed characterization was
not openly available in the past. We believe that by releasing
our characterization data, researchers in both academia and
industry will be able to use the data to develop further mecha-
nisms for read disturb recovery and mitigation. In addition,
by exposing the importance of the read disturb problem in
contemporary NAND �ash devices, we expect that our work
will draw more attention to the problem, and will inspire
other researchers to further characterize and understand the
read disturb phenomenon.

In fact, one of our recent works builds on our DSN 2015
paper and shows that read disturb errors can potentially cause
security vulnerabilities in modern SSDs [15].

We also expect that RDR, our recovery approach, will in-
spire researchers to design other data recovery mechanisms
for NAND �ash memory that also leverage the intrinsic pro-
perties of �ash devices. To our knowledge, our new data
recovery mechanism is the �rst to do so, by discovering and
exploiting the variation in read disturb shifts that arise from
the underlying process variation within a �ash chip.

7. Conclusion
We provide the �rst detailed experimental characterization

of read disturb errors for 2Y-nm MLC NAND �ash memory
chips. We �nd that bit errors due to read disturb are much
more likely to take place in cells with lower threshold volta-
ges, as well as in cells with greater wear. We also �nd that
reducing the pass-through voltage can e�ectively mitigate
read disturb errors. Using these insights, we propose (1) a mi-
tigation mechanism, called Vpass Tuning, which dynamically
adjusts the pass-through voltage for each �ash block online
to minimize read disturb errors, and (2) an error recovery
mechanism, called Read Disturb Recovery, which exploits the
di�erences in susceptibility of di�erent cells to read disturb,
to probabilistically correct read disturb errors. We hope that
our characterization and analysis of the read disturb pheno-
menon enables the development of other error mitigation
and tolerance mechanisms, which will become increasingly

necessary as continued �ash memory scaling leads to greater
susceptibility to read disturb. We also hope that our results
will motivate NAND �ash manufacturers to add pass-through
voltage controls to next-generation chips, allowing �ash con-
troller designers to exploit our �ndings and design controllers
that tolerate read disturb more e�ectively.

Acknowledgments
We thank the anonymous reviewers for their feedback.

This work is partially supported by the Intel Science and
Technology Center, the CMU Data Storage Systems Center,
and NSF grants 0953246, 1065112, 1212962, and 1320531.

References
[1] A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, and E. Elefther-

iou, “Multilevel-Cell Phase-Change Memory: A Viable Technology,” JETCAS,
2016.

[2] E. Bosman, K. Razavi, H. Bos, and C. Gui�rida, “Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector,” in SP, 2016.

[3] W. Burleson, O. Mutlu, and M. Tiwari, “Who is the Major Threat to Tomorrow’s
Security? You, the Hardware Designer,” in DAC, 2016.

[4] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
Sep. 2017.

[5] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[6] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[7] Y. Cai, E. F. Haratsch, M. P. McCartney, and K. Mai, “FPGA-Based Solid-State
Drive Prototyping Platform,” in FCCM, 2011.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[9] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution
in NAND Flash Memory: Characterization, Analysis, and Modeling,” in DATE,
2013.

[10] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[11] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[12] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime,” in
ICCD, 2012.

[13] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Error
Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal (ITJ), 2013.

[14] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai, “Neig-
hbor Cell Assisted Error Correction in MLC NAND Flash Memories,” in SIGME-
TRICS, 2014.

[15] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[16] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND Flash
Memory: Characterization, Mitigation, and Recovery,” in DSN, 2015.

[17] B. Choi et al., “Comprehensive Evaluation of Early Retention (Fast Charge Loss
Within a Few Seconds) Characteristics in Tube-Type 3-D NAND Flash Memory,”
in VLSIT, 2016.

[18] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[19] J. Cooke, “The Inconvenient Truths of NAND Flash Memory,” Flash Memory

Summit, 2007.
[20] Y. Du, Q. Li, L. Shi, D. Zou, H. Jin, and C. J. Xue, “Reducing LDPC Soft Sensing

Latency by Lightweight Data Refresh for Flash Read Performance Improvement,”
in DAC, 2017.

[21] H. H. Frost, C. J. Camp, T. J. Fisher, J. A. Fuxa, and L. W. Shelton, “E�cient
Reduction of Read Disturb Errors in NAND Flash Memory,” U.S. Patent 7,818,525,
2010.

[22] A. Fukami, S. Ghose, Y. Luo, Y. Cai, and O. Mutlu, “Improving the Reliability of
Chip-O� Forensic Analysis of NAND Flash Memory Devices,” Digital Investiga-
tion, vol. 20, pp. S1–S11, 2017.

[23] T. G. Gary Tressler and P. Breen, “Read Disturb Characterization for Next-
Generation Flash Systems ,” in Flash Memory Summit, 2015.

10

91

[24] A. Goda and K. Parat, “Scaling Directions for 2D and 3D NAND Cells,” in IEDM,
2012.

[25] A. Grossi, C. Zambelli, and P. Olivo, “Reliability of 3D NAND Flash Memories,”
in 3D Flash Memories. Springer, 2016, pp. 29–62.

[26] L. M. Grupp, A. M. Caul�eld, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,
and J. K. Wolf, “Characterizing Flash Memory: Anomalies, Observations, and
Applications,” in MICRO, 2009.

[27] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Ju�nger, S. O’Connell, W. Schoe-
chl, and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,”
arXiv:1710.00551 [cs.CR], 2017.

[28] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[29] K. Ha, J. Jeong, and J. Kim, “A Read-Disturb Management Technique for High-
Density NAND Flash Memory,” in APSys, 2013.

[30] K. Ha, J. Jeong, and J. Kim, “An Integrated Approach for Managing Read Disturbs
in High-Density NAND Flash Memory,” TCAD, vol. 35, no. 7, pp. 1079–1091,
2016.

[31] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[32] D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and Drift Dynamics of
Resistance and Threshold Voltages in Phase-Change Memories,” TED, 2007.

[33] J. Im et al., “A 128Gb 3b/Cell V-NAND Flash Memory with 1Gb/s I/O Rate,” in
ISSCC, 2015.

[34] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack,” in SysTEX, 2017.

[35] L. Jiang, Y. Zhang, and J. Yang, “Mitigating Write Disturbance in Super-Dense
Phase Change Memories,” in DSN, 2014.

[36] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R. Das, “Cache
Revive: Architecting Volatile STT-RAM Caches for Enhanced Performance in
CMPs,” in DAC, 2012.

[37] D. Kang et al., “7.1 256Gb 3b/cell V-NAND Flash Memory With 48 Stacked WL
Layers,” in ISSCC, 2016.

[38] J. Katcher, “Postmark: A New File System Benchmark,” Network Appliance, Tech.
Rep. TR3022, 1997.

[39] W.-S. Khwa et al., “A Resistance-Drift Compensation Scheme to Reduce MLC
PCM Raw BER by Over 100x for Storage-Class Memory Applications,” in ISSCC,
2016.

[40] N. Kim and J.-H. Jang, “Nonvolatile Memory Device, Method of Operating Non-
volatile Memory Device and Memory System Including Nonvolatile Memory De-
vice,” U.S. Patent 8,203,881, 2012.

[41] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,
Carnegie Mellon Univ., 2015.

[42] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[43] R. Koller and R. Rangaswami, “I/O Deduplication: Utilizing Content Similarity
to Improve I/O Performance,” TOS, 2010.

[44] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.

[45] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
as a Scalable DRAM Alternative,” in ISCA, 2009.

[46] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture
and the Quest for Scalability,” CACM, 2010.

[47] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,
“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, 2010.

[48] C.-Y. Liu, Y.-M. Chang, and Y.-H. Chang, “Read Leveling for Flash Storage Sys-
tems,” in SYSTOR, 2015.

[49] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND Flash-Based SSDs via Re-
tention Relaxation,” in FAST, 2012.

[50] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND Flash
Memory Lifetime With Write-Hotness Aware Retention Management,” in MSST,
2015.

[51] Y. Luo, “Architectural Techniques for Improving NAND Flash Memory Reliabi-
lity,” Ph.D. dissertation, Carnegie Mellon Univ., 2018.

[52] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” JSAC, 2016.

[53] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 3D
NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Tem-
perature Awareness,” in HPCA, 2018.

[54] C. Manning, “Ya�s NAND Flash Failure Mitigation,” http://www.ya�s.net/sites/
ya�s.net/�les/Ya�sNandFailureMitigation.pdf, 2012.

[55] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A Case for E�cient Har-
dware/Software Cooperative Management of Storage and Memory,” in WEED,
2013.

[56] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale Study of Flash Memory
Failures In The Field,” in SIGMETRICS, 2015.

[57] R. Micheloni, Ed., 3D Flash Memories. Dordrecht, Netherlands: Springer Net-
herlands, 2016.

[58] R. Micheloni, S. Aritome, and L. Crippa, “Array Architectures for 3-D NAND
Flash Memories,” Proc. IEEE, Sep. 2017.

[59] N. Mielke, T. Marquart, N.Wu, J.Kessenich, H. Belgal, E. Schares, and F. Triverdi,
“Bit Error Rate in NAND Flash Memories,” in IRPS, 2008.

[60] K. Mizoguchi, T. Takahashi, S. Aritome, and K. Takeuchi, “Data-Retention Cha-
racteristics Comparison of 2D and 3D TLC NAND Flash Memories,” in IMW,
2017.

[61] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[62] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[63] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[64] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM

Scaling and Retention Failure,” Intel Technology Journal, 2013.
[65] D. Narayanan, A. Donnelly, and A. Rowstron, “Write o�-Loading: Practical Po-

wer Management for Enterprise Storage,” TOS, 2008.
[66] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caul�eld, A. Sivasubramaniam,

B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD Failures in Datacenters: What?
When? and Why?” in SYSTOR, 2016.

