1. Murphy K., "Machine Learning A Probabilistic Perspective", The MIT Press, Cambridge, Massachusetts, London, England, 2012, pp. 217-221.
2. Kartelj A., "Applications of electromagnetism-like metaheuristic in solving classification problems", Accessed: 2022, Available: http://poincare.matf.bg.ac.rs/~kartelj//akartelj_dokt_finaln a_verzija.pdf, pp. 16-20.
3. Murphy K., "Machine Learning A Probabilistic Perspective", The MIT Press, Cambridge, Massachusetts, London, England, 2012, pp. 505-513.
4. Bird S., Klein E., Loper E., "Natural Language Processing with Python", O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, 2009, chapter 3.6.
5. Bird S., Klein E., Loper E., "Natural Language Processing with Python", O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, 2009, chapter 5.
6. Manning C., Raghavan P., Schütze H., "An Introduction to Information Retrieval", Cambridge University Press Cambridge, Cambridge, Cambridgeshire, United Kingdom, 2009, pp. 118-119.
7. Tutorials Point, 2022, https://www.tutorialspoint.com/natural_language_proces sing/natural_language_processing_part_of_speech_tagg ing.htm.
8. Karadzhov G., Gencheva P., Nakov P., Koychev I., "We Built a Fake News & Click-bait Filter: What Happened Next Will Blow Your Mind!", Proceedings of the 2017 International Conference on Recent Advances in Natural Language Processing, September, 2017, Varna, Bulgaria, p. 338.
9. Luyckx K., Daelemans W., "Shallow Text Analysis and Machine Learning for Authorship Attribtion.", CNTSLanguage Technology Group, University of Antwerp, Computational Linguistics in the Netherlands, 2004, pp. 157-159.
10. Getting Real about Fake News, Risdal M., 2022, https://www.kaggle.com/mrisdal/fake-news.
...