
A Simple Categorical Model of Reference
Type

Novitzká, Valerie; Steingartner, William and Perháč, Ján

Abstract: Simply-typed λ-calculus is a well-
known part of the type systems frequently used
in real programming languages. It is described
and modeled in many publications. In this paper,
we extend this calculus with reference type that
models a special part of a computer memory called
dynamic memory. Reference types allows to use
computer memory more flexibly, because we re-
serve only as much memory cells as are needed
for computations. We shortly explain a fragment
of simply-typed λ-calculus and its model as a
cartesian closed category. Then we introduce the
reference type together with its operations. We
discuss the possibilities, how to model reference
type in a category of types. The simplicity of the
model and its graphical output make our approach
useful for educational purposes.

Index Terms: type theory, reference type, cate-
gory theory, λ-calculus

1. INTRODUCTION

TYPES form the essential part of many program-
ming languages. Well-designed type system

and sophisticated type-checking in a compiler
can avoid many undesirable program errors. The
formal basis of type systems offers type theory
[9], [14]. From its beginning ideas formulated by
Russell and later explicitly defined by Church as λ-
calculus, this theory has been developed depend-
ing on the progress in computer science. Type
theory was later extended by popular, not simple
types as reference types, polymorphic types, ex-
ception types, subtypes, and dependent types [7].

In this paper, we construct an appropriate and
simple model of reference type as an extension
of simply-typed λ-calculus. Reference types use
dynamic memory, heap, instead of stack memory.
Dynamic memory is separately managed using
addresses of stored values and it allows to use
computer memory more effectively. We construct

Manuscript received June, 2020.
This work has been supported by the project KEGA 011TUKE-
4/2020: "A development of the new semantic technologies in edu-
cating of young IT experts".

Novitzká, Valerie. Author (contact person) works at the Faculty
of Electrical Engineering and Informatics, Technical University of
Košice, Slovakia (e-mail: valerie.novitzka@tuke.sk).

Steingartner, William. Author works at the Faculty of Electrical
Engineering and Informatics, Technical University of Košice, Slo-
vakia (e-mail: william.steingartner@tuke.sk)

Perháč, Ján. Author works at the Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovakia (e-mail:
jan.perhac@tuke.sk).

our model based on category theory [6]. Cate-
gories are useful mathematical structures for mod-
eling programs written in various programming
paradigms. The graphical illustration of categories
also contributes to easier understanding of the
models.

Our model is quite simple but we tried to save its
exactness. It is dedicated for educational purpose,
namely in the course Type Theory for graduate
students. Therefore we give an impact on the prin-
ciples of categorical models and we abstract from
some technical details. We have used successfuly
the appropriate categorical models in the course
Semantics of Programming Languages, where the
denotational semantics is modeled as a collection
of categories of states [17] and the operational
semantics as a coalgebra [16].

The structure of this paper is as follows. In the
next section, we shortly characterise a fragment of
simply-typed λ-calculus and its categorical model,
cartesian closed category (ccc) that we use as
a basis for modeling reference type. In Section
3, we introduce the basic concepts for reference
types and we characterize the operations on them.
In Section 4, we extend the categorical model
of simple types by a new object for dynamic
memory. We define the morphisms that represent
operations on reference types.

2. RELATED WORKS

There are many publications dealing with ref-
erence types in various programming languages,
e.g. for Java [10], C# [18], Python [1] and Swift
[2]. They are oriented mainly on the details, how
to use references in programming, and what is
the difference between value types and reference
types.

Naumov presents in [12] simply-typed λ-
calculus extended with reference types and he
defines their principles, syntax and semantics.
Some other nice publications introducing a formal
definition of reference types in the frame of λ-
calculus are the books written by Pierce [13]–
[15], which precisely describe motivation, formal
definition, models of reference types in functional
languages, and also their usage. An introduction
into formalization of type theory is in [9] and in
many other publications, e.g. in [3], [5], [19].

The categorical modeling of simple λ-calculus
is published in the book of Crole [8], but it does
not deal with reference types.

3

3. CATEGORICAL MODEL OF LAMBDA-CALCULUS
WITH FUNCTION TYPES

Simply-typed λ-calculus is a basis for the func-
tional programming languages [11]. Its categorical
model is a cartesian closed category [8]. In this
section we shortly repeat the principles of this
model.