[67] N. Papandreou, T. Parnell, T. Mittelholzer, H. Pozidis, T. Gri�n, G. Tressler, T. Fis-
her, and C. Camp, “E�ect of Read Disturb on Incomplete Blocks in MLC NAND
Flash Arrays,” in IMW, 2016.

[68] N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp,
T. Gri�n, G. Tressler, and A. Walls, “Using Adaptive Read Voltage Thresholds
to Enhance the Reliability of MLC NAND Flash Memory Systems,” in GLSVLSI,
2014.

[69] K.-T. Park et al., “A 7MB/s 64Gb 3-Bit/Cell DDR NAND Flash Memory in 20nm-
Node Technology,” in ISSCC, 2011.

[70] K. Park et al., “Three-Dimensional 128 Gb MLC Vertical NAND Flash Memory
With 24-WL Stacked Layers and 50 MB/s High-Speed Programming,” J. Solid-
State Circuits, Jan. 2015.

[71] T. Parnell and R. Pletka, “NAND Flash Basics & Error Characteristics – Why Do
We Need Smart Controllers?” in Flash Memory Summit, 2017.

[72] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the
Threshold Voltage Distributions of Sub-20nm NAND Flash Memory,” in GLO-
BECOM, 2014.

[73] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez,
“Low-Field Amorphous State Resistance and Threshold Voltage Drift in Chalco-
genide Materials,” TED, 2004.

[74] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “Attacking
Deterministic Signature Schemes Using Fault Attacks,” Cryptology ePrint Ar-
chive, Report 2017/1014, 2017.

[75] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[76] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Gui�rida, and H. Bos, “Flip Feng
Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.

[77] B. Schroeder, A. Merchant, and R. Lagisetty, “Reliability of NAND-Based SSDs:
What Field Studies Tell Us,” Proc. IEEE, 2017.

[78] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” Google Project Zero Blog, 2015.

[79] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” in BlackHat, 2015.

[80] S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani, and N. Rama-
swamy, “Challenges for High-Density 16Gb ReRAM with 27nm Technology,” in
VLSIC, 2015.

[81] S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, and N. Ra-
maswamy, “A Copper ReRAM Cell for Storage Class Memory Applications,” in
VLSIT, 2014.

[82] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing
Non-Volatility for Fast and Energy-E�cient STT-RAM Caches,” in HPCA, 2011.

[83] Storage Network Industry Assn., “IOTTA Repository: Cello 1999.”
http://iotta.snia.org/traces/21

[84] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-
ristor Found,” Nature, 2008.

[85] T. Sugahara and T. Furuichi, “Memory Controller for Suppressing Read Disturb
When Data Is Repeatedly Read Out,” US Patent No. 8725952. 2014.

[86] Z. Sun, X. Bi, H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu, “Multi Retention
Level STT-RAM Cache Designs with a Dynamic Refresh Scheme,” in MICRO,
2011.

[87] K. Takeuchi, S. Satoh, T. Tanaka, K. Imamiya, and K. Sakui, “A Negative Vth
Cell Architecture for Highly Scalable, Excellently Noise-Immune, and Highly
Reliable NAND Flash Memories,” JSSC, 1999.

[88] Toshiba, “Toshiba Develops World’s First 256Gb, 48-Layer BiCS FLASH,”
http://toshiba.semicon-storage.com/us/company/taec/news/2015/08/
memory-20150803-1.html, 2015.

[89] Univ. of Massachusetts, “Storage: UMass Trace Repository.”
[90] V. van der Veen, Y. Fratanonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,

H. Bos, K. Razavi, and C. Gui�rida, “Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms,” in CCS, 2016.

[91] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, 2012.

11

92

[92] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[93] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

[94] Q. Xiong, F. Wu, Z. Lu, Y. Zhu, Y. Zhou, Y. Chu, C. Xie, and P. Huang, “Charac-
terizing 3D Floating Gate NAND Flash,” in SIGMETRICS, 2017.

[95] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multi-Level Cell Phase-Change Memo-
ries,” TACO, 2014.

[96] J. H. Yoon, “3D NAND Technology: Implications to Enterprise Storage Applica-
tions,” in Flash Memory Summit, 2015.

[97] C. Zambelli, P. Olivo, L. Crippa, A. Marelli, and R. Micheloni, “Uniform and Con-
centrated Read Disturb E�ects in Mid-1X TLC NAND Flash Memories for Enter-
prise Solid State Drives,” in IRPS, 2017.

[98] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja, “Memory Module-Level Testing and
Error Behaviors for Phase Change Memory,” in ICCD, 2012.

[99] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main
Memory Using Phase Change Memory Technology,” in ISCA, 2009.

[100] Y. Zhu, F. Wu, Q. Xiong, Z. Lu, and C. Xie, “ALARM: A Location-Aware Redistri-
bution Method to Improve 3D FG NAND Flash Reliability,” in NAS, 2017.

12

93

Characterizing, Exploiting, and Mitigating
Vulnerabilities in MLC NAND Flash Memory Programming

Yu Cai1 Saugata Ghose2 Yixin Luo1,2

Ken Mai2 Onur Mutlu3,2 Erich F. Haratsch1

1Seagate Technology 2Carnegie Mellon University 3ETH Zürich

This paper summarizes our work on experimentally analy-
zing, exploiting, and addressing vulnerabilities in multi-level
cell NAND �ash memory programming, which was published
in the industrial session of HPCA 2017 [9], and examines the
work’s signi�cance and future potential. Modern NAND �ash
memory chips use multi-level cells (MLC), which store two bits
of data in each cell, to improve chip density. As MLC NAND
�ash memory scaled down to smaller manufacturing process
technologies, manufacturers adopted a two-step programming
method to improve reliability. In two-step programming, the
two bits of a multi-level cell are programmed using two separate
steps, in order to minimize the amount of cell-to-cell program
interference induced on neighboring �ash cells.
In this work, we demonstrate that two-step programming

exposes new reliability and security vulnerabilities in state-of-
the-art MLC NAND �ash memory. We experimentally cha-
racterize contemporary 1X-nm (i.e., 15–19nm) �ash memory
chips, and �nd that a partially-programmed �ash cell (i.e., a
cell where the second programming step has not yet been per-
formed) is much more vulnerable to cell-to-cell interference and
read disturb than a fully-programmed cell. We show that it
is possible to exploit these vulnerabilities on solid-state drives
(SSDs) to alter the partially-programmed data, causing (poten-
tially malicious) data corruption. Based on our observations,
we propose several new mechanisms that eliminate or mitigate
these vulnerabilities in partially-programmed cells, and at the
same time increase �ash memory lifetime by 16%.

1. Introduction
Solid-state drives (SSDs), which consist of NAND �ash

memory chips, are widely used for storage today due to sig-
ni�cant decreases in the per-bit cost of NAND �ash memory,
which, in turn, have driven great increases in SSD capacity.
These improvements have been enabled by both aggressive
process technology scaling and the development of multi-
level cell (MLC) technology. NAND �ash memory stores data
by changing the threshold voltage of each �ash cell, where a
cell consists of a �oating-gate transistor [44, 74, 81]. In single-
level cell (SLC) �ash memory, the threshold voltage range
could represent only a single bit of data. A multi-level cell
uses the same threshold voltage range to represent two bits
of data within a single cell (i.e., the range is split up into four
windows, known as states, where each state represents one
of the data values 00, 01, 10, or 11), thereby doubling storage
capacity [11,20,37,63,92,114]. In a NAND �ash memory chip,

a row of cells is connected together by a common wordline,
which typically spans 32K–64K cells. Each wordline contains
two pages of data, where a page is the granularity at which
the data is read and written (i.e., programmed). The most
signi�cant bits (MSBs) of all cells on the same wordline are
combined to form an MSB page, and the least signi�cant bits
(LSBs) of all cells on the wordline are combined to form an
LSB page [13].

To precisely control the threshold voltage of a �ash cell, the
�ash memory device uses incremental step pulse programming
(ISPP) [20, 37, 63, 114]. ISPP applies multiple short pulses of
a high programming voltage to each cell in the wordline
being programmed, with each pulse increasing the threshold
voltage of the cell by some small amount. SLC and older
MLC devices programmed the threshold voltage in one shot,
issuing all of the pulses back-to-back to program both bits
of data at the same time. However, as �ash memory scales
down to smaller technology nodes, the distance between
neighboring �ash cells decreases, which in turn increases the
program interference that occurs due to cell-to-cell coupling.
This program interference causes errors to be introduced into
neighboring cells during programming [13,16,29,66,68,92]. To
reduce this interference by half [13], manufacturers have been
using two-step programming for MLC NAND �ash memory
since the 40nm technology node [92]. A large fraction of
SSDs on the market today use sub-40nm MLC NAND �ash
memory.

Two-step programming stores each bit within an MLC �ash
memory cell using two separate, partial programming steps,
as shown in Figure 1. An unprogrammed cell starts in the era-
sed (ER) state. The �rst programming step programs the LSB
page: for each �ash cell within the page, the cell is partially
programmed depending on the LSB being written to the cell.
If the LSB of the cell should be 0, the cell is programmed into
a temporary program state (TP); otherwise, it remains in the
ER state. The maximum voltage of a partially-programmed
cell is approximately half of the maximum possible thres-
hold voltage of a fully-programmed �ash cell. In its second
step, two-step programming programs the MSB page: it reads
the LSB value into a bu�er inside the �ash chip (called the
internal LSB bu�er) to determine the partially-programmed
state of the cell’s threshold voltage, and then partially pro-
grams the cell again, depending on whether the MSB of the
cell is a 0 or a 1. The second programming step moves the

94

threshold voltage from the partially-programmed state to
the desired �nal state (i.e., ER, P1, P2, or P3). By breaking
MLC programming into two separate steps, manufacturers
halve the program interference of each programming opera-
tion [13, 68]. The SSD controller employs shadow program
sequencing [6, 7, 8, 13, 25, 91], which interleaves the partial
programming steps of a cell with the partial programming
steps of neighboring cells to ensure that a fully-programmed
cell experiences interference only from a single neighboring
partial programming step.1

Unprogrammed

1. Program LSB

2. Program MSB

Temporary Vth

Starting Vth

ER
11

P1
01

P2
00

P3
10

ER
XX

Final Vth

ER
X1

TP
X0

Pr
ob

ab
ilit
y

De
ns
ity

Pr
ob

ab
ilit
y

De
ns
ity

MSB LSB

Pr
ob

ab
ilit
y

De
ns
ity

Figure 1: Starting (after erase), temporary (after LSB pro-
gramming), and �nal (after MSB programming) states for
two-step programming. Reproduced from [9].

