
Experimental Evaluation of Certain Security
Issues of Grain v1 Stream Cipher

Arsić, Aleksandra; Jelisavčić, Vladisav; and Mihaljević, Miodrag J.

Abstract—This paper provides additional insights
regarding certain Grain-v1 security evaluation and
security enhancement approaches. The paper pro-
vides experimental evaluation of a recently reported
the time-memory trade-off paradigm employed for
cryptanalysis and experimental evaluation of statis-
tical features of Grain-v1 output sequences which
are subject of error-correction encoding and degra-
dation by a channel with bit-deletions.

Index Terms—Grain-v1, lightweight encryption,
stream ciphers, security evaluation, security en-
hancement.

1. INTRODUCTION
Lightweight cryptographic techniques have

been recognized as substantial components
for providing cyber-security and particularly
security within Internet of Things (IoT) and
machine-to-machine communications (M2M).
These techniques should support minimization
of the overheads implied by employed security
mechanisms. The required minimization is
particularly related to minimization of the
implementation complexity and the energy
consumption. On the other hand, lightweight
cryptographic techniques also should provide
high level of the cryptographic security which
implies a number of challenges regarding design
and security evaluation of these techniques.
Lightweight encryption techniques appear as
an important class, and a number of block and
stream ciphers have been proposed. One of
the proposed stream ciphers is Grain-v1, [1], [2],
which has received a significant attention because
of it implementation requirements which can fit
even into very restricted RFID implementation
scenarios. Also, Grain-v1 has been subject of a
number of security evaluations (see [3], [4] and
[5], for example).
It has been claimed that [5] yields the most

powerful method for cryptanalysis of Grain-v1
focused on a state recovery attack against
Grain-v1 in the single key and IV pair setting
using time-memory-data tradeoffs. The proposed
cryptanalysis is based on the following. Firstly,
the concept of k-normality has been extended
into k-linear-normality of Boolean functions. Then,
the k-linear-normality of the filter function is
combined with sampling resistance under the
constraints of some state bits, which makes the

This research is supported by the Ministry of Education,
Science and Technological Development, Republic of Serbia.

sampling resistance much longer, and reduces
the searching space that supports wider tradeoff
parameters. This kind of sampling resistance
is called a conditional sampling resistance. For
Grain-v1, a conditional sampling resistance has
been pointed-out based on a specific guessing
path that by fixing 51 bits of state constraint
conditions and guessing 81 bits more of the
internal state. The remaining 28 bits of the
state can be recovered directly using the first
28 keystream output bits generated from the
state, which is 10 bits longer than the sampling
resistance given [3]. According to the conditional
sampling resistance, a time-memory-data tradeoff
attack against Grain-v1 has been conducted and
its cryptanalytic power has been claimed by the
following: The proposed cryptanalysis requires
T = 261 table look-up operations employing
a memory of M = 271 dimension assuming
available keystream length of D = 279 and the
preprocessing time of P = 281, which appear as
much better than the best parameters T = 271,
D = 253.5, M = 271 and P = 2106.5 in the single
key and IV pair setting previously reported.

Motivation for the Work. Grain-v1 is among
the current candidates for lightweight stream
ciphers for IoT and M2M communications. The
results reported in [5] indicate additional security
weaknesses of Grain-v1, but the claims regarding
performance of the proposed time-memory
trade-off attack have not been justified by
experimental results. Accordingly, one motivation
for our work was experimental evaluation of
the employed time-memory trade-off approach.
On the other hand, the reported weaknesses
of the lightweight encryption schemes are a
motivation for consideration of the generic
approaches for security enhancement of the
lightweight encryption techniques. One recently
proposed approach has been reported in [6]
where employment of the simulated channels
with synchronization errors has been proposed
for the security enhancement. Following the ideas
of the approach proposed in [6], we have been
motivated to consider statistical features of the
error-correction encoded segments of Grain-v1
keystream after a channel with synchronization
errors. Consequently, we address an experimental
evaluation of certain error-correction encoding
techniques in order to analyze the encoding
implication on the statistical features of the
encoded binary sequences generated by Grain-

v1 after a channel with synchronization errors
which deletes a fraction of input bits.

