
The Empirical Cost of Generalization:
Subgraph Isomorphism and Clique Search

Parenton, Alexis; Čibej, Uroš; Mihelič, Jurij; and Fürst, Luka

Abstract: Subgraph isomorphism and clique
search are two well-known NP -complete prob-
lems, clique search being an instance of the
subgraph isomorphism problem where we fix
the subgraph to a specific complete graph. Var-
ious solvers have been developed for both of
these problems independently. The goal of this
article is to empirically compare the efficiency
of both types of solvers on the clique prob-
lem, i.e., we are solving the clique problem with
specialized clique solvers and with solvers for a
more general problem. In this way we can gain
an insight into the differences between differ-
ent types of solvers and possibly identify some
approaches that could be migrated from clique
search solvers to subgraph isomorphism solvers
and vice versa.

Index Terms: graph, subgraph isomor-
phism, clique search, solvers, empirical com-
parison

1. Introduction

By definition, NP -complete problems can be
reduced to one another and by developing

a solver for one, we also get a solver for the
other. But in practice, this equivalence is not so
simple since solvers that exploit some specifics
of the problem can be much more efficient than
more general solvers. In this paper we will fo-
cus on two well-known problems, one being a
natural generalization of the other. The gen-
eral problem is called subgraph isomorphism,
where the task is to find a pattern graph G in
a larger graph H. The more specific problem is
the clique search, where, given a graph H, we

Manuscript received December 2019.
The first author is a student at Polytech Clermont-

Ferrand and this work was done when visiting University
of Ljubljana. Other authors are affiliated with the Fac-
ulty of Computer and Information Science, University of
Ljubljana, Slovenia (e-mail: luka.fuerst@fri.uni-lj.si).

search for a complete graph with k vertices as
a subgraph. It is easy to see that this is a spe-
cial case of the subgraph isomorphism problem.
Even though there is such an obvious connec-
tion, the research community has been deal-
ing with these problems rather independently.
There are plenty of solvers [11] for either the
clique problem or the subgraph isomorphism
problem. But no comparison has been made
to establish how well the clique solvers exploit
the specifics of the subgraph structure and/or
how large the time loss is if we use subgraph
isomorphism solvers to solve a more restricted
problem. In this paper, we are exploring this
connection guided by the research principles as
described in [4]. The article is structured as fol-
lows. Section 2 gives the basic definitions. Sec-
tion 3 describes various solvers that we are go-
ing to use during our empirical evaluation and
Section 4 gives the benchmark graph instances
used and Section 5 shows the obtained results.
Finally, Section 6 concludes the paper and gives
some goals for future research.

2. Definitions

In a graph, we consider the group of vertices as
a set V , and the group of edges as E. A graph
G is defined by those two sets V and E.

A subgraph G′ is a graph where you select
some of vertices in V to create a set V ′ . It
forms the E′ set with the edges in E that con-
nect vertices in V ′. The example G′ shown in
Figure 1. is a subgraph of G.

The maximum clique search problem is de-
fined as follows. Given a graph G = 〈V, E〉,
find the largest subset of vertices U ⊆ V such
that they form a clique, i.e., ∀u, v ∈ U, (u, v) ∈
E.



Graph G

Subgraph G′

v1

v2 v3

v4

Graph G′′

v′
1 v′

2

v′
3

fsub : (v1, v′
3), (v2, v′

1), (v3, v′
2)

Figure 1: An instance of the subgraph isomor-
phism problem

3. Solvers

Both the subgraph isomorphism and the maxi-
mum clique search problem have been studied
extensively in the literature. As a result of these
studies, many solvers have been developed. In
this section we give a brief description of the all
the solvers that we used in our experiments.

3.1 Cliquer

Cliquer is a set of C routines for finding cliques
in an arbitrary weighted graph. It uses an ex-
act branch-and-bound algorithm developed by
Patric Österg̊ard [9]. It was made with the aim
of being easy to use for everyone and still be
flexible.

The solver includes a search for maximum
cliques (weighted and unweighted). It can also
search for cliques with a size or weight within a
given range. Besides that, it supports weighted
and unweighted graphs, but unweighted graphs
have faster routines.

The first version was copyrighted in 2002
and the last update was released in early 2010.
Cliquer calculates the size of the maximum
clique in a subgraph, then it increases the sub-
graph by adding vertices one by one and recal-
culating the size of the maximum clique. When
it finishes determining the maximum clique size,
it starts the search for the suitable position of
the clique.

For the second part, the order of the vertices
has a major impact on the speed of the search.
Cliquer can also order the vertices with different

functions.
At the end, the solver returns the result with

the time at each round of execution, the clique
size and weight, and finally the vertices that
composed the clique.

