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Memory and storage systems are a fundamental system
performance, energy, and reliability bottleneck in modern
systems [5,6,7,25,28,29]. This bottleneck is becoming incre-
asingly severe due to (1) the very limited latency reductions
in memory and storage devices over the last several years;
(2) aggressive manufacturing process technology scaling and
other techniques to improve memory density, such as multi-
level cell technology, which increase the storage capacity of
these devices, but introduce more raw bit errors and increase
manufacturing process variation; (3) limited pin counts in
chip packages, which prevent system designers from adding
more and/or wider buses to increase bandwidth; (4) overw-
helmingly data-intensive applications, which require high-
bandwidth access to very large amounts of data; and (5) the
increasing fraction of overall system energy consumed by me-
mory systems and data movement. To make matters worse,
it is becoming increasingly difficult to continue scaling these
devices to smaller process technology nodes, and even though
alternative emerging memory and storage technologies can
potentially alleviate some of the shortcomings of existing
memory and storage technologies, they also introduce new
shortcomings that were previously absent. Therefore, there is
a pressing need to comprehensively understand and mitigate
these bottlenecks in both existing and emerging memory and
storage systems and technologies.

This issue features extended summaries and retrospectives
of some of the recent research done by our research group,
SAFARI [33,39], on (1) various critical problems in memory sy-
stems and (2) how memory system bottlenecks affect graphics
processing unit (GPU) systems. As more applications share a
single system, operations from each application can contend
with each other at various shared components within the
system. If left unmitigated, such contention can undermine
many of the benefits of parallelism, by slowing down each
application or thread of execution [24,26,27,28,29]. The com-
pound effect of contention, high memory latency and access
overheads, as well as inefficient management of resources,
greatly degrades performance, quality-of-service (QoS), and
energy efficiency. The ten works featured in this issue study
several aspects of (1) inter-application interference in mul-
ticore systems, heterogeneous systems, and GPUs; (2) the
growing overheads and expenses associated with growing
memory densities and latencies; and (3) performance, pro-
grammability, and portability issues in modern GPUs, especi-
ally those related to memory system resources.
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These works rely on real system characterizations and
simulation to develop a rigorous understanding of the interfe-
rence and bottlenecks, and to provide solutions. Our analyses
have shown key scaling and performance bottlenecks, propo-
sed new solutions, and have inspired the research community
to develop further investigations (e.g., on interference and
fairness in main memory [41,42,43,45], subarray-level paralle-
lism [8,13], low-cost memory reliability [21], hybrid memory
management [20,22,23,32,50]). In order to aid future research,
we have released our flexible and extensible memory system
simulator, Ramulator, as open-source software [15,38], and
have released open-source simulators that accurately mo-
del memory interference in multicore systems [34,36] and
memory resource bottlenecks in GPU systems [35,37].

In each work that is featured in this issue, based on our
rigorous studies and analyses, we propose novel solutions
that mitigate many of these problems. We examine GPUs
as a special example because they enable massively parallel
processing on a single chip and, as a result, are limited gre-
atly by the bottlenecks in the memory system. For each of
the works presented in this special issue, its corresponding
article examines the work’s significance in the context of mo-
dern computer systems, and discusses several new research
questions and directions that each work motivates.

We start with three of our works that manage interference
and contention in main memory. When multiple applications
(or multiple threads of one or more applications) concur-
rently issue memory requests, these requests often contend
with each other in the main memory system, increasing the
average memory access latency and reducing per-application
or per-thread parallelism. This contention becomes especially
problematic when a highly-memory-intensive application is-
sues many more requests than other applications, causing
requests from the other applications to unfairly wait for very
long times as the memory system takes time to service all of
the requests from the highly-memory-intensive application.
To mitigate the interference that each application induces on
the other applications, memory systems must adopt new me-
chanisms to regulate the available memory bandwidth among
all applications and/or reduce the amount of memory-level
contention. Doing so can enable systems that are higher per-
formance, more predictable, and more energy efficient at the
same time. The first three works featured in this issue enable
new mechanisms to more efficiently manage interference and
contention in main memory.