Organization of the Paper. Sections II and III
summarize Grain-v1 encryption and its recently
reported cryptanalysis, respectively. Section IV
provides an experimental analysis of the cryptana-
lytic approach summarized in Section III. Section
V addresses impact of error-correction encoding
of Grain-v1 output segments after a channel with
bit deletions for different error-correction codes.
Finally, main messages of this paper are given in
Section VI.

2. DESCRIPTION OF GRAIN-V1
In this section a specification of Grain-v1 [1] is

described. Grain-v1 is stream cipher which is a
part of the eSTREAM project [7]. This cipher is
based on two shift registers and filter function.
One of the shift registers has linear (LFSR) and
the other one has nonlinear (NFSR) feedback. The
shift registers are 80 bits long. Algorithm as input
accepts an 80-bit binary key and a 64-bit binary
IV vector. NFSR register is initialized with key bits
and denoted as (s0, ..., s79). LFSR was initialized
with 64-bit IV and the remaining bits have value
one. This register was denoted as (b0, ..., b79).
In every algorithm’s iteration, state of registers

are updated with new ones. Every bit in registers
was shifted for one position in left. Bits in position
i was initialized with values from bits in position
i + 1 from appropriate registers. The biggest po-
sitions in both registers are initialized with values
from update functions, respectively described with
functions (1) and (2). The linear shift register gets
output from function (1), nonlinear register gets a
value from function (2).

st+80 = st+62⊕st+51⊕st+38⊕st+23⊕st+13⊕st (1)

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45

⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21 ⊕ bt+14

⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33

⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45

(2)

The contents of shift registers represent the
state of the cipher in one clock cycle t. The state
of the cipher has 160 bits. At each clock cycle,
filter function h(x) takes five variables from both
registers and as output produces a single bit. The
function h(x) is defined with equation (3)

h(x0, x1, x2, x3, x4) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3

⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4

⊕ x1x2x4 ⊕ x2x3x4

(3)

where the variables x0, x1, x2, x3 and x4 corre-
spond to the tap positions si+3, si+25, si+46, si+64

and bi+63, respectively.

The output from filter function is masked with
seven more bits from NFSR register defined with
equation (4). In one clock cycle, function (4) pro-
duces one bit which is also Grain-v1 algorithm’s
out bit. For initialization of keystream length N it is
necessary that algorithm has exactly N iterations
of shifting registers.

zt = h(x)⊕
∑
j∈A

bt+j

whereA = {1, 2, 4, 10, 31, 43, 56}
(4)

The cipher is clocked 160 times without pro-
ducing any key, after initialization registers with
key and IV vector. In the biggest position of LFSR
register was putted the output bit from function (4).
Described process is called initialization phase.
After this phase, cipher will output 1 bit/clock. The
algorithm of the Grain-v1 is described in Figure 1.

Figure 1: Grain-v1 algorithm

3. ANALYSIS AND TIME-MEMORY-DATA
TRADEOFF ATTACK OF GRAIN-V1

This chapter describes mathematical analyze
for Grain-v1 with an emphasis on filter function
h(x). It is explained how to generate a large matrix
for Time-Memory-Data (TMD) Tradeoff Attack [8]
according to the conditional sampling resistance.
Filter function h(x) given by formula (3) is non-

linear, in general case. Therefore, it is difficult that
attacker reconstructs state of registers in time t
using keystream with output bits. Authors of paper
[5] deduced certain bit’s constraints on the regis-
ters where filter function is in linear mode. They
noted that the state update function of Grain-v1 is
invertible during keystream generation if the bits’
conditions are complied. This has a consequence
that if we can recover states of registers at some
time t, we can clock it backwards to recover the
used key. State recovery attack that they proposed
focuses on the keystream vector generated after
initialization phase. They claim that if a stream
cipher has n-bit state, l bits of the internal state

can be recovered with l keystream bits, directly.
This scenario is not possible in every situation. It
is a special case, when keystream from Grain-v1
algorithm contains output bit from linear filter func-
tion. In this study, some bits must be on positions
and have values defined with constrains so that
the filter function is in linear mode. The attacker
has a task to hit remaining bits. Dimension of
vector that the attacker must guess is smaller than
dimension n.
Authors proposed sampling resistance [3] of