2. Error Sources in Two-Step Programming

In our HPCA 2017 paper [9], we demonstrate that two-step
programming introduces new possibilities for �ash memory
errors that can corrupt some of the data stored within �ash
cells without accessing them, and that these errors can be
exploited to design malicious attacks. As there is a delay
between programming the LSB and the MSB of a single cell
due to the interleaved writes to neighboring cells, raw bit
errors can be introduced into the already-programmed LSB
page before the MSB page is programmed. These errors can
cause a cell to be programmed to an incorrect state in the
second programming step. During the second step, both the
MSB and LSB of each cell are required to determine the �nal
target threshold voltage of the cell. As shown in Figure 2,
the data to be programmed into the MSB is loaded from the
SSD controller to the internal MSB bu�er (1 in the �gure).
Concurrently, the LSB data is loaded into the internal LSB
bu�er from the �ash memory wordline (2). By bu�ering the
LSB data inside the �ash chip and not in the SSD controller,
�ash manufacturers avoid data transfer between the chip and
the controller during the second programming step, thereby
reducing the step’s latency. Unfortunately, this means that
the errors loaded from the internal LSB bu�er cannot be cor-
rected as they would otherwise be during a read operation,
because the error correction (ECC) engine resides only in-
side the controller (3), and not inside the �ash chip. As a
result, the �nal cell voltage can be incorrectly set during MSB
programming, permanently corrupting the LSB data.

1We refer the reader to our prior works [6, 7, 8, 9, 11, 12, 14, 14, 15, 16, 17,
18,72] for a detailed background on NAND �ash memory. Our recent survey
paper [6, 7, 8] provides an extensive survey of the state-of-the-art in NAND
�ash memory.

Flash MemorySSD Controller

ECC Engine

MSB to be programmed

Internal
MSB Buffer

LSB Page
MSB Page

Internal
LSB Buffer

MSB 0

LSB 0

MSB 1

LSB 1

MSB n

LSB n

. . .

. . .

Read with Errors

Read
Without

Errors

1

2
3

Figure 2: In the second step of two-step programming, LSB
data does not go to the controller, and is not corrected when
read into the internal LSB bu�er, resulting in program errors.
Reproduced from [9].

We brie�y discuss two sources of errors that can corrupt
LSB data, and characterize their impact on real state-of-the-
art 1X-nm (i.e., 15-19nm) MLC NAND �ash chips. We perform
our characterization using an FPGA-based �ash testing plat-
form [10,11] that allows us to issue commands directly to raw
NAND �ash memory chips. In order to determine the thres-
hold voltage stored within each cell, we use the read-retry
mechanism built into modern SSD controllers [13,17,108,130].
Throughout this work, we present normalized voltage values,
as actual voltage values are proprietary information to �ash
manufacturers. Our complete characterization results can be
found in our HPCA 2017 paper [9].

2.1. Cell-to-Cell Program Interference
The �rst error source, cell-to-cell program interference,

introduces errors into a �ash cell when neighboring cells
are programmed, as a result of parasitic capacitance cou-
pling [6,7,8,13,16,28,29,32,68]. While two-step programming
reduces program interference for fully-programmed cells, we
�nd that interference during two-step programming is a sig-
ni�cant error source for partially-programmed cells. As an
example, we look at a �ash block in the commonly-used all-
bit-line (ABL) �ash architecture [13,19,20], which is shown in
Figure 3. After the LSB page on Wordline 1 (Page 1 in Figure 3)
is programmed, the next two pages that are programmed (Pa-
ges 2 and 3) reside on directly-adjacent wordlines. Therefore,
before the MSB page on Wordline 1 (Page 4) is programmed,
the LSB page (Page 1) could be susceptible to program interfe-
rence when Pages 2 and 3 are programmed.

Internal
MSB Buffer

Page 0 (LSB)

Page 1 (LSB)
Page 2 (MSB)

Page 3 (LSB)
Page 4 (MSB)

Page 6 (MSB)

Internal
LSB Buffer

MSB 1

LSB 1

. . .

. . .

. . .

. . .

Wordline
Wordline 1

Flash Cell

Bitline

MSB 0

LSB 0

MSB n

LSB n

Wordline 0

Wordline 2

Figure 3: Internal architecture of a block of all-bit-line (ABL)
�ash memory. Reproduced from [9].

Figure 4 shows the measured raw bit error rate for Page 1
in real NAND �ash memory devices after four di�erent times,
normalized to the error rate just after Page 1 is programmed:

2

95

A. Just after Page 1 is programmed (no interference),
B. Page 2 is programmed with pseudo-random data,
C. Pages 2 and 3 are programmed with pseudo-random data,
D. Pages 2 and 3 are programmed with a data pattern that

induces the worst-case program interference.
We observe that the amount of interference is especially high
when Pages 2 and 3 in Figure 3 are written with the worst-case
data pattern, after which the raw bit error rate of Page 1 is
4.9x the rate before interference. Note that the worst-case data
pattern that we write to Pages 2 and 3 requires no knowledge
of the data stored within Page 1 [9].

0
1
2
3
4
5

A B C D

N
or

m
al

iz
ed

 R
BE

R

Interference Due to Writes

A: Before
interference

B: Page 2,
random data

C: Pages 2+3,
random data

D: Pages 2+3,
worst-case data

Figure 4: Normalized raw bit error rate of partially-
programmed Page 1, before and after cell-to-cell program in-
terference. Adapted from [9].

2.2. Read Disturb
The second error source, read disturb, disrupts the contents

of a �ash cell when another cell is read [6, 7, 8, 18, 28, 32, 35,
77, 90, 115]. NAND �ash memory cells are organized into
multiple �ash blocks (two-dimensional cell arrays), where
each block contains a set of bitlines that connect multiple
�ash cells in series. To accurately read the value from one
cell, the SSD controller applies a pass-through voltage to turn
on the unread cells on the bitline, which allows the value
to propagate through the bitline. Unfortunately, this pass-
through voltage induces a weak programming e�ect on an
unread cell: it slightly increases the cell threshold voltage [6,
7,8,18]. As more neighboring cells within a block are read, an
unread cell’s threshold voltage can increase enough to change
the data value stored in the cell [6, 7, 8, 18, 35, 90]. In two-step
programming, a partially-programmed cell is more likely to
have a lower threshold voltage than a fully-programmed cell,
and the weak programming e�ect is stronger on cells with
a lower threshold voltage. Measuring errors in real NAND
�ash memory devices, we �nd that the raw bit error rates for
an LSB page in a partially-programmed or unprogrammed
wordline is an order of magnitude greater than the rate for an
LSB page in a fully-programmed wordline. However, existing
read disturb management solutions are designed to protect
fully-programmed cells [18, 31, 35, 36, 52, 105], and o�er little
mitigation for partially-programmed cells.

3. Exploiting Two-Step Programming Errors
Two major issues arise from the program interference and

read disturb vulnerabilities of partially-programmed and un-
programmed cells. First, the vulnerabilities induce a large
number of errors on these cells, exhausting the SSD’s error

correction capacity and limiting the SSD lifetime. Second,
the vulnerabilities can potentially allow (malicious) applica-
tions to aggressively corrupt and change data belonging to
other programs and further hurt the SSD lifetime. We present
two example sketches of potential exploits in our HPCA 2017
paper [9], which we brie�y summarize here.

3.1. Sketch of Program Interference Based Exploit
In this exploit, a malicious application can induce a signi�-

cant amount of program interference onto a �ash page that
belongs to another, benign victim application, corrupting the
page and shortening the SSD lifetime. Recall from Section 2.1
that writing the worst-case data pattern can induce 4.9x the
number of errors into a neighboring page (with respect to
an interference-free page). The goal of this exploit is for a
malicious application to write this worst-case data pattern
in a way that ensures that the page that is disrupted belongs
to the victim application, and that the page that is disrup-
ted experiences the greatest amount of program interference
possible. Figure 5 illustrates the contents of the pages within
neighboring 8KB wordlines (rows of �ash cells within a block).
The SSD controller uses shadow program sequencing to inter-
leave partial programming steps to pages in ascending order
of the page numbers shown on the left side of the �gure. A
malicious application can write a small 16KB �le with all 1s
to prepare for the attack (1 in the �gure), and then waits
for the victim application to write its data to Wordline n (2).
Once the victim writes its data, the malicious application then
writes all 0s to a second 16KB �le (3a and 3b). This induces
the largest possible change in voltage on the victim data, and
can be used to �ip bits within the data. In our HPCA 2017 pa-
per [9], we discuss how a malicious application can (1) work
around SSD scrambling and (2) monitor victim application
data writes.

Wordline n – 2
Malicious File A (all 1s)

Page 2n (MSB)
Wordline n – 1

Malicious File B (all 0s)
Malicious File A (all 1s)

Wordline n
Page Under Attack (Victim)

Wordline n + 1
Malicious File B (all 0s)

Page 2n – 3 (LSB)

Page 2n – 2 (MSB)

Page 2n – 5 (LSB)

Page 2n + 4 (MSB)

Page 2n + 1 (LSB)

Page 2n + 2 (MSB)

Page 2n – 1 (LSB) 2

1

3a

3b

Figure 5: Layout of data within a �ash block during a pro-
gram interference based exploit. Reproduced from [9].