3.2 MaxCliquePara

MaxCliquePara [6] is an exact parallel maxi-
mum clique algorithm. It is based on a branch
and bound algorithm. It uses the sequen-
tial MaxCliqueSeq algorithm, which was paral-
lelized by splitting the branch and bound search
tree to multiple cores, resulting in the Max-
CliquePara algorithm. By splitting that way,
it makes MaxCliquePara superior to older al-
gorithms like MaxCliqueSeq, especially in our
empirical testing.

It was created basically for protein product
graphs and for protein structural comparisons,
but it is interesting to test this one on larger DI-
MACS graphs. The solvers return the searching
time, the number of steps, the size of the clique
and the vertices of the clique in ascending or-
der.

3.3 MaxCliqueDyn

MaxCliqueDyn [6] is also an exact algorithm for
finding maximum clique in undirected graphs.
The solver was developed by Janez Konc. It
is based on a branch and bound algorithm and
mixed with subgraph colouring.

The solver runs twice with different options.
In the second execution, it performs dynamic
sorting of vertices and improved colouring. For
each run it return steps with the maximum
clique size at each step, the final maximum
clique size with the vertices, the number of
steps and the execution time. For small graphs,
the second run isn’t different or faster, but on
larger graphs it can be two or three times faster.

3.4 BBMC

The BBMC algorithm [10] is a little differ-
ent. It has many variations, which are BBMCI,
BBMCR, BBMCL and BBMCS, but we will fo-
cus only on the basic variation. This algorithm
and its variations are all using bitsets to rep-
resent whether a vertex from the graph is in a



set or not. Algorithms using bitsets have two
main advantages: the use of a bitset instead of
storage implementations reduces the memory
needed by a factor equal to the size of a word
on the system, and common operations can be
done in parallel using bit-wise operation.

The BBMC algorithms is also implemented
in C++. To find solutions, they are using graph
coloring.

The algorithm also returns the graph in-
formation, the searching time, the number of
steps, the clique size of course and the clique
vertices.

3.5 MoMC

MoMC is a combination of two different al-
gorithms [7]. They are all implemented in C
and they are based on a branch and bound al-
gorithm. The first algorithm is SoMC which
means Static ordering MaxClique Solver. It is
called Static because the vertex ordering be-
tween the returned subgraph and the rest of
the vertices is always consistent with the initial
ordering.

The second one is DoMC which means Dy-
namic ordering MaxClique Solver. The main
differences are in the “GetBranches” functions
that will return vertices. It is called Dynamic
because those vertices are not always smaller
than the rest of the graph so the ordering be-
tween them should be dynamically re-defined.

Those two are exact branch and bound
based solvers. MoMC is different because the
solver switches cleverly between static and dy-
namic, depending on the graph.

MoMC returns the state of execution at
each clique increment. It also returns the
MaxSAT instance that can be used in SAT
solvers. It finally gives the vertices of the clique.

3.6 Subgraph Isomorphism Constraint Satis-
faction

SICS [3] is developed in C++ and must be com-
piled in C++17 or more. It is a subgraph iso-
morphism solver. In order to compare it with
the other solvers, we need to create the clique
and try to find it in the graph.

It can also read graphs from files by using
a “read” family of functions. It supports the

VF2, gal, galv, galve, gf, ldgraphs unlabelled
and ldgraphs labelled formats.

SICS implements a large set of algorithms.
There are more than 40 algorithms, but some of
them are similar, so we choose the most differ-
ent ones. The differences are the way to count,
to store in memory, to jump quicker or lazier to
other vertices, etc.

To run the solver, we needed two files.
First, the graph in entry is an obligation, be-
cause this is what we want to study. After
that, we need the subgraph we would like to
search. In the experiment, the subgraph is a
clique, corresponding to the maximum clique
of the graph.

We had to create each clique graph, in the
DIMACS format. When done, the algorithm
can be run. The solver needs the clique first
and try to find it in the graph.

In the main file, we choose to stop the exe-
cution when the first solution is found, because
subgraph isomorphism solvers can find every so-
lution, when maximum clique solver are made
for one.

The solver returns the clique nodes and list
the corresponding nodes in the graph. The
vertex 0 is random and has no impact on the
clique. The clique size and the executing time
are returned

3.7 Glasgow Solver

SICS is based on the Glasgow solver [8], which
is another solver based on many approaches
developed for the constraint satisfaction prob-
lems. It can solve both problems that we
address here, i.e., the subgraph isomorphism
solver and the maximum clique problem.

Subgraph Isomorphism Solver. This is a
solver for subgraph isomorphism (induced and
non-induced) problems, based upon a series of
papers by subsets of Blair Archibald, Ciaran
McCreesh, Patrick Prosser and James Trimble
at the University of Glasgow, and Fraser Dun-
lop and Ruth Hoffmann at the University of St
Andrews. A clique decision / maximum clique
solver is also included.