Grain-v1 algorithm. Specific conditional sampling
resistance for Grain-v1 is presented and guess-
and-determine strategy is based on it. They
choose two linear modes of filter function h(x)
when

x2 = 0, x3 = 1, then h(x) = x0 ⊕ x1

and

x0 = 1, x1 = 0, x2 = 1, then h(x) = x3.
Scenario when this kind of attack is possible is

presented in Table 1. The first column of Table 1
consists state’s constrains, positions and values
of bits in registers which makes filter function
h(x) to be linear. The second column represents
keystream bits. Using output function’s bits it is
possible to recover bits indicated in the last column
of the Table 1. For that the attacker needs to hit
values in positions denoted in fourth column in
Table 1.
Given guess-and-determine strategy allows that

if the attacker fixes n bits of state constraints
conditions and guesses l bits more of the internal
state, he can recover the remaining (180 − n − l)
bits of the state using the first (180 − n − l) bits
keystream output. Authors of mentioned paper
fixed 51 bits respecting restrictions, declared in
the first column of Table 1 and try to recover 28
bits, described in the fourth column, by using 28
bits from keystream and guessing 81 bits more
defined in the third column. Idea was that the
attacker listens output from Grain-v1 algorithm and
waits a sequence on the basis of which will be
able to assume that a filter function is in linear
mode and content of registers on 51 position. After
that attacker is able to reconstruct bits solving the
system of equations using bits from keystream.
For the remaining unknown bits, the attacker uses
guess-and-determine strategy.
After analysis are done and known, TMD Trade-

off Attack can be realized. First phase for this at-
tack is preprocessing phase. Goal of preprocess-
ing phase is matrix initialization. According com-
putation power and technical opportunities, our
matrix is not the same size like in [5]. Dimensions
of matrix that was generated for this study were
m× t where m = 214 and t = 210. The other (81 -
24) bits are initialized by random values and stay
fixed all time for guess-and-determine algorithm.
The positions of these bits are also arbitrary and
chosen from set cited in fourth column of Table

1. Authors of this paper suppose that attacker
guessed them successfully, every time. In that
way, number of all permutations is smaller, so
time and memory space for computing matrix are
smaller, too.
Preprocessing phase is described as:
1. Generate a fixed string s ∈ {0, 1}28 as a
segment of keystream according to Table 1.
2. Form a m × t matrix that tries to cover the
whole search space which is composed of all
the possible permutations with guessed 24 bits of
NFSR and LFSR states as follows:
(a) Randomly generate m startpoints of the

chains, each point is represented like vector
of 24 bits length.

(b) Under the constraint conditions of 51 bits
shown in Table 1, recover the remaining
28 bits of the state using the segment of
keystream s according to the guessing path.
The rest 57 more bits of state must be fixed
and they are some of guessed bits in Table 1.
Make it the next point in the chain, and update
the registers NFSR and LFSR with this point.

(c) Iterate Step (b) t times on each startpoint
respectively.

(d) Store the pairs of startpoints and endpoints
(SPj , EPj), j = 1, ...,m in a matrix.

4. EXPERIMENTS AND RESULTS
Our first experiment was to generate matrix

for TMD Tradeoff Attack and check if there are
duplicate of states. Dimensions of our matrix were
m× t where m = 214 and t = 210. First, startpoints
for each row was random initialized, keeping in
the mind there are no duplicate startpoints. Next
step was to fill all states in matrix. Every state in
chains, except first one, is result from 24 iterations
of Grain-v1 algorithm with registers initialization
with previous state’s bits from the same row in
matrix. After filling the matrix, content of matrix
was analyzed.
Experiments were repeated 50 times. In every

experiment, indexes and values of fixed bits, which
we can not generate with guess strategy, were
different. Contents of startpoints in matrix were
generated every time, too. Experiments showed
that some states in matrix occur more than one
time. The conclusion is the matrix does not contain
all the elements of search space. The numbers of
repetitions are in range from 1 to 1895496 times,
per one state. Repetition rate in all experiments
was in range from 48.59 to 54.17 percent of
number of all matrix states.
Average case for all experiments can be seen

in Figure 2. All experiments had uniform results.
There was no experiment with the result that had
a lot of waste than the average case. Analysis
of this experiment were consisted in calculating
the number of occurrences of each state in the
matrix. Since the number of occurrences of each
state is known, states are grouped according to