3.2. Sketch of Read Disturb Based Exploit
In this exploit, a malicious application can induce a signi�-

cant amount of read disturb onto several �ash pages that
belong to other, benign victim applications. Recall from
Section 2.2 that the error rate after read disturb for an LSB
page in a partially-programmed wordline is an order of mag-

3

96

nitude greater than the error rate for an LSB page in a fully-
programmed wordline. The goal of this exploit is for a mali-
cious application to quickly perform a large number of read
operations in a very short amount of time, to induce read
disturb errors that corrupt both pages already written to
partially-programmed wordlines and pages that have yet to
be written. The malicious application writes an 8KB �le, with
arbitrary data, to the SSD. Immediately after the �le is written,
the malicious application repeatedly forces the �le system
to send a new read request to the SSD. Each request induces
read disturb on the other wordlines within the �ash block,
causing the cell threshold voltages of these wordlines to in-
crease. After the malicious application �nishes performing
the repeated read requests, a victim application writes data
to a �le. As the SSD is unaware that an attack took place,
it does not detect that the data cannot be written correctly
due to the increased cell threshold voltages. As a result, bit
�ips can occur in the victim application’s data. Unlike the
program interference exploit, which attacks a single page, the
read disturb exploit can corrupt multiple pages with a single
attack, and the corruption can a�ect pages written at a much
later time than the attack if the host write rate is low.

4. Protection and Mitigation Mechanisms

We propose three mechanisms to eliminate or mitigate
the program interference and read disturb vulnerabilities of
partially-programmed and unprogrammed cells due to two-
step programming. Table 1 summarizes the cost and bene�ts
of each mechanism. We brie�y discuss our three mechanisms
here, and provide more detail on them in our HPCA 2017
paper [9].
Table 1: Summary of our proposed protection mechanisms.
Reproduced from [9].

Mechanism Protects Overhead Error Rate
Against Reduction

Bu�ering LSB Data interference 2MB storage 100%in the Controller read disturb 1.3–15.7% latency
Adaptive LSB Read interference 64B storage 21–33%Reference Voltage read disturb 0.0% latency

Multiple Pass-Through read disturb 0B storage 72%Voltages 0.0% latency

Our �rst mechanism bu�ers LSB data in the SSD controller,
eliminating the need to read the LSB page from �ash memory
at the beginning of the second programming step, thereby
completely eliminating the vulnerabilities. It maintains a copy
of all partially-programmed LSB data within DRAM bu�ers
that exist in the SSD near the controller. Doing so ensures
that the LSB data is read without any errors from the DRAM
bu�er, where it is free from the vulnerabilities (instead of
from the �ash memory, where it incurs errors that are not
corrected), in the second programming step. Figure 6 shows a
�owchart of our modi�ed two-step programming algorithm.
This solution increases the programming latency of the �ash
memory by 4.9% in the common case, due to the long latency

of sending the LSB data from the controller to the internal
LSB bu�er inside �ash memory.

A: Send LSB
data to internal

LSB buffer

YES

Step 1

Step 2

B: Keep copy
of LSB in

DRAM buffer
Program
LSB page

C: Is LSB
in DRAM
buffer?

E: Send LSB
data to internal

LSB buffer

D: Retrieve
LSB data from
DRAM buffer F: Send MSB

data to internal
MSB buffer

G: Retrieve LSB
data from
flash chip

NO H: Correct LSB
data using
ECC engine

Program
MSB page

Figure 6: Modi�ed two-step programming, using a DRAM
bu�er for LSB data (modi�cations shown in shaded boxes).
Reproduced from [9].

The two other mechanisms that we develop largely miti-
gate (but do not fully eliminate) the probability of two-step
programming errors at much lower latency impact. Our se-
cond mechanism adapts the LSB read operation to account
for threshold voltage changes induced by program interfe-
rence and read disturb. It adaptively learns an optimized
read reference voltage for LSB data, lowering the probability
of an LSB read error. Our third mechanism greatly redu-
ces the errors induced during read disturb, by customizing
the pass-through voltage for unprogrammed and partially-
programmed �ash cells. State-of-the-art SSDs apply a sin-
gle pass-through voltage (Vpass) to all of the unread cells, as
shown in Figure 7a. This leaves a large gap between the
pass-through voltage and the threshold voltage of a partially-
programmed or unprogrammed cell, which greatly increases
the impact of read disturb [9, 18]. To minimize this gap, and,
thus, the impact of read disturb, we propose to use three
pass-through voltages, as shown in Figure 7b: V erase

pass for un-
programmed cells, V partial

pass for partially-programmed cells,
and the same pass-through voltage as before (Vpass) for fully-
programmed cells. This mechanism decreases the number of
errors induced by read operations to neighboring cells by 72%,
which translates to a 16% increase in NAND �ash memory
lifetime (see Section 6.3 of our HPCA 2017 paper [9] for more
detail).

We conclude that, by eliminating or reducing the probabi-
lity of introducing errors during two-step programming, our
solutions completely close or greatly reduce the exposure to
reliability and security vulnerabilities.

ER TP

ER P1 P2 P3
Vth

ER
VpassLARGE GAP

(a)

Unprogrammed

Partially
Programmed

Fully
Programmed

ER TP

ER P1 P2 P3
Vth

ER
Vpass

Vpass
partial

Vpass
erase

(b)

Figure 7: (a) Applying single Vpass to all unread wordlines;
(b) Ourmultiple pass-through voltagemechanism, where dif-
ferent voltages are applied based on the the wordline’s pro-
gramming status, to minimize the e�ects of read disturb. Re-
produced from [9].

4

97

5. Related Work
To our knowledge, our HPCA 2017 paper [9] is the �rst

to (1) experimentally characterize both program interference
and read disturb errors that occur due to the two-step pro-
gramming method commonly used in MLC NAND �ash me-
mory; (2) reveal new reliability and security vulnerabilities
exposed by two-step programming in �ash memory; and
(3) develop novel solutions to reduce these vulnerabilities.
We brie�y describe related works in the areas of DRAM and
NAND �ash memory. We note that a thorough survey of
error mechanisms in NAND �ash memory is provided in our
recent works [6, 7, 8].

5.1. Read Disturb Errors in DRAM
Commodity DRAM chips that are sold and used in the �eld

today exhibit read disturb errors [55], also called RowHammer-
induced errors [82], which are conceptually similar to the read
disturb errors found in NAND �ash memory (see Section 2.2).
Repeatedly accessing the same row in DRAM can cause bit
�ips in data stored in adjacent DRAM rows. In order to access
data within DRAM, the row of cells corresponding to the
requested address must be activated (i.e., opened for read
and write operations). This row must be precharged (i.e.,
closed) when another row in the same DRAM bank needs
to be activated. Through experimental studies on a large
number of real DRAM chips, we show that when a DRAM
row is activated and precharged repeatedly (i.e., hammered)
enough times within a DRAM refresh interval, one or more
bits in physically-adjacent DRAM rows can be �ipped to the
wrong value [55].

In our original RowHammer paper [55], we tested
129 DRAM modules manufactured by three major manufac-
turers (A, B, and C) between 2008 and 2014, using an FPGA-
based experimental DRAM testing infrastructure [38] (more
detail on our experimental setup, along with a list of all mo-
dules and their characteristics, can be found in our original
RowHammer paper [55]). Figure 8 shows the rate of Row-
Hammer errors that we found, with the 129 modules that we
tested categorized based on their manufacturing date. We
�nd that 110 of our tested modules exhibit RowHammer er-
rors, with the earliest such module dating back to 2010. In
particular, we �nd that all of the modules manufactured in
2012–2013 that we tested are vulnerable to RowHammer. Like
with many NAND �ash memory error mechanisms, especi-
ally read disturb, RowHammer is a recent phenomenon that
especially a�ects DRAM chips manufactured with more ad-
vanced manufacturing process technology generations [82].
The phenomenon is due to reliability problems caused by
DRAM technology scaling [82, 83, 84, 85].

Figure 9 shows the distribution of the number of rows (plot-
ted in log scale on the y-axis) within a DRAM module that
�ip the number of bits shown along the x-axis, as measured
for example DRAM modules from three di�erent DRAM ma-
nufacturers [55]. We make two observations from the �gure.

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Figure 8: RowHammer error rate vs. manufacturing dates of
129 DRAMmodules we tested. Reproduced from [55].

First, the number of bits �ipped when we hammer a row
(known as the aggressor row) can vary signi�cantly within
a module. Second, each module has a di�erent distribution
of the number of rows. Despite these di�erences, we �nd
that this DRAM failure mechanism a�ects more than 80%
of the DRAM chips we tested [55]. As indicated above, this
read disturb error mechanism in DRAM is popularly called
RowHammer [82].

0 10 20 30 40 50 60 70 80 90 100 110 120
Victim Cells per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt
A1240

23 B1146
11 C1223

19

Figure 9: Number of victim cells (i.e., number of bit errors)
when an aggressor row is repeatedly activated, for three re-
presentative DRAM modules from three major manufactu-
rers. We label the modules in the format Xyyww

n , where X is
the manufacturer (A, B, or C), yyww is the manufacture year
(yy) and week of the year (ww), and n is the number of the
selected module. Reproduced from [55].

Various recent works show that RowHammer can be
maliciously exploited by user-level software programs to
(1) induce errors in existing DRAM modules [55, 82] and
(2) launch attacks to compromise the security of various sy-
stems [3, 4, 33, 34, 82, 101, 106, 107, 117, 123]. For example,
by exploiting the RowHammer read disturb mechanism, a
user-level program can gain kernel-level privileges on real
laptop systems [106, 107], take over a server vulnerable to
RowHammer [34], take over a victim virtual machine running
on the same system [3], and take over a mobile device [117].
Thus, the RowHammer read disturb mechanism is a prime
(and perhaps the �rst) example of how a circuit-level failure
mechanism in DRAM can cause a practical and widespread
system security vulnerability.