The first paper in the issue describes Memory Interference-
induced Slowdown Estimation (MISE), which originally ap-
peared in HPCA 2013 [43]. This work (1) develops a model
called MISE, which predicts the impact of interference in
DRAM on the overall system performance; and (2) uses this
model to design new memory schedulers that improve fair-
ness and QoS among concurrently-executing applications.
The work finds that various MISE-based memory schedulers
can (1) provide predictable performance to designated ap-
plications and (2) significantly improve the overall system
throughput.

The second paper in the issue describes Staged Memory
Scheduling, which originally appeared in ISCA 2012 [3]. This
work analyzes the high impact of interference between the
CPU and GPU in a heterogeneous system (e.g., a system-on-
chip), showing that the GPU can overwhelm CPU perfor-
mance and sometimes vice versa. Based on this finding, the
work develops a new memory controller that provides fair
memory access for both CPU and GPU applications, impro-
ving the performance of CPU applications without affecting
the throughput of GPU applications.

The third paper in the issue describes Subarray-Level Paral-
lelism (SALP), which originally appeared in ISCA 2012 [13].
This work exploits the subarrays (i.e., sub-banking) in DRAM
architectures to greatly increase the amount of memory pa-
rallelism available to applications. SALP proposes three new
mechanisms to expose the subarrays to the memory con-
troller at low cost, improving row locality and reducing the
number of high-latency bank conflicts that occur when multi-
ple requests access the same memory bank. The reduced bank
conflicts and the improved row locality significantly improve
overall system performance and reduce energy consumption.

Next, we look at several of our works that address the
growing overheads and expenses associated with growing
main memory densities and latencies. As systems execute
more applications in parallel, and as applications process
larger amounts of data, DRAM manufacturers have relied on
aggressive technology scaling to increase the density of each
DRAM device. Unfortunately, such scaling has introduced a
number of key challenges [25,28,29], which we methodically
address in the next four works.

Our fourth paper in the issue describes DSARP, which ori-
ginally appeared in HPCA 2014 [8]. This work explores how
increasing memory density will cause DRAM refresh operati-
ons to become a bigger performance bottleneck, preventing
the DRAM from effectively servicing outstanding memory
requests with low latency. The work proposes new memory
controller policies that almost completely eliminate the per-
formance overhead of DRAM refresh by performing refresh
operations in the background via low-cost changes to the
DRAM architecture and the memory controller.

Our fifth paper in the issue describes ChargeCache, which
originally appeared in HPCA 2016 [12]. This work finds
that many applications must reopen memory rows soon after

they are closed because of interference (i.e., bank conflicts),
incurring a high access latency. ChargeCache is a new me-
chanism that takes advantage of the high charge held within
a recently-closed row to reduce the access latency to such a
row when it is accessed again soon in the future. The work
shows that ChargeCache significantly improves the overall
system performance and energy consumption.

Our sixth paper in the issue describes heterogeneous-
reliability memory (HRM), which originally appeared in DSN
2014 [21]. This work demonstrates on real machines that
many data center applications can tolerate errors in large
regions of their memory address spaces without affecting
correctness. The work uses this observation to lower the
cost of memory subsystems for data centers, by introducing
a new memory system framework, HRM, where the memory
system consists of different modules with different types and
amounts of error correction/detection capabilities. By em-
ploying many DRAM modules without error correction and
intelligently mapping error-tolerant memory regions to these
modules and error-vulnerable memory regions to DRAM mo-
dules with error correction, HRM significantly reduces the
cost of a data center system, while still providing high overall
reliability and availability.

Our seventh paper in the issue describes row buffer locality
aware (RBLA) caching, which originally appeared in ICCD
2012 [50]. This work proposes a new technique to manage
data placement in hybrid memory systems, which combine
conventional DRAM with emerging memory technologies to
provide the benefits of both in a scalable yet cost-effective
manner. Exploiting the key observation that row buffer hits
are of the same cost in both DRAM and emerging memory
technologies, RBLA avoids migrating data from the emer-
ging memory to conventional DRAM (and vice versa) when
the migration would not yield a significant benefit, thereby
preserving the precious DRAM space for data that really be-
nefits from the low access latency of DRAM arrays. The work
shows that RBLA improves both system performance and
energy consumption as a result.