TABLE 1: Guess-and-determine strategy
Step Constraint conditions Concerned bits Guessed NFSR and LFSR bits Recovered bit
0 s46 = 0, s64 = 1 z0 b1, b2, b4, b31, b43, b56, s3 b10
1 s47 = 0, s65 = 1 z1 b3, b5, b32, b44, b57, s4 b11
2 s48 = 0, s66 = 1 z2 b6, b33, b45, b58, s5 b12
3 s49 = 0, s67 = 1 z3 b7, b34, b46, b59, s6 b13
4 s50 = 0, s68 = 1 z4 b8, b35, b47, b60, s7 b14
5 s51 = 0, s69 = 1 z5 b9, b36, b48, b61, s8 b15
6 s52 = 0, s70 = 1 z6 b37, b49, b62, s9, s31 b16
7 s53 = 0, s71 = 1 z7 b38, b50, b63, s10, s32 b17
8 s54 = 0, s72 = 1 z8 b39, b51, b64, s11, s33 b18
9 s55 = 0, s73 = 1 z9 b40, b52, b65, s12, s34 b19
10 s56 = 0, s74 = 1 z10 b41, b53, b66, s13, s35 b20
11 s57 = 0, s75 = 1 z11 b42, b54, b67, s14, s36 b21
12 s58 = 0, s76 = 1 z12 b55, b68, s15, s37 b22
13 s59 = 0, s77 = 1 z13 b69, s17, s39 b23
14 s60 = 0, s78 = 1 z14 b70, s17, s39 b24
15 s61 = 0, s79 = 1 z15 b71, s18, s40 b25
16 s22 = 1, s44 = 0, s65 = 1 z19 b75 b29
17 s23 = 1, s45 = 0, s66 = 1 z20 b76 b30
18 s24 = 1, s46 = 0, s67 = 1 z21 - b77
19 s19 = s20 = s28 = 1 z16 = 0 b72, b73 s0

s41 = s42 = s50 = 0 z17 = 0
s62 = s63 = s71 = 1 z25 = 0

20 s20 = s21 = s29 = 1 z17 = 0 b74 s1
s42 = s43 = s51 = 0 z18 = 0
s63 = s64 = s72 = 1 z26 = 0

21 s30 = 1, s52 = 0, s73 = 1 z27 - b28
22 s21 = 1, s43 = 0, s64 = 1 z18 - s2
23 s29 = 1, s51 = 0, s72 = 1 z26 - b27
24 s28 = 1, s50 = 0, s71 = 1 z25 - b26
25 s25 = 1, s47 = 0, s68 = 1 z22 - b78
26 s26 = 1, s48 = 0, s69 = 1 z23 - b79
27 s27 = 1, s49 = 0, s70 = 1 z24 - b0

the number of occurrences. In Figure 2, Y-axis rep-
resents how much states are in group with same
occurrences number. States in every group have
same repetition score. X-axis represents repetition
number by one group.
Next experiment analyses number and length of

sub-chains that appear in the other chains. Analy-
sis are shown that if there is a state in matrix in row
i and column j that appears in some other row, for
example l in column k has the consequence that
the rest of rows i and l have same sub-chains of
states. The justification for this is a deterministic
procedure for obtaining keystream from Grain-v1.
In this analysis, all sub-chains with more than one
appearance were grouped.
In Figure 3 is represented number and length

for each sub-chains that appeared more than one
time in matrix. On graph, Y-axis represents how
much time sub-chains with same length were oc-
curred in matrix. Length of sub-chains, which is
unique for one group, is denoted on X-axis. For
example, there are 37 sub-chains with length 804
states. Group with the longest sub-chains had 22
sub-chains length 1022.
Last analysis for this experiment was to analyze

states in same row in matrix. It was tested if
there are two and more equals states in same
chains. Results shown that it happened to con-
struct chain with periodically repetition sub-chains
length smaller than t. In Figure 4 is described
frequency of this sub-chains. On X-axis is indi-
cated length of sub-chain in one row. On Y-axis is
denoted serial number of sub-chain. From Figure

4, can be seen that these sub-chains were 12 in
total. Length of sub-chains was in range from 67
to 1004 states.