We consider a fragment of simply-typed λ-
calculus, that contains basic types and function
types. The formal syntax of the language consists
of the pure λ-calculus extended with two terms of
successor and a conditional term:

t ::= x | λx : T.t| t t | unit | succ t
if t then t else t

v ::= nv | true | false | λx : T.t | unit
nv ::= 0 | succ nv
T ::= Nat | Bool | T → T

We consider the basic types Nat for natural num-
bers, Bool for boolean values and Unit as an
empty type. The only simple type is the function
type T → T . We do not consider other sim-
ple types, as product types and sum (coproduct)
types, but the principles of modeling that language
are the same.

A program is a term t. A term can be a variable
x, a λ-abstraction of the form λx : T.t defining a
function, an application t t, a unit (empty) term
unit, a successor succ t and a conditional term
if t then t else t. Besides numerical values (nv)
and truth values there are also λ-abstractions and
an empty value among the values.

For constructing a categorical model of this
language, we need to choose a suitable kind of a
category. A category is a mathematical structure
consisting of

• objects, and
• morphisms between objects,

and it has to satisfy the following basic axioms:
• each object has the identity morphism;
• for two composable morphisms, there exists

a morphism that is their composition;
• a composition of the composable morphisms

is associative.
A cartesian closed category (ccc) is the best

and traditional solution for defining a model of this
language. A ccc has the following properties:

• it has a terminal object 1, i.e. an object to
which there exists just one morphism from
each category object,

• each pair of objects A and B has a product
object A×B with two projections π1 : A×B →
A and π2 : A×B → B,

• for every pair of objects A and B there ex-
ists an exponent object BA representing the
functions from A to B, and a morphism

eval : BA ×A→ B.

The constants, the elements of an object can be
defined as global variables, the morphisms from
terminal object to a given object. The precise def-
inition of cartesian closed categories is published
in [4], [6] and in many others.

To build a model of our language, we need first
to define the representations of the types. We
assign to the types from the syntax the following
representations:

Nat 7→ N0,
Bool 7→ B,

T1 → T2 7→ [[T2]]
[[T1]],

Unit 7→ 1,

where N0 is a set of natural number with zero and
B is a set of truth values.

The model of simply-typed λ-calculus is the
category C defined as follows:

• the objects are the representations of types,
• the morphisms are the representations of

terms,
• the terminal object 1 is the representation of

the type Unit, [[Unit]] = 1.
A term x : T is represented as the identity

morphism on [[T]]:

id[[T]] = [[x]].

A term λx : T1.t is a function definition of
a function type T1 → T2, where t : T2. A λ-
abstraction is a value of a type representation
[[T2]]

[[T1]]. Values are modeled as the morphisms
(global variables) from terminal object:

[[λx : T1.t]] : 1→ [[T2]]
[[T1]].

An application t1 t2, where t1 : T1 → T2 is a
function and t2 : T1 is its argument, is represented
as a morphism

[[t1 t2]] : [[T2]]
[[T1]] × [[T1]]→ [[T2]]

and defined as a composition:

[[t1 t2]] = [[t2]] ◦ [[t1]].

The constants true, false : Bool are repre-
sented as the morphisms (global variables) from
terminal object to B:

[[true]], [[false]] : 1→ B

and the constant 0 of the type N0 is the morphism:

zero : 1→ N0.

Similarly, the representation of a term succ t :
Nat is an endomorphism on natural numbers N0

[[succ t]] : N0 → N0,

4

JxK

JT K

B× JT K × JT K

Jif t1 then t2 else t3K

1

B

JtrueK

JfalseK

zero

N0

Jsucc tK

Jλx.tK

JT2KJT1K

JT2K

Jt1 t2K

C

JT2KJT1K × JT1K

Fig. 1: A model of simply-typed λ-calculus

and the representation of a conditional term
if t1 then t2 else t3 is a morphism

[[if t1 then t2 else t3]] : B× [[T]]× [[T]]→ [[T]],

where t1 : Bool and t2, t3 : T .
The advantage of categorical model is its graph-

ical representation as we illustrate it in Fig 1.

4. REFERENCE TYPE

Most programming languages use references
that are often called pointers. They enable to work
explicitly with some part of memory. A reference
is a value that defines an access to a memory
cell, i.e. an address, where some value is stored.
The work with references is usually called indirect
addressing. The part of the memory used by
references is called dynamic memory, or heap.
References increase flexibility of memory usage,
because we reserve only so much memory that
we explicitly need. Typical application of refer-
ences are the linked lists.