Finally, we examine how to manage memory resources
within GPUs. For many general-purpose GPU (GPGPU) appli-
cations, programmers are responsible for explicitly managing
all memory resources, including registers, by specifying in
programs how much each application should get of each re-
source. Our solutions automatically manage these resources
in both hardware and software, and sometimes cooperatively
between the hardware and software, transparently to the
programmer. The solutions lift the burden of resource mana-
gement from the programmer, and improve the performance
and efficiency of GPGPU applications.

Our eighth paper in the issue describes Zorua, which ori-
ginally appeared in MICRO 2016 [46]. Current GPU systems
require programmers to discover and explicitly specify the
quantities of each resource that are assigned to a thread, in or-
der to avoid significant performance penalties. This work pro-



poses a new resource virtualization mechanism for GPGPU
applications, called Zorua, which can assign resources to each
thread dynamically at runtime based on the thread’s needs
and the available resources in the GPU, with only annotations
provided by the compiler. With its effective resource virtuali-
zation, Zorua improves (1) programmability, by removing the
existing burden on programmers to tune the thread resource
allocation; (2) portability, by removing the need to retune
the resource allocation when an application tuned for one
GPU architecture is executed on a different GPU architecture;
and (3) performance, by ensuring the careful allocation and
oversubscription of resources to best utilize the hardware.

Our ninth paper in the issue describes Memory Divergence
Correction (MeDiC), which originally appeared in PACT
2015 [4], This work finds that different warps (i.e., groups of
threads that execute in lockstep) exhibit different levels of
memory divergence, where some, but not all, threads stall
on long-latency memory accesses, which prevents forward
progress for all threads in the warp. MeDiC consists of three
new mechanisms that work together to optimize cache and
memory resource management in a GPU, based on the di-
vergence behavior of the warps belonging to an application.
These three mechanisms provide significant performance
improvements for GPGPU applications.

Our tenth paper in the issue describes Mosaic, which origi-
nally appeared in MICRO 2017 [1]. In contemporary GPUs,
limited resources for memory virtualization can cause a sin-
gle operation (e.g., an address translation that misses in the
GPU'’s translation lookaside buffer) to often stall hundreds of
threads for long latencies, leading to significant underutiliza-
tion of the GPU. The memory virtualization bottleneck can
be alleviated by changing the page size, but a major hurdle
to this is the key trade-off between two costly operations:
demand paging (which benefits from small page sizes) and
address translation (which benefits from large page sizes).
This work proposes a new hardware mechanism that takes
advantage of GPGPU memory access patterns to enable the
efficient support of multiple page sizes transparently to the
programmer. By efficiently supporting multiple page sizes,
Mosaic alleviates the high contention for memory virtuali-
zation resources, which in turn significantly improves the
performance of GPGPU applications.

Throughout all of these works, we (1) identify various
points of interference, contention, and resource bottlenecks
in memory systems and GPUs; and (2) appropriately modify
the systems to mitigate these issues at low cost and low over-
head. These works improve the performance, fairness, energy
consumption, and/or programmability of a system, and often
improve scalability as more applications execute concurrently
on the system. Even though the works presented are descri-
bed in the context of DRAM, the dominant memory techno-
logy of today, we believe many of the basic ideas and concepts
can be applied or adapted to emerging memory technolo-
gies [22], e.g., phase-change memory [17,18,19,31,48,49,51],

STT-MRAM [11, 16, 30], and memristors/RRAM [10, 40, 47].
We hope that the works featured in this special issue in-
spire readers to explore other sources of interference, con-
tention, performance, and programmability issues in modern
systems, and to develop new solutions that can enable fair,
high-performance, energy-efficient systems for the future.
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