Note that various solutions to RowHammer exist [53,55,82],
but we do not discuss them in detail here. Our recent
work [82] provides a comprehensive overview. A very pro-
mising proposal is to modify either the memory controller

5

98

or the DRAM chip such that it probabilistically refreshes the
physically-adjacent rows of a recently-activated row, with
very low probability. This solution is called Probabilistic Ad-
jacent Row Activation (PARA) [55]. Our prior work shows
that this low-cost, low-complexity solution, which does not
require any storage overhead, greatly closes the RowHammer
vulnerability [55].

The RowHammer e�ect in DRAM worsens as the manu-
facturing process scales down to smaller node sizes [55, 82].
More �ndings on RowHammer, along with extensive expe-
rimental data from real DRAM devices, can be found in our
prior works [53, 55, 82].

5.2. Cell-to-Cell Interference Errors in DRAM
Like NAND �ash memory cells, DRAM cells are suscep-

tible to cell-to-cell interference. In DRAM, one important
way in which cell-to-cell interference exhibits itself is the
data-dependent retention behavior, where the retention time
of a DRAM cell is dependent on the values written to ne-
arby DRAM cells [46, 47, 48, 49, 70, 82, 97]. This phenome-
non is called data pattern dependence (DPD) [70]. Data pat-
tern dependence in DRAM is similar to the data-dependent
nature of program interference that exists in NAND �ash
memory (see Section 2.1). Within DRAM, data pattern de-
pendence occurs as a result of parasitic capacitance coupling
(between DRAM cells). Due to this coupling, the amount
of charge stored in one cell’s capacitor can inadvertently
a�ect the amount of charge stored in an adjacent cell’s capa-
citor [46, 47, 48, 49, 70, 82, 97]. As DRAM cells become smaller
with technology scaling, cell-to-cell interference worsens
because parasitic capacitance coupling between cells incre-
ases [46, 70]. More �ndings on cell-to-cell interference and
the data-dependent nature of cell retention times in DRAM,
along with experimental data obtained from modern DRAM
chips, can be found in our prior works [46,47,48,49,70,82,97].

5.3. Errors in Emerging Memory Technologies
Emerging nonvolatile memories, such as phase-change me-

mory (PCM) [60, 61, 62, 100, 122, 125, 129], spin-transfer torque
magnetic RAM (STT-RAM or STT-MRAM) [57, 86], metal-
oxide resistive RAM (RRAM) [121], and memristors [26, 113],
are expected to bridge the gap between DRAM and NAND-
�ash-memory-based SSDs, providing DRAM-like access la-
tency and energy, and at the same time SSD-like large capa-
city and nonvolatility (and hence SSD-like data persistence).
While their underlying designs are di�erent from DRAM and
NAND �ash memory, these emerging memory technologies
have been shown to exhibit similar types of errors. PCM-
based devices are expected to have a limited lifetime, as PCM
can only sustain a limited number of writes [60, 100, 122],
similar to the P/E cycling errors in SSDs (though PCM’s write
endurance is higher than that of SSDs [60]). PCM su�ers
from (1) resistance drift [41, 98, 122], where the resistance
used to represent the value becomes higher over time (and

eventually can introduce a bit error), similar to how charge
leakage in NAND �ash memory and DRAM lead to reten-
tion errors over time; and (2) write disturb [43], where the
heat generated during the programming of one PCM cell
dissipates into neighboring cells and can change the value
that is stored within the neighboring cells, similar in concept
to cell-to-cell program interference in NAND �ash memory.
STT-RAM su�ers from (1) retention failures, where the value
stored for a single bit (as the magnetic orientation of the layer
that stores the bit) can �ip over time; and (2) read disturb (a
conceptually di�erent phenomenon from the read disturb in
DRAM and �ash memory), where reading a bit in STT-RAM
can inadvertently induce a write to that same bit [86].

Due to the nascent nature of emerging nonvolatile memory
technologies and the lack of availability of large-capacity de-
vices built with them, extensive and dependable experimental
studies have yet to be conducted on the reliability of real PCM,
STT-RAM, RRAM, and memristor chips. However, we believe
that error mechanisms conceptually or abstractly similar to
those for �ash memory and DRAM are likely to be prevalent
in emerging technologies as well (as supported by some re-
cent studies [2, 43, 50, 86, 109, 110, 128]), albeit with di�erent
underlying mechanisms and error rates.

5.4. Other Related Works

Memory Error Characterization and Understanding.
Prior works study various types of NAND �ash memory er-
rors derived from circuit-level noise, such as data retention
noise [6,7,8,11,12,14,15,73,77,79], read disturb noise [6,7,8,18,
77, 90], cell-to-cell program interference noise [11, 13, 15, 16],
and P/E cycling noise [6, 7, 8, 11, 15, 17, 72, 77, 96]. Other prior
works examine the aggregate e�ect of these errors on large
sets of SSDs that are deployed in the production data centers
of Facebook [75], Google [103], and Microsoft [87]. None
of these works characterize how program interference and
read disturb signi�cantly increase errors within the unpro-
grammed or partially-programmed cells of an open block due
to the vulnerabilities in two-step programming, nor do they
develop mechanisms that exploit or mitigate such errors.

A concurrent work by Papandreou et al. [89] characteri-
zes the impact of read disturb on partially-programmed and
unprogrammed cells in state-of-the-art MLC NAND �ash
memory. The authors come to similar conclusions as we
do about the impact of read disturb. However, unlike our
work, they do not (1) characterize the impact of cell-to-cell
program interference on partially-programmed cells, (2) pro-
pose exploits that can take advantage of the vulnerabilities in
partially-programmed cells, or (3) propose mechanisms that
mitigate or eliminate the vulnerabilities.

Similar to the characterization studies performed for
NAND �ash memory, DRAM latency, reliability, and vari-
ation have been experimentally characterized at both a small
scale (e.g., hundreds of chips) [21,22,23,38,46,47,48,49,51,53,

6

99

55,64,65,67,70,97,99] and a large scale (e.g., tens of thousands
of chips) [40, 76, 104, 111, 112].

Program Interference Error Mitigation Mechanisms.
Prior works [13, 16] model the behavior of program interfe-
rence, and propose mechanisms that estimate the optimal
read reference voltage once interference has occurred. These
works minimize program interference errors only for fully-
programmed wordlines, by modeling the change in the thres-
hold voltage distribution as a result of the interference. These
models are �tted to the distributions of wordlines after both
the LSB and MSB pages are programmed, and are unable
to determine and mitigate the shift that occurs for wordli-
nes that are partially programmed. In contrast, we propose
mechanisms that speci�cally address the program interfe-
rence resulting from two-step programming, and reduce the
number of errors induced on LSB pages in both partially-
programmed and unprogrammed wordlines.

Read Disturb Error Mitigation Mechanisms. One pa-
tent [31] proposes a mechanism that uses counters to moni-
tor the total number of reads to each block. Once a block’s
counter exceeds a threshold, the mechanism remaps and re-
writes all of the valid pages within the block to remove the
accumulated read disturb errors [31]. Another patent [105]
proposes to monitor the MSB page error rate to ensure that
it does not exceed the ECC error correction capability, to
avoid data loss. Both of these mechanisms monitor pages
only from fully-programmed wordlines. Unfortunately, as we
observed, LSB pages in partially-programmed and unpro-
grammed wordlines are twice as susceptible to read disturb
as pages in fully-programmed wordlines (see Section 2.2). If
only the MSB page error rate is monitored, read disturb may
be detected too late to correct some of the LSB pages.

Our earlier work [18] dynamically changes the pass-
through voltage for each block to reduce the impact of read
disturb. As a single voltage is applied to the whole block, this
mechanism does not help signi�cantly with the LSB pages
in partially-programmed and unprogrammed wordlines. In
contrast, our read disturb mitigation technique (see Section 4)
speci�cally targets these LSB pages by applying multiple dif-
ferent pass-through voltages in an open block, optimized to
the di�erent programmed states of each wordline, to reduce
read disturb errors.

Other prior works [35,36,52] propose to use read reclaim to
mitigate read disturb errors. The key idea of read reclaim is to
remap the data in a block to a new �ash block, if the block has
experienced a high number of reads [35, 36, 52]. Read reclaim
is similar to the remapping-based refresh mechanism [14, 15,
71, 80, 88] employed by many modern SSDs to mitigate data
retention errors [6,7,8]. Read reclaim can remap the contents
of a wordline only after the wordline is fully programmed,
and does not mitigate the impact of read disturb on partially-
programmed or unprogrammed wordlines.

Using FlashMemory for Security Applications. Some
prior works studied how �ash memory can be used to en-
hance the security of applications. One work [119] uses �ash
memory as a secure channel to hide information, such as
a secure key. Other works [118, 124] use �ash memory to
generate random numbers and digital �ngerprints. None of
these works study vulnerabilities that exist within the �ash
memory.

Based on our HPCA 2017 paper [9], recent work [58] de-
monstrates how an attack can be performed on a real SSD
using our program interference based exploit (see Section 3.1).
The authors use our exploit to perform a �le system level
attack on a Linux machine, using the attack to gain root
privileges.

Two-Step vs. One-Shot Programming. One-shot pro-
gramming shifts �ash cells directly from the erased state to
their �nal target state in a single step. For smaller transis-
tors with less distance between neighboring �ash cells, such
as those in sub-40nm planar (i.e., 2D) NAND �ash memory,
two-step programming has replaced one-shot programming
to alleviate the coupling capacitance resulting from cell-to-
cell program interference [92]. 3D NAND �ash memory
currently uses one-shot programming [94, 95, 127], as 3D
NAND �ash memory chips use larger process technology
nodes (i.e., 30–50 nm) [102,126] and employ charge trap tran-
sistors [30, 42, 45, 56, 93, 116, 120] for �ash cells, as opposed
to the �oating-gate transistors used in planar NAND �ash
memory. However, once the number of 3D-stacked layers
reaches its upper limit [59, 69], 3D NAND �ash memory is
expected to scale to smaller transistors [126], and we expect
that the increased program interference will again require
partial programming (just as it happened for planar NAND
�ash memory in the past [54, 92]). More detail on 3D NAND
�ash memory is provided in a recent survey article [8].