A collection of references together with their op-
erations form the reference type, Ref T . To avoid
confusion, a reserved place has to be of some
type T . To work with references, the following
operations are needed:

• reservation, or allocation of a place (location)
in dynamic memory to store a value of a given
type, alloc t;

• dereference, i.e. extraction of a value stored
in a given place in dynamic memory, @t;

• assignment, i.e. modification of a value stored
in a given place in dynamic memory, t1 := t2.

We extend the syntax of our fragment of λ-
calculus with the following structures:

t ::= . . . | alloc t | @t | t := t | l
v ::= . . . | l
T ::= . . . | Ref T

The operation alloc allocates a new memory
cell and it stores there a value of a term t. A type
of this operation is:

alloc t : Ref T for t : T.

To evaluate this term, first, a term t has to be
reduced to a value (if it is a redex)

t→∗ v

and this value is stored in reserved place at the
first free location. The symbol →∗ denotes finite
number of reduction steps.

The operation @ is dereference; it returns a
value stored in a location t. The type of this
operation is:

@t : T if t : Ref T.

Again, if t is a redex, it has to be reduced to a
location:

t→∗ l

and @l returns a value stored at l.
The operation := is assignment. It serves for

modification of a value stored in dynamic memory.
Therefore, the evaluation of

t1 := t2

5

means that t1 : Ref T is reduced to a location:

t1 →∗ l,

then t2 : T is reduced to a value:

t2 →∗ v

and v is stored at the location l. The assignment
is made indirectly, therefore, the type of this oper-
ation is Unit.

The arithmetic on locations are obviously not al-
lowed in programming languages, because it can
make confusion in address space. For the same
reasons, the release of allocated cells has no
operation in programming languages, it is mainly
done by garbage collector.

5. CATEGORICAL MODEL OF REFERENCE TYPE

To model our extended language from the pre-
vious sections with reference type, we need to
modify the category C and to introduce a rep-
resentation of reference type together with new
morphisms for the operations on this type. That
means, we need to model and to handle dynamic
memory.

In modeling dynamic memory, we need to save
an information about a type T for the values that
can be stored in a reserved location. To model
dynamic memory, we have two possibilities. The
first is to model reference type for each type T
separately. Such approach brings some technical
complications, of how to handle locations of dy-
namic memory in different objects. Because this
model is addressed mainly for the students at the
technical university that have a little experience
with category theory, we make our model the sim-
plest possible. The main purpose is that students
understand the principles without technical details.

Therefore, we model an abstraction of computer
memory as a table of memory cells, which is
indexed by locations and the values are stored
in the cells. In this first consideration, we do not
consider different representation of the types of
values, every memory cell, a location, can contain
a value of any type. This simplification enables us
to represent dynamic memory as a function type
Ref:

Dynam = Loc→ Values,

where Loc is a finite ordered set of memory
locations

Loc ⊂ N,

and Values is a set of possible values stored in
the memory cells.

To store the type annotations of the values in
dynamic memory, we store it together with the
value. We extend the representation of dynamic
memory Dynam as a function space:

Dynam = Loc→ (Value× Types),

where Types is a finite set of all type representa-
tions of a program

Types = {[[T1]], . . . , [[Tn]]}.

Now, we have an information about the types
of values that can be stored in the given location
and dynamic memory is represented as a one
category object, ordered set of functions. We can
define an actual dynamic memory in any step of
computation as an ordered set:

{l1 7→ ([[v1]], [[T1]]), . . . , li 7→ (⊥, 1)},

where the last member indicates a location of the
first free memory cell with undefined value and
type.

Now, we model the operations with reference
type. an allocation of a new location is modeled
as a morphism:

[[alloc t]] : [[T]]→ Dynam,

defined for t : T by:

[[alloc]] [[t]] = {l1 7→ ([[v1]], [[T1]]), . . . ,

li 7→ ([[t]], [[T]]), li+1 7→ (⊥, 1)}.

The operation of dereference is the only oper-
ation that goes out of a dynamic memory and it
returns a value of a given type for further compu-
tation:

[[@ t]] : Dynam→ [[T]]

and it is defined by

[[@lj]] = [[vj]],

where the actual memory is

{l1 7→ ([[v1]], [[T1]]), . . . , lj 7→ ([[vj]], [[T]]), . . . ,

li 7→ (⊥, 1)}.
We model the assignment as an operation per-
formed inside a dynamic memory:

[[t1 := t2]] : Dynam→ Dynam

and we define it for an actual memory

{l1 7→ ([[v1]], [[T1]]), . . . , lj 7→ ([[vj]], [[Tj]]), . . . ,

li 7→ (⊥, 1)}.
by

6

Jalloc tK

JT K JDynamK

J@ tK

Jt1 := t2K

CDynam

Fig. 2: Modeling dynamic memory

[[lj := v]] = {l1 7→ ([[v1]], [[T1]]), . . . ,

lj 7→ ([[v]], [[Tj]]), . . . , li 7→ (⊥, 1)}.
The operations on reference type are illustrated

in Fig 2.