5. CODING ISSUES OF SECURITY
ENHANCEMENT

This section provides experimental evaluation
of certain codes which could be employed for
security enhancement of Grain-v1.

5.1. Codes for Binary Channels with Erasures
The considered codes belong to the family of

Low Density Parity Check (LDPC) codes. LDPC
software package used in experiments consists
of two components: the simulator itself written in
C and a parity check generator written in Oc-
tave/Matlab. The software is a modification of the
software for Similac LDPC decoding the IEEE
802.11n available at [9]. Simulator used to con-
duct LDPC encoding was adapted from [10]. This
specific implementation was chosen because of
its modularity and extensibility. In order to adjust
original simulator for our purposes, two additional
modules were implemented: Deterministic Binary
Erasure Channel (DBEC) and QC-LDPC importer
(make_QCLDPC).
Simulation of QC-LDPC coded channel consists

of following steps:
1) LDPC code generation,
2) encoding,
3) channel transmission,

Figure 2: Classification states in groups with same occurrences number

Figure 3: Classification sub-chains in groups with same length

4) decoding and
5) verification.

During the LDPC [11] code generation step par-
ity check and generator matrices are generated
based on input parameters and imported. In order
to use this simulator for Grain-LDPC-encryption,
modul for importing the reconstructed QC-LDPC
codes had to be implemented since original pack-
age can be used only for generating only plain
(non quasi-cyclic) LDPC codes. In order to go
through encoding step, binary source message
is needed, as well as generator matrix gener-
ated in previous step. In our experiments, input
source message is obtained as an output from
the Grain-v1 algorithm. Channel transmission step

is used to corrupt encoded message in order to
simulate erroneous channel transmission. Original
package contains several erasure channel imple-
mentations, including Binary Symmetric, AWGN
and AWLN channels. In our experiments, encoded
message is not corrupted in order to model re-
alistic communications channel, but to impose
certain statistical properties to encrypted data.
Therefore, we implemented Deterministic Binary
Erasure Channel. This module behaves like an
ordinary Binary Erasure Channel but with one
distinction: bits are erased deterministically, based
on the provided input erasure sequence. This,
input to this module consists of encoded message
and erasure sequence. This erasure sequence

Figure 4: Length for periodically repeated sub-chains

is also prodded as an output from the Grain-v1
algorithm. Decoding step is done using the belief
propagation algorithm. Input arguments to this
module include transmitted message (generated
in previous step), parity check matrix (generated
in first step) and number of iterations. Verification
step is only conducted when designing the QC-
LDPC code. This step ensures that input message
can be successfully restored after erasing bits in
step 3. This step can be used to estimate the
maximum erasure rate that can be achieved using
the given code.

5.2. Tests
In this experiment is examined whether the

codes are suitable for cryptographic usage. Pa-
rameters for generating the different QC-LDPC
codes used in experiments are shown in Table
2. Generator matrices are represented as bitmaps
in Figure 5-7. White pixels represented zero bits
and bits with value one are denoted like black
pixels. Goal of this experiment is to check if
coded message is pseudo-random sequence and
suitable for cryptographic usage. It is clear that
results of experiments depend of parameters and
contents generator and parity check matrices. For
this experiment, set of statistical tests is used to
prove that the generator is, or not, suitable for use
in cryptography. Set of statistical tests is repeated
on three binary streams coded with three different
codes.
For detecting deviations from randomness of

binary sequences, National Institute of Standards
and Technology (NIST) uses a Statistical Test
Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications [12].