We can build it with a C++17 compiler.
Fortunately, they had an auto-detection for the



format, but it is better to specify it.
It was logical to test this solver in the ex-

periment, because this is a second subgraph iso-
morphism solver, and because SICS was based
on the Glasgow solver, on an older version.

The subgraph solver is a constraint pro-
gramming style backtracker, which recursively
builds up a mapping from pattern vertices to
target vertices. It includes inference based upon
paths (not just adjacency) and neighbourhood
degree sequences, has a fast all-different prop-
agator, and uses sophisticated variable- and
value-ordering heuristics to direct a slightly ran-
dom restarting search.

The solver returns the number of vertices,
the executing time and the vertices correspond-
ing to the clique.

Clique Solver. In the latest version of the
solver, they added a maximum clique solver.
We compared it with the other maximum clique
solvers, and with the subgraph isomorphism
solver. It works the same way as the subgraph
solver, but it estimates a clique size which will
exist in the graph, and it increases the size at
each executing step. The solver does not re-
turn the result the same way. It returns the
number of vertices, the running time and the
clique vertices.

4. Benchmark Graphs

We had a set of instances from the Second DI-
MACS Implementation Challenge [2]. It was
better to use this instead of creating our own
because those ones have special properties, and
it makes the experiment more accurate. There
are many graph formats that we can use. On
advice from the tutors, we choose the DIMACS
format, which is one of the simplest.

These are the graph classes in the bench-
mark set [1].

• The “C” graph family: they are ran-
dom graphs generated with the num-
ber of vertices and the edge probability.
Michael Trick generated the “C” fam-
ily using ggen, a generating program by
Craig Morgenstern.

• The “Dsjc”: random graphs generated by
David Johnson [5].

• The “Mann” family: clique formulation
of the Steiner Triple Problem, instances
generated by Carlo Mannino.

• The “Brock” family: random graphs with
cliques hidden among vertices with low
degree. Generated by Mark Brockington
and Joe Culberson.

• The “Gen” family: generated graphs with
huge clique. Instances generated by
Laura Sanchis.

• The “Hamming” family: graphs gener-
ated using the hamming distance, which
is distance between two different words.
Generated by Panos Pardalos.

• The “Keller” family: graphs generated
using the Keller conjecture on tilings
using hypercubes. Generated by Peter
Shor.

• The “P hat” family: random graphs with
p hat generator which is a generalization
of the classical uniform random graph
generator. Those graphs have wider node
degree spread and larger cliques than
standard ones.

.

5. Results

The main part was the testing part. We had
to test every graph with every solver. To get
homogeneous results, We had to use the same
virtual machine on the same computer, so we
had to do it one by one. For some of the solvers
and graphs, the execution took days. Having
results like this was not useful, so we decided
to stop the solver execution after 600 seconds.

6. Conclusions

All results are shown in Figure 2. In the middle
in colour, there is the executing time for the
maximum clique solvers. The maximum time
is 600 seconds, because we decided to stop the
execution after that time. There are 7 solvers:



Figure 2: Results of the experiment

Cliquer, maxClique, MCQD, MCQD with dy-
namic sorting vertices, BBMC, MOMC and
Glasgow maximum clique solver. The colours
are the following ones: the orange is for the
worst, green for the best, white for the mid-
dle one. When the orange is faded, it means
that the solver is slow, but not the worst. It is
the same for the green, faded green is for quick
solver, but not the best. The best time is also
in bold characters.

There is also a grey part, when every solver
spends more than 600 seconds of executing
time.

On the right, there is two columns for the
subgraph isomorphism solvers. They don’t have
colours, because it is not useful for the experi-
ment.

As said before, Cliquer seems to be the
worst one, even though there are cases where
it is the best. This is for the very small graphs.
In fact, it seems to be because of the approxi-
mated time.

MaxClique does not have a lot of “best

times”, but it has many good times on aver-
age. In conclusion for MaxClique, the paral-
lelism made on MaxCliqueSeq to create Max-
CliquePara optimized well the solver.

For the two MCQD solvers, the executing
times are mostly light orange and white, so it
seems in the median or a little lower. In fact,
the dynamic sorting version is slightly better
than the standard one, but they share mostly
the same place.

BBMC does not have a lot of orange times,
so it seems to be quick. The graph colouring
and the bitset memory storage obviously play
an important role in the execution time.

MOMC was the best in the majority of
cases. It has more than three quarters of best
times. It was very powerful, especially for the
“Gen” family, where its times are less than 2
seconds and the other solvers took more than
10 minutes. It is the worst, when Cliquer is the
best. MOMC also allow a quick execution for
large graph.