6. Long-Term Impact
As we discuss in Section 5, our HPCA 2017 paper [9] makes

several novel contributions on characterizing, exploiting, and
mitigating vulnerabilities in the two-step programming algo-
rithm used in state-of-the-art MLC NAND �ash memory. We
believe that these contributions are likely to have a signi�cant
impact on academic research and industry.

6.1. Exposing the Existence of Errors
NAND �ash manufacturers use two-step programming wi-

dely in their contemporary MLC NAND �ash devices. Prior
to our HPCA 2017 paper [9] and concurrent work by Papand-
reou et al. [89], there was no publicly-available knowledge
about how two-step programming introduced new error sour-
ces that did not exist in the prior one-shot programming ap-
proach. Using real o�-the-shelf contemporary NAND �ash
memory chips, our HPCA 2017 paper exposes the fact that
fundamental limitations of the two-step programming met-

7

100

hod introduce program errors that reduce the lifetime of SSDs
available on the market today.

Through a rigorous characterization, our HPCA 2017 pa-
per [9] analyzes two major sources of these errors, pro-
gram interference and read disturb, demonstrating how they
can corrupt data stored in a partially-programmed �ash cell.
While prior works have addressed both program interference
(e.g. [13, 29, 68, 92]) and read disturb (e.g., [18, 31, 35, 105]) er-
rors in the past, we �nd that none of these existing solutions
are able to protect the vulnerable partially-programmed pa-
ges produced during two-step programming. We expect that
by exposing these errors and the unique vulnerabilities of
partially-programmed cells, our work will (1) provide NAND
�ash memory manufacturers and the academic community
with signi�cant insight into the problem; (2) foster the deve-
lopment of new solutions that can reduce or eliminate this
vulnerability; and (3) inspire others to search for other relia-
bility and security vulnerabilities that exist in NAND �ash
memory.

6.2. Security Implications for Flash Memory
Our HPCA 2017 paper [9] proposes two sketches of new

potential security exploits based on errors arising from two-
step programming. Malicious applications can be developed
to use these (or other similar) exploits to corrupt data be-
longing to other applications. For example, our paper has
already enabled the development and demonstration of a �le
system based attack by IBM security researchers [58]. In that
work, the researchers built upon our program interference
based exploits to show how to use the �le system to acquire
root privileges on a real machine. The work con�rms that
our exploit sketches are likely viable on a real system, and
that the threat of maliciously exploiting vulnerabilities in
two-step programming is real (and needs to be addressed).

As was the case for RowHammer attacks in DRAM (see
Section 5.1), our �ndings have already generated signi�cant
interest and concern in the broader technology community
(e.g., [5, 24, 27, 39]). The reason behind the broader impact of
our work is that many existing drives in the �eld today can
be attacked. After IBM researchers demonstrated the ability
to perform such attacks on a real system [58], there has been
further interest in NAND �ash memory attacks (e.g., [1, 78]).

We hope and expect that other researchers will take our
cue and begin to investigate how other reliability issues in
NAND �ash memory can be exploited by applications to
perform malicious attacks. We believe that this is a new area
of research that will grow in importance as SSDs and �ash
memory become even more widely used.

6.3. Eliminating Program Error Attacks
Our HPCA 2017 paper [9] proposes three solutions that

either eliminate or mitigate vulnerabilities to program inter-
ference and read disturb during two-step programming. We
intentionally design all three of our solutions to be low over-
head and easily implementable in commercial SSDs. One of

our three solutions completely eliminates the vulnerabilities,
albeit with a small increase in �ash programming latency. We
expect our work to have a direct impact on the NAND �ash
memory industry, as manufacturers will likely incorporate
solutions such as the ones we propose to mitigate or elimi-
nate these vulnerabilities in their new SSDs. We also expect
manufacturers and researchers to explore new mechanisms,
inspired by our work and by our solutions, that can eliminate
these or other vulnerabilities and exploits due to NAND �ash
memory reliability errors.

7. Conclusion
Our HPCA 2017 paper [9] shows that the two-step pro-

gramming mechanism commonly employed in modern MLC
NAND �ash memory chips opens up new vulnerabilities
to errors, based on an experimental characterization of mo-
dern 1X-nm MLC NAND �ash chips. We show that the root
cause of these vulnerabilities is the fact that when a partially-
programmed cell is set to an intermediate threshold voltage,
it is much more susceptible to both cell-to-cell program in-
terference and read disturb. We demonstrate that (1) these
vulnerabilities lead to errors that reduce the overall reliability
of �ash memory, and (2) attackers can potentially exploit
these vulnerabilities to maliciously corrupt data belonging
to other programs. Based on our experimental observations
and the resulting understanding, we propose three new me-
chanisms that can remove or mitigate these vulnerabilities,
by eliminating or reducing the errors introduced as a result
of the two-step programming method. Our experimental eva-
luation shows that our new mechanisms are e�ective: they
can either eliminate the vulnerabilities with modest/low la-
tency overhead, or drastically reduce the vulnerabilities and
reduce errors with negligible latency or storage overhead.
We hope that the vulnerabilities we analyzed and exposed
in this work, along with the experimental data we provided,
open up new avenues for mitigation as well as for exposure of
other potential vulnerabilities due to internal �ash memory
operation.

Acknowledgments
We thank the anonymous reviewers for their feedback on

our HPCA 2017 paper [9]. This work is partially supported by
the Intel Science and Technology Center, CMU Data Storage
Systems Center, and NSF grants 1212962 and 1320531.

References
[1] J. W. Aldersho�, “IBM Researchers: Rowhammer-Like Attack on Flash Memory

Can Provide Root Privileges to Attacker,” Myce, 2017.
[2] A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, and E. Elefther-

iou, “Multilevel-Cell Phase-Change Memory: A Viable Technology,” JETCAS,
2016.

[3] E. Bosman, K. Razavi, H. Bos, and C. Gui�rida, “Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector,” in SP, 2016.

[4] W. Burleson, O. Mutlu, and M. Tiwari, “Who is the Major Threat to Tomorrow’s
Security? You, the Hardware Designer,” in DAC, 2016.

[5] G. Burton, “Rowhammer-Style NAND Flash Attack Can Corrupt SSD Data,” The
Inquirer, 2017.

8

101

[6] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
2017.

[7] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characteri-
zation, Mitigation, and Recovery in Flash Memory Based Solid-State Drives,”
arXiv:1706.08642 [cs.AR], 2017.

[8] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery,” arXiv:1711.11427
[cs.AR], 2017.

[9] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[10] Y. Cai, E. F. Haratsch, M. P. McCartney, and K. Mai, “FPGA-Based Solid-State
Drive Prototyping Platform,” in FCCM, 2011.

[11] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[12] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[13] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC
NAND Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD,
2013.

[14] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash
Correct and Refresh: Retention Aware Management for Increased Lifetime,” in
ICCD, 2012.

[15] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Error
Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal, 2013.

[16] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai, “Neig-
hbor Cell Assisted Error Correction in MLC NAND Flash Memories,” in SIGME-
TRICS, 2014.

[17] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage Distribution in
MLC NAND Flash Memory: Characterization, Analysis, and Modeling,” inDATE,
2013.

[18] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read Disturb Errors
in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery,” in
DSN, 2015.

[19] R. Cernea et al., “A 34MB/s-Program-Throughput 16Gb MLC NAND with All-
Bitline Architecture in 56nm,” in ISSCC, 2008.

[20] R.-A. Cernea et al., “A 34 MB/s MLC Write Throughput 16 Gb NAND with All
Bit Line Architecture on 56 nm Technology,” JSSC, 2009.

[21] K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Me-
mory Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[22] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pek-
himenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[23] K. K. Chang, A. G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose, A. Kashyap,
H. Hassan, D. Lee, M. O’Connor, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” in SIGMETRICS, 2017.

[24] R. Chirgwin, “Rowhammer RAM Attack Adapted to Hit Flash Storage,” The Re-
gister, 2017.

[25] K. Choi, “NAND Flash Memory,” Samsung Electronics Co., Ltd., 2010.
[26] L. Chua, “Memristor—The Missing Circuit Element,” TCT, 1971.
[27] C. Cimpanu, “SSD Drives Vulnerable to Attacks That Corrupt User Data,” Bleep-

ing Computer, 2017.
[28] J. Cooke, “The Inconvenient Truths of NAND Flash Memory,” in Flash Memory

Summit, 2007.
[29] G. Dong, S. Li, and T. Zhang, “Using Data Postcompensation and Prediction to

Tolerate Cell-to-Cell Interference in MLC NAND Flash Memory,” TCAS I, 2010.
[30] B. Eitan, “Non-Volatile Semiconductor Memory Cell Utilizing Asymmetrical

Charge Trapping,” U.S. Patent No. 5,768,192, 1998.
[31] H. H. Frost, C. J. Camp, T. J. Fisher, J. A. Fuxa, and L. W. Shelton, “E�-

cient Reduction of Read Disturb Errors in NAND Flash Memory,” U.S. Patent
No. 7,818,525, 2010.

[32] L. M. Grupp, A. M. Caul�eld, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,
and J. K. Wolf, “Characterizing Flash Memory: Anomalies, Observations, and
Applications,” in MICRO, 2009.

[33] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Ju�nger, S. O’Connell, W. Schoe-
chl, and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,”
arXiv:1710.00551 [cs.CR], 2017.

[34] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[35] K. Ha, J. Jeong, and J. Kim, “A Read-Disturb Management Technique for High-
Density NAND Flash Memory,” in APSys, 2013.

[36] K. Ha, J. Jeong, and J. Kim, “An Integrated Approach for Managing Read Disturbs
in High-Density NAND Flash Memory,” TCAD, 2016.