6. CONCLUSION

Using dynamic memory leads to economic and
effective handling with computer memory. We ex-
tended a categorical model of simply-typed λ-
calculus with a representation of dynamic mem-
ory. We tried to use existing model in the form
of ccc. Our extensions with new object of dy-
namic memory as a special type together with ap-
propriate morphisms preserve the simplicity and
elegance of the previous model. Therefore, our
approach is easily understandable by students
and practical programmers that are not experts
in theoretical computer science.

This result is the first step to introduce types
in our categorical models of programming lan-
guages, especially for program systems consisting
of components. We will use it and extend during
our further research.

REFERENCES

[1] Built-in types — python 3.8.2rc1 documentation.
docs.python.org.

[2] Structures and classes — the swift programming lan-
guage (swift 5.2). docs.swift.org.

[3] E. Ábrahám and M. Bonsangue. In Theory and practice
of formal methods, 2016.

[4] S. Awodey. Category theory. Oxford University Press,
New York, NY, USA, 1st edition, 2010.

[5] A.K. Bansal. Introduction to programming languages.
CRC Press, New York, NY, USA, 1st edition, 2013.

[6] M. Barr and C. Wells. Category theory of computing
science. Prentice Hall, New York, NY, USA, 1st edition,
1998.

[7] J. Collins. A history of the theory of types. Lambert
Academic Publishing, New York, NY, USA, 1st edition,
2012.

[8] R. L. Crole. Categories for Types. Cambridge University
Press, New York, NY, USA, 1st edition, 1993.

[9] Z. Csörnyei. Introduction to the Type Theory (in hungar-
ian). ELTE Eötvös Press, New York, NY, USA, 1st edition,
2012.

[10] P.J. Deitel and H. Deitel. Introduction to Java 9 Classes,
Objects, Methods and Strings. Pearson, New York, NY,
USA, 1st edition, 2017.

[11] W. Farmer. The seven virtues of simple type theory.
Journal of Applied Logic, 6:267–286, 2008.

[12] P. Naumov. Theory of reference types. Technical report,
Cornell University, 1998.

[13] B.C. Pierce. Basic category theory for computer scien-
tists. MIT Press, New York, NY, USA, 1st edition, 1991.

[14] B.C. Pierce. Types and programming languages. MIT
Press, New York, NY, USA, 1st edition, 2002.

[15] B.C. Pierce. Advanced topics in types and programming
languages. MIT Press, New York, NY, USA, 1st edition,
2004.

[16] W. Steingartner, V. Novitzká, and W. Schreiner. A coalge-
braic operational semantics. Computing and Informatics,
38:1181–1209, 2019.

[17] W. et al Steingartner. New approach to categorical
semantics for procedural languages. Computing and
Informatics, 36:1385–1414, 2017.

[18] R. Stephens. C# 5.0 Programmer’s Reference. John
Wiley et Sons, Indianapolis, 1st edition, 2014.

[19] S. Thompson. Type theory and Functional programming.
University Kent, New York, NY, USA, 1st edition, 1999.

Valerie Novitzká works as Full Professor of Informatics at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics, Technical University of
Košice, Slovakia. Her fields of research include type theory,
semantics of programming languages, non-classical logical
systems and their applications in computing science. She also
works behavioural modeling of large program systems based
on categories.

William Steingartner works as Assistant Professor of Infor-
matics at the Department of Computers and Informatics of
the Faculty of Electrical Engineering and Informatics, Technical
University of Košice, Slovakia. He defended his Ph.D. thesis
"The Rôle of Toposes in Informatics" in 2008. His main fields of
research are semantics of programming languages, category
theory, compilers, data structures and recursion theory. He
also works with type theory and software engineering.

Ján Perháč works as Assistant Professor of Informatics at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics, Technical University of
Košice, Slovakia. He defended his Ph.D. thesis "The Rôle of
Toposes in Informatics" in 2019. His main fields of research
are type theory and non-classical logical systems.

7