The NIST Test Suite is a statistical package
which contains 15 different tests that tested the
randomness of binary sequences produced by
cryptographic random or pseudorandom number
generators. In our case, it was tested randomness
of output from Grain-v1 and LDPC codes. These
tests focus of a variety of different types of non-
randomness that could exist in a sequence. The
mentioned tests are:
1) The Frequency (Mono-bit) Test,
2) Frequency Test within a Block,
3) The Runs Test,
4) Tests for the Longest-Run-of-Ones in a Block,
5) The Binary Matrix Rank Test,
6) The Discrete Fourier Transform (Spectral)

Test,
7) The Non-overlapping Template Matching

Test,
8) The Overlapping Template Matching Test,
9) Maurer’s ”Universal Statistical” Test,

10) The Linear Complexity Test,
11) The Serial Test,
12) The Approximate Entropy Test,
13) The Cumulative Sums (Cu-sums) Test,
14) The Random Excursions Test and
15) The Random Excursions Variant Test.
The focus of The Frequency (Mono-bit) Test is

to calculate the proportion of zeros and ones for
the entire sequence. The purpose of this test is to
determine whether the number of ones and zeros
in a sequence are approximately the same as
would be expected for a truly random sequence.
All other subsequent tests depend on the passing
of this test. This test has for arguments the length
of the bit-word n and the sequence of bits ϵ. For
this study, n had value 106.

TABLE 2: Parameters for generating codes
Name Width of matrix Rate Length of code-word

LDPC_2040_R18 2040 1/8 255
LDPC_4080_R116 4080 1/16 255
LDPC_972_R16 972 1/6 162

Figure 5: Generator matrix for code LDPC_972_R16

Figure 6: Generator matrix for code LDPC_2040_R18

Figure 7: Generator matrix for code LDPC_4080_R116

TABLE 3: NIST tests results
STATISTICAL TEST LDPC972R16 LDPC2040R18 LDPC4080R116

P-VALUE PROPORTION P-VALUE PROPORTION P-VALUE PROPORTION
Frequency 0.921624 989/1000 0.000000* 972/1000* 0.866097 989/1000

BlockFrequency 0.834308 994/1000 0.000000* 964/1000* 0.471146 990/1000
CumulativeSums 0.647012 988/1000 0.000000* 970/1000* 0.595654 988/1000

Runs 0.125200 987/1000 0.000000* 966/1000* 0.616305 989/1000
LongestRun 0.217857 988/1000 0.336111 985/1000 0.128874 989/1000

Rank 0.733899 989/1000 0.316052 985/1000 0.084037 991/1000
FFT 0.955835 989/1000 0.000000* 2/1000* 0.859637 993/1000

NonOverlappingTemplate 0.518231 990/1000 0.000390* 979/1000* 0.511070 990/1000
OverlappingTemplate 0.620465 987/1000 0.000000* 984/1000* 0.245491 990/1000

Universal 0.024688 991/1000 0.000000* 4/1000* 0.703417 985/1000
ApproximateEntropy 0.779188 987/1000 0.000000* 963/1000* 0.469232 990/100
RandomExcursions 0.640932 599/605 0.643301 574/579 0.501618 637/643

RandomExcursionsVariant 0.312905 600/605 0.147909 575/579 0.516815 636/643
Serial 0.739424 987/1000 0.000040* 985/1000* 0.541842 989/1000

LinearComplexity 0.132640 990/1000 0.971006 989 0.522112 984/1000

The focus of Frequency Test within a Block
is to determine proportion of ones within M-bit
blocks. If the frequency of ones in an M-bit block
is approximately M/2, conclusion is that entered
sequence is random. Function call contains the
length of the bit-word n and the length of each
block, M .
Runs test has as a goal to determine a total

number of an uninterrupted sequences of identical
bits, called runs. In particular, this test determines
whether the oscillation between such zeros and
ones is too fast or too slow. Arguments for call of
this test is the same like for Frequency test.
The aim of Test for the Longest Run of Ones in a