[37] T. Hara, K. Fukunda, K. Kanazawa, and N. Shibata, “A 146 mm2 8 Gb NAND
Flash Memory with 70 nm CMOS Technology,” in ISSCC, 2005.

[38] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infra-
structure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[39] J. Hruska, “SSDs Vulnerable to Deliberate, Low-Level Data Corruption Attacks,”
ExtremeTech, 2017.

[40] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice:
Understanding the Nature of DRAM Errors and the Implications for System De-
sign,” in ASPLOS, 2012.

[41] D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and Drift Dynamics of
Resistance and Threshold Voltages in Phase-Change Memories,” TED, 2007.

[42] J. Jang et al., “Vertical Cell Array Using TCAT (Terabit Cell Array Transistor)
Technology for Ultra High Density NAND Flash Memory,” in VLSIT, 2009.

[43] L. Jiang, Y. Zhang, and J. Yang, “Mitigating Write Disturbance in Super-Dense
Phase Change Memories,” in DSN, 2014.

[44] D. Kahng and S. M. Sze, “A Floating Gate and Its Application to Memory Devices,”
Bell System Technical Journal, 1967.

[45] R. Katsumata et al., “Pipe-Shaped BiCS Flash Memory with 16 Stacked Layers and
Multi-Level-Cell Operation for Ultra High Density Storage Devices,” in VLSIT,
2009.

[46] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu, “The E�cacy
of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” in SIGMETRICS, 2014.

[47] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An E�cient System-Level Technique
to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[48] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for
Memory Content-Based Detection and Mitigation of Data-Dependent Failures
in DRAM,” CAL, 2016.

[49] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “De-
tecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current
Memory Content,” in MICRO, 2017.

[50] W.-S. Khwa et al., “A Resistance-Drift Compensation Scheme to Reduce MLC
PCM Raw BER by Over 100x for Storage-Class Memory Applications,” in ISSCC,
2016.

[51] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeo� in Modern DRAM Devices,” in HPCA, 2018.

[52] N. Kim and J.-H. Jang, “Nonvolatile Memory Device, Method of Operating Non-
volatile Memory Device and Memory System Including Nonvolatile Memory De-
vice,” U.S. Patent No. 8,203,881, 2012.

[53] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,
Carnegie Mellon Univ., 2015.

[54] Y. S. Kim, D. J. Lee, C. K. Lee, H. K. Choi, S. S. Kim, J. H. Song, D. H. Song, J.-H.
Choi, K.-D. Suh, and C. Chung, “New Scaling Limitation of the Floating Gate
Cell in NAND Flash Memory,” in IRPS, 2010.

[55] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[56] Y. Komori, M. Kido, M. Kito, R. Katsumata, Y. Fukuzumi, H. Tanaka, Y. Nagata,
M. Ishiduki, H. Aochi, and A. Nitayama, “Disturbless Flash Memory Due to High
Boost E�ciency on BiCS Structure and Optimal Memory Film Stack for Ultra
High Density Storage Device,” in IEDM, 2008.

[57] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-
RAM as an Energy-E�cient Main Memory Alternative,” in ISPASS, 2013.

[58] A. Kurmus, N. Ioannou, M. Neigschwandter, N. Papandreou, and T. Parnell,
“From Random Block Corruption to Privilege Escalation: A Filesystem Attack
Vector for Rowhammer-Like Attacks,” in WOOT, 2017.

[59] M. LaPedus, “How to Make 3D NAND,” Semiconductor Engineering, 2016.
[60] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory

as a Scalable DRAM Alternative,” in ISCA, 2009.
[61] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase Change Memory Architecture

and the Quest for Scalability,” CACM, 2010.
[62] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger,

“Phase-Change Technology and the Future of Main Memory,” IEEE Micro, 2010.
[63] C. Lee et al., “A 32-Gb MLC NAND Flash Memory with Vth Endurance Enhan-

cing Schemes in 32 nm CMOS,” JSSC, 2011.
[64] D. Lee, “Reducing DRAM Energy at Low Cost by Exploiting Heterogeneity,” Ph.D.

dissertation, Carnegie Mellon Univ., 2016.
[65] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,

V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIG-
METRICS, 2017.

[66] D.-H. Lee and W. Sung, “Least Squares Based Cell-to-Cell Interference Cancela-
tion Technique for Multi-Level Cell NAND Flash Memory,” in ICASSP, 2012.

[67] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[68] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “E�ects of Floating-Gate Interference on
NAND Flash Memory Cell Operation,” EDL, 2002.

[69] S.-Y. Lee, “Limitations of 3D NAND Scaling,” EE Times, 2017.
[70] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of

Data Retention Behavior in Modern DRAM Devices: Implications for Retention

9

102

Time Pro�ling Mechanisms,” in ISCA, 2013.
[71] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving NAND Flash

Memory Lifetime With Write-Hotness Aware Retention Management,” in MSST,
2015.

[72] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Me-
mory,” JSAC, 2016.

[73] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 3D
NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Tem-
perature Awareness,” in HPCA, 2018.

[74] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New Ultra High Density
EPROM and Flash EEPROM With NAND Structure Cell,” in IEDM, 1987.

[75] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale Study of Flash Memory
Errors in the Field,” in SIGMETRICS, 2015.

[76] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[77] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,
E. Goodness, and L. R. Nevill, “Bit Error Rate in NAND Flash Memories,” in IRPS,
2008.

[78] M. Mimoso, “Rowhammer Attacks Come to MLC NAND Flash Memory,” Thre-
atpost, 2017.

[79] K. Mizoguchi, T. Takahashi, S. Aritome, and K. Takeuchi, “Data-Retention Cha-
racteristics Comparison of 2D and 3D TLC NAND Flash Memories,” in IMW,
2017.

[80] V. Mohan, S. Sankar, and S. Gurumurthi, “reFresh SSDs: Enabling High Endu-
rance, Low Cost Flash in Datacenters,” Univ. of Virginia, Tech. Rep. CS-2012-05,
2012.

[81] M. Momodomi, F. Masuoka, R. Shirota, Y. Itoh, K. Ohuchi, and R. Kirisawa, “Elec-
trically Erasable Programmable Read-Only Memory With NAND Cell Structure,”
U.S. Patent No. 4,959,812, 1988.

[82] O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

[83] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[84] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in MEMCON,

2013.
[85] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[86] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STT-RAM

Scaling and Retention Failure,” Intel Technology Journal, 2013.
[87] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caul�eld, A. Sivasubramaniam,

B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD Failures in Datacenters: What?
When? and Why?” in SYSTOR, 2016.

[88] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-Nonvolatile SSD: Trading Flash
Memory Nonvolatility to Improve Storage System Performance for Enterprise
Applications,” in HPCA, 2012.

[89] N. Papandreou, T. Parnell, T. Mittelholzer, H. Pozidis, T. Gri�n, G. Tressler, T. Fis-
her, and C. Camp, “E�ect of Read Disturb on Incomplete Blocks in MLC NAND
Flash Arrays,” in IMW, 2016.

[90] N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp,
T. Gri�n, G. Tressler, and A. Walls, “Using Adaptive Read Voltage Thresholds
to Enhance the Reliability of MLC NAND Flash Memory Systems,” in GLSVLSI,
2014.

[91] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim, “Improving Performance and Lifetime
of NAND Storage Systems Using Relaxed Program Sequence,” in DAC, 2016.

[92] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi, Y.-T. Lee, C. Kim, and
K. Kim, “A Zeroing Cell-to-Cell Interference Page Architecture with Temporary
LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash Memories,”
JSSC, 2008.

[93] K. Park et al., “Three-Dimensional 128 Gb MLC Vertical NAND Flash Memory
With 24-WL Stacked Layers and 50 MB/s High-Speed Programming,” J. Solid-
State Circuits, Jan. 2015.

[94] T. Parnell, “NAND Flash Basics & Error Characteristics: Why Do We Need Smart
Controllers?” in Flash Memory Summit, 2016.

[95] T. Parnell and R. Pletka, “NAND Flash Basics & Error Characteristics,” in Flash
Memory Summit, 2017.

[96] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the
Threshold Voltage Distributions of Sub-20nm NAND Flash Memory,” in GLO-
BECOM, 2014.

[97] M. Patel, J. Kim, and O. Mutlu, “The Reach Pro�ler (REAPER): Enabling the Mi-
tigation of DRAM Retention Failures via Pro�ling at Aggressive Conditions,” in
ISCA, 2017.

[98] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez,
“Low-Field Amorphous State Resistance and Threshold Voltage Drift in Chalco-
genide Materials,” TED, 2004.

[99] M. Qureshi, D. H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.

[100] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[101] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Gui�rida, and H. Bos, “Flip Feng
Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.

[102] Samsung Electronics Co., Ltd., “Samsung V-NAND Technology,” http://www.
samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf.
2014.

[103] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash Reliability in Production: The
Expected and the Unexpected,” in FAST, 2016.

[104] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A Large-
Scale Field Study,” in SIGMETRICS, 2009.

[105] A. Schushan, “Refreshing of Memory Blocks Using Adaptive Read Disturb Thres-
hold,” U.S. Patent Appl. No. 20140173239, 2014.

[106] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” Google Project Zero Blog, 2015.

[107] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” in BlackHat, 2015.

[108] H. Shim, S.-S. Lee, and B. Kim, “Highly Reliable 26nm 64Gb MLC E2NAND
(Embedded-ECC & Enhanced-E�ciency) Flash Memory with MSP (Memory Sig-
nal Processing) Controller,” in VLSIT, 2011.

[109] S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani, and N. Rama-
swamy, “Challenges for High-Density 16Gb ReRAM with 27nm Technology,” in
VLSIC, 2015.

[110] S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, and N. Ra-
maswamy, “A Copper ReRAM Cell for Storage Class Memory Applications,” in
VLSIT, 2014.