Glasgow MCS has good times. When



MOMC is not the best, it seems that Glagow
MCS is the best. It is in the top, but it has the
second place.

When we look at the subgraph isomorphism
solvers, there is a huge difference. SICS is far
behind the Glasgow solver. In fact, it is too
slower than the other ones, that he mostly took
more than 600 seconds. On the other hand, the
Glasgow solver has better times than the Glas-
gow MCS, which is simply the result of the fact
that the MCS estimates the clique size and in-
crease it at each step, but in the subgraph iso-
morphism solver, we give the maximum clique
size, which explains why this is quicker.

From the results we can conclude that the
more general solvers pay a huge price (in ex-
ecution time), which is of course not surpris-
ing, but it is evidence that there are still many
possible properties of graphs that could be ex-
ploited in order to speed up subgraph isomor-
phism solvers.

References

[1] Graph instances. http://iridia.ulb.ac.be/
˜fmascia/maximum_clique/DIMACS-benchmark.
Accessed: 2019-11-30.

[2] The homepage of the dimacs challenge.
http://www.dimacs.rutgers.edu/programs/
challenge/. Accessed: 2019-11-30.

[3] The homepage of the sics solver. https://git.
sr.ht/˜xnevs/sics. Accessed: 2019-11-30.

[4] V. Blagojević, D. Bojić, M. Bojović, M. Cve-
tanović, J. Dordević, D. Durdević, B. Furlan,
S. Gajin, Z. Jovanović, D. Milićev, V. Miluti-
nović, B. Nikolić, J. Protić, M. Punt, Z. Radi-
vojević, Ž. Stanisavljević, S. Stojanović, I. Tar-
talja, M. Tomašević, and P. Vuletić. A systematic
approach to generation of new ideas for phd re-
search in computing. In Ali R. Hurson and Veljko
Milutinović, editors, Creativity in Computing and
DataFlow SuperComputing, volume 104 of Ad-
vances in Computers, pages 1 – 31. Elsevier, 2017.

[5] David S. Johnson, Cecilia R. Aragon, Lyle A. Mc-
Geoch, and Catherine Schevon. Optimization by
simulated annealing: an experimental evaluation;
part II, graph coloring and number partitioning.
Operations Research, 39(3):378–406, May 1991.

[6] Janez Konc and Dušanka Janezic. An improved
branch and bound algorithm for the maximum
clique problem. Proteins, 4(5), 2007.

[7] Chu-Min Li, Hua Jiang, and Felip Manyà. On mini-
mization of the number of branches in branch-and-
bound algorithms for the maximum clique problem.
Computers & Operations Research, 84:1–15, 2017.

[8] Ciaran McCreesh and Patrick Prosser. A paral-
lel, backjumping subgraph isomorphism algorithm
using supplemental graphs. In International confer-
ence on principles and practice of constraint pro-
gramming, pages 295–312. Springer, 2015.

[9] Sampo Niskanen and Patric RJ Österg̊ard. Cliquer
user’s guide. Helsinki University of Technology,
2003.

[10] Pablo San Segundo, Fernando Matia, Diego
Rodriguez-Losada, and Miguel Hernando. An im-
proved bit parallel exact maximum clique algo-
rithm. Optimization Letters, 7(3):467–479, Mar
2013.

[11] Uroš Čibej and Jurij Mihelič. Improvements to
ullmann’s algorithm for the subgraph isomorphism
problem. International Journal of Pattern Recog-
nition and Artificial Intelligence, 29(07):1550025,
2015.

Alexis Parenton is a student at Polytech
Clermont-Ferrand. This work has been made
while he was visiting University of Ljubljana,
Faculty of Computer and Information Science
as an exchange student.

Uroš Čibej received his Ph.D. in computer sci-
ence from the University of Ljubljana in 2007.
He is employed as a teaching assistant at the
University of Ljubljana, Faculty of Computer
and Information Science. His research areas in-
clude graph algorithms, backtracking, and var-
ious applications of symetries.

Jurij Mihelič received his doctoral degree in
Computer Science from the University of Ljubl-
jana in 2006. Currently, he is with the Lab-
oratory of Algorithmics, Faculty of Computer
and Information Science, University of Ljubl-
jana, Slovenia, as an assistant professor. His
research interests include algorithm engineer-
ing, combinatorial optimization, heuristics, and
system software.

Luka Fürst received his Ph.D. in computer sci-
ence from the University of Ljubljana in 2013.
He is employed as a teaching assistant at the
University of Ljubljana, Faculty of Computer
and Information Science. His research areas
include graph grammars, general graph theory
(with a particular emphasis on graph symme-
tries), software engineering, machine learning,
and computer programming education.