Block is the longest run of ones within M-bit blocks.
The purpose of this test is to determine whether
the length of the longest run of ones within the

tested sequence is consistent with the length of
the longest run of ones that would be expected in
a random sequence. Arguments for the function
that tests described are length of the bit-word n,
the number of blocks N and length of each block
M . In this study, M = 128 and N = 1000 was
used.
The focus of Binary Matrix Rank Test is the rank

of disjoint sub-matrices of the entire sequence.
The purpose of this test is to check for linear
dependence among fixed length substrings of the
original sequence. This test uses, as parameter n,
M and the number of columns in each matrix Q
set at 32.
The focus of Non-overlapping Template Match-

ing Test is the number of occurrences of pre-
specified target strings. The purpose of this test

is to detect generators that produce too many
occurrences of a given non-periodic (aperiodic)
pattern. For this test m-bit window is used to
search a specific m-bit pattern. The length in bits
of each template in experiments for this study had
value m = 9.
The focus of the Overlapping Template Match-

ing test is the number of occurrences of pre-
specified target strings. Like previous test, this
uses a m-bit window to search a specific m-bit
pattern. Block length for this test is m = 9, also.
Function call has as arguments the length of the
bit-word n, sequence for testing ϵ and the length
in bits of the template m.
The focus of Maurer’s ”Universal Statistical” Test

is the number of bits between matching patterns
(a measure that is related to the length of a
compressed sequence). The purpose of the test
is to detect whether or not the sequence can
be significantly compressed without loss of infor-
mation. A significantly compressible sequence is
considered to be non-random. For Universal test
it is necessary to know the length of each block L,
the number of blocks in the initialization sequence
Q, the length of the bit-word n and sequence of
bits ϵ.
The aim of Linear Complexity Test is to de-

termine whether or not the sequence is complex
enough to be considered random. For this test, it
needs to be known the value of n and the length
in bits of a block M . For this study, M = 500 as
recommended in specification of the test.
The focus of Serial test is to determine the

frequency of all possible overlapping m-bit pat-
terns across the sequence. The purpose of this
test is to determine whether the number of oc-
currences of the 2m m-bit overlapping patterns
is approximately the same as would be expected
for a random sequence. Random sequences have
uniformly distribution. This test needs the length of
bit-word n and the length in bits of each block m.
Last parameter initialized in value 16.
The purpose of Approximate Entropy Test is

to compare the frequency of overlapping blocks
of two consecutive/adjacent lengths (m and m+1)
against the expected result for a random se-
quence. For function call is needed to know the
length of the entire bit-sequence n and the length
of each block m. For this experiment, it was set
m = 10.
The focus of Cumulative Sums (Cu-sum) Test is

to calculate the maximal excursion (from zero) of
the random walk defined by the cumulative sum
of adjusted (-1, +1) digits in the sequence. The
purpose of the test is to determine whether the
cumulative sum of the partial sequences occurring
in the tested sequence is too large or too small rel-
ative to the expected behavior of that cumulative
sum for random sequences.
The aim of Random Excursions Test is the num-

ber of cycles having exactly K visits in a cumulative
sum random walk. The cumulative sum random

walk is derived from partial sums after the (0,1)
sequence is transferred to the appropriate (-1, +1)
sequence. A cycle of a random walk consists of a
sequence of steps of unit length taken at random
that begin at and return to the origin. The purpose
of this test is to determine if the number of visits
to a particular state within a cycle deviates from
what one would expect for a random sequence.
Function call has only the length of the bit-word n
and test sequence.
The focus of Random Excursions Variant Test

is the total number of times that a particular state
is visited (i.e. occurs) in a cumulative sum random
walk. The purpose of this test is to detect devia-
tions from the expected number of visits to various
states in the random walk
For many of the tests in this test suite, the

assumption has been made that the size of the
sequence length, n is large (from the order 103

to 107). For each of tests in test suite, was used
sequences whose length is 106. In every test 1000
sequences the same length are used.
After testing outputs from codes, for every test it

was computed P-values. On the basis of P-value
decision is made. If each P-value < α, where α
presents the significance level, then conclude that
the sequence is non-random. Otherwise, conclude
that the sequence is random. In our experiments
α is set on 0.01.
The results obtained by testing outlined codes

are given in Table 3. With ∗ are denoted un-
successful tests. P-value is used for make deci-
sion if statistical test has hypothesis ”Sequence
is random” or alternative one. Column which has
name ”PROPORTION” denotes number of sub-
sequences which passed test successfully. Total
number of tested sub-sequences in all experi-
ments was 1000.
After testing three different codes conclusion is

that LDPC_972_R16 and LDPC_4080_R116
is suitable for cryptographic usage and
LDPC_2040_R18 is not. Reason for that is
structure of generator matrices for all three
codes. From Figures 5-7 it can be clearly
concluded that if matrix has small number of bits
with value one, message coded by correspond
code is not suitable for cryptographic usage.