[111] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi,
“Feng Shui of Supercomputer Memory: Positional E�ects in DRAM and SRAM
Faults,” in SC, 2013.

[112] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory Errors in Modern Systems: The Good, The Bad,
and the Ugly,” in ASPLOS, 2015.

[113] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Mem-
ristor Found,” Nature, 2008.

[114] K.-D. Suh, B.-H. Suh, Y.-H. Lim, and J.-K. Kim, “A 3.3V 32 Mb NAND Flash Me-
mory with Incremental Step Pulse Programming Scheme,” JSSC, 1995.

[115] K. Takeuchi, S. Satoh, T. Tanaka, K. Imamiya, and K. Sakui, “A Negative Vth
Cell Architecture for Highly Scalable, Excellently Noise-Immune, and Highly
Reliable NAND Flash Memories,” JSSC, 1999.

[116] H. Tanaka et al., “Bit Cost Scalable Technology with Punch and Plug Process for
Ultra High Density Flash Memory,” in VLSIT, 2007.

[117] V. van der Veen, Y. Fratanonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Gui�rida, “Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms,” in CCS, 2016.

[118] Y. Wang, W.-K. Yu, S. Wu, G. Malysa, and G. E. Suh, “Flash Memory for Ubi-
quitous Hardware Security Functions: True Random Number Generation and
Device Fingerprints,” in SP, 2012.

[119] Y. Wang, W.-K. Yu, S. Q. Xu, E. Kan, and G. E. Suh, “Hiding Information in Flash
Memory,” in SP, 2013.

[120] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, R. E. Oleksiak, and
H. Lawrence, “The Variable Threshold Transistor, A New Electrically-Alterable,
Non-Destructive Read-Only Storage Device,” in IEDM, 1967.

[121] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, 2012.

[122] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. As-
heghi, and K. E. Goodson, “Phase Change Memory,” Proc. IEEE, 2010.

[123] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

[124] S. Q. Xu, W.-K. Yu, G. E. Suh, and E. Kan, “Understanding Sources of Variations
in Flash Memory for Physical Unclonable Functions,” in IMW, 2014.

[125] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu, “E�cient Data
Mapping and Bu�ering Techniques for Multi-Level Cell Phase-Change Memo-
ries,” TACO, 2014.

[126] J. H. Yoon, “3D NAND Technology – Implications to Enterprise Storage Appli-
cations,” in Flash Memory Summit, 2015.

[127] J. H. Yoon, R. Godse, G. Tressler, and H. Hunter, “3D-NAND Scaling and 3D-SCM
— Implications to Enterprise Storage,” in Flash Memory Summit, 2017.

[128] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja, “Memory Module-Level Testing and
Error Behaviors for Phase Change Memory,” in ICCD, 2012.

[129] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy E�cient Main
Memory Using Phase Change Memory Technology,” in ISCA, 2009.

[130] L. Zuolo, C. Zambelli, R. Micheloni, and M. Indaco, “SSDExplorer: A Virtual Plat-
form for Performance/Reliability-Oriented Fine-Grained Design Space Explora-
tion of Solid State Drives,” TCAD, 2015.

10

103

Reviewers:

Australia
Abramov, Vyacheslav; Monash University
Begg, Rezaul; Victoria University
Bem, Derek; University of Western Sydney
Betts, Christopher; Pegacat Computing Pty. Ltd.
Buyya, Rajkumar; The University of Melbourne
Chapman, Judith; Australian University Limited
Chen, Yi-Ping Phoebe; Deakin University
Hammond, Mark; Flinders University
Henman, Paul; University of Queensland
Palmisano, Stephen; University of Wollongong
Ristic, Branko; Science and Technology Organisation
Sajjanhar, Atul; Deakin University
Sidhu, Amandeep; University of Technology, Sydney
Sudweeks, Fay; Murdoch University
Austria
Derntl, Michael; University of Vienna
Hug, Theo; University of Innsbruck
Loidl, Susanne; Johannes Kepler University Linz
Stockinger, Heinz; University of Vienna
Sutter, Matthias; University of Innsbruck
Brazil
Parracho, Annibal; Universidade Federal Fluminense
Traina, Agma; University of Sao Paulo
Traina, Caetano; University of Sao Paulo
Vicari, Rosa; Federal University of Rio Grande
Belgium
Huang, Ping; European Commission
Canada
Fung, Benjamin; Simon Fraser University
Grayson, Paul; York University
Gray, Bette; Alberta Education
Memmi, Daniel; UQAM
Neti, Sangeeta; University of Victoria
Nickull, Duane; Adobe Systems, Inc.
Ollivier-Gooch, Carl; The University of British Columbia
Paulin, Michele; Concordia University
Plaisent, Michel; University of Quebec
Reid, Keith; Ontario Ministry og Agriculture
Shewchenko, Nicholas; Biokinetics and Associates
Steffan, Gregory; University of Toronto
Vandenberghe, Christian; HEC Montreal
Czech Republic
Kala, Zdenek; Brno University of Technology
Korab, Vojtech; Brno University of technology
Lhotska, Lenka; Czech Technical University
Finland
Lahdelma, Risto; University of Turku
Salminen, Pekka; University of Jyvaskyla
France
Cardey, Sylviane; University of Franche-Comte
Klinger, Evelyne; LTCI – ENST, Paris
Roche, Christophe; University of Savoie
Valette, Robert; LAAS - CNRS
Germany
Accorsi, Rafael; University of Freiburg
Glatzer, Wolfgang; Goethe-University
Gradmann, Stefan; Universitat Hamburg
Groll, Andre; University of Siegen
Klamma, Ralf; RWTH Aachen University
Wurtz, Rolf P.; Ruhr-Universitat Bochum
India
Pareek, Deepak; Technology4Development
Scaria, Vinod; Institute of Integrative Biology
Shah, Mugdha; Mansukhlal Svayam
Ireland
Eisenberg, Jacob; University College Dublin
Israel
Feintuch, Uri; Hadassah-Hebrew University
Italy
Badia, Leonardo; IMT Institute for Advanced Studies
Berrittella, Maria; University of Palermo
Carpaneto, Enrico; Politecnico di Torino
Japan
Hattori, Yasunao; Shimane University
Livingston, Paisley; Linghan University
Srinivas, Hari; Global Development Research Center

Obayashi, Shigeru; Institute of Fluid Science, Tohoku
University
Netherlands
Mills, Melinda C.; University of Groningen
Pires, Luís Ferreira; University of Twente
New Zealand
Anderson, Tim; Van Der Veer Institute
Portugal
Cardoso, Jorge; University of Madeira
Natividade, Eduardo; Polytechnic Institute of Coimbra
Oliveira, Eugenio; University of Porto
Singapore
Tan, Fock-Lai; Nanyang Technological University
South Korea
Kwon, Wook Hyun; Seoul National University
Spain
Barrera, Juan Pablo Soto; University of Castilla
Gonzalez, Evelio J.; University of La Laguna
Perez, Juan Mendez; Universidad de La Laguna
Royuela, Vicente; Universidad de Barcelona
Vizcaino, Aurora; University of Castilla-La Mancha
Vilarrasa, Clelia Colombo; Open University of
Catalonia
Sweden
Johansson, Mats; Royal Institute of Technology
Switzerland
Niinimaki, Marko; Helsinki Institute of Physics
Pletka, Roman; AdNovum Informatik AG
Rizzotti, Sven; University of Basel
Specht, Matthias; University of Zurich
Taiwan
Lin, Hsiung Cheng; Chienkuo Technology University
Shyu, Yuh-Huei; Tamkang University
Sue, Chuan-Ching; National Cheng Kung
University
United Kingdom
Ariwa, Ezendu; London Metropolitan University
Biggam, John; Glasgow Caledonian University
Coleman, Shirley; University of Newcastle
Conole, Grainne; University of Southampton
Dorfler, Viktor; Strathclyde University
Engelmann, Dirk; University of London
Eze, Emmanuel; University of Hull
Forrester, John; Stockholm Environment Institute
Jensen, Jens; STFC Rutherford Appleton Laboratory
Kolovos, Dimitrios S.; The University of York
McBurney, Peter; University of Liverpool
Vetta, Atam; Oxford Brookes University
WHYTE, William Stewart; University of Leeds
Xie, Changwen; Wicks and Wilson Limited
USA
Bach, Eric; University of Wisconsin
Bolzendahl, Catherine; University of California
Bussler, Christoph; Cisco Systems, Inc.
Charpentier, Michel; University of New Hampshire
Chong, Stephen; Cornell University
Collison, George; The Concord Consortium
DeWeaver, Eric; University of Wisconsin - Madison
Gans, Eric; University of California
Gill, Sam; San Francisco State University
Hunter, Lynette; University of California Davis
Iceland, John; University of Maryland
Kaplan, Samantha W.; University of Wisconsin
Langou, Julien; The University of Tennessee
Liu, Yuliang; Southern Illinois University Edwardsville
Lok, Benjamin; University of Florida
Minh, Chi Cao; Stanford University
Morrissey, Robert; The University of Chicago
Mui, Lik; Google, Inc
Rizzo, Albert ; University of Southern California
Rosenberg, Jonathan M. ; University of Maryland
Shaffer, Cliff ; Virginia Tech
Sherman, Elaine; Hofstra University
Snyder, David F.; Texas State University
Song, Zhe; University of Iowa
Wei, Chen; Intelligent Automation, Inc.
Yu, Zhiyi; University of California

Authors of papers are responsible for the contents and layout of their papers.

Welcome to IPSI BgD Conferences and Journals!

http://tir.ipsitransactions.org

http://www.ipsitransactions.org

CIP – Katalogizacija u publikaciji

Narodna biblioteka Srbije, Beograd
ISSN 1820 – 4503

The IPSI BGD Transactions

on Internet Research

COBISS.SR - ID 119127052

http://tir.ipsitransactions.org/
http://www.ipsitransactions.org/