6. CONCLUSION
This paper provides additional insights regard-

ing certain Grain-v1 security evaluation and se-
curity enhancement approaches. The paper pro-
vides: (i) experimental evaluation of the time-
memory trade-off paradigm employed for crypt-
analysis in [5]: and (ii) experimental evaluation of
statistical features of Grain-v1 output sequences
which are subject of error-correction encoding and
degradation by a channel with bit-deletions. Main
messages of this paper regarding the above two
issues are the following ones.
The reported power of the cryptanalysis in [5]

is overestimated because it does not take into

account the repetitions into the table employed for
the time-memory data trade-off based cryptanaly-
sis. Our experimental evaluation implies that the
claimed power of cryptanalysis is overestimated
at least for a factor equal to two.
Our experimental evaluation of the statistical

features of error-correction encoded Grain-v1 seg-
ments after a binary channel with bit deletions
shows that the addressed statistics strongly de-
pend on the selection of the error-correction code.
We show that certain codes, although almost
same from the error-correction prospective imply
different statistical features. Accordingly, if em-
ployed for the security enhancement, the code
should be evaluated regarding its impact on the
statistical features, and the ones which does sup-
port indistinguishably from the statistically random
sequences should be selected.

Rਤਥਤਤਭਢਤਲ
[1] M. Hell, T. Johansson, and W. Meier, “Grain - a stream

cipher for constrained environments,” International Jour-
nal of Wireless and Mobile Computing, pp. 86 – 93, 2007.

[2] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The
grain family of stream ciphers,” in M. Robshaw, O. Billet,
(Eds.) New Stream Cipher Designsm, LNCS, Springer,
vol. 4986, pp. 179 – 190, 2008.

[3] T. Bjorstad, “Cryptanalysis of grain us-
ing time/memory/data tradeoffs (2008).
http://www.ecrypt.eu.org/stream/grainp3.htm,”

[4] M. J. Mihaljevic, S. Gangopadhyay, G. Paul, and H. Imai,
“Internal state recovery of grain-v1 employing normality
order of the filter function,” IET Information Security,
vol. 6, pp. 55 – 64, June 2012.

[5] L. Jiao, B. Zhang, and M. Wang, “Two generic methods
of analyzing stream ciphers,” Springer International Pub-
lishing Switzerland, pp. 379 – 396, 2015.

[6] A. Kavcic, M. J. Mihaljevic, and K. Matsuura, “Light-
weight secrecy system using channels with insertion er-
rors: Cryptographic implications,” IEEE Information The-
ory Workshop, Jeju Island, Korea, pp. 257 – 261, Octo-
ber 2015.

[7] “The ecrypt stream cipher project. eSTREAM portfolio
revision (2008) http://www.ecrypt.eu.org/stream.”

[8] A. Biryukov and A. Shamir, “Cryptanalytic
time/memory/data tradeoffs for stream ciphers,” 6th
International Conference on the Theory and Application
of Cryptology and Information Security Kyoto, Japan,
vol. 1967, pp. 1 – 13, December 2010.

[9] www.csl.cornell.edu/ studer/software_ldpc.html
[10] www.cs.utoronto.ca/ radford/ldpc.software.html
[11] L. Chen, I. Djurdjevic, and S. Lin, “Near-shannon-limit

quasicyclic low-density parity-check codes,” IEEE Trans-
action Communication, vol. 52, pp. 1038 – 1042, April
2004.

[12] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert,
J. Dray, and S. Vo, “A statistical test suite for random
and pseudorandom number generators for cryptographic
applications,” National Institute of Standards and Tech-
nology, April 2010.

	INTRODUCTION
	DESCRIPTION OF GRAIN-V1
	ANALYSIS AND TIME-MEMORY-DATA TRADEOFF ATTACK OF GRAIN-V1
	EXPERIMENTS AND RESULTS
	CODING ISSUES OF SECURITY ENHANCEMENT
	 Codes for Binary Channels with Erasures
	 Tests

	CONCLUSION
	References

