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Guest Editor Introduction:
Recent Advances in Overcoming Bottlenecks in Memory Systems

and Managing Memory Resources in GPU Systems

Onur Mutlu1,2 Saugata Ghose2 Rachata Ausavarungnirun2

1ETH Zürich 2Carnegie Mellon University

Memory and storage systems are a fundamental system
performance, energy, and reliability bottleneck in modern
systems [5, 6, 7, 25, 28, 29]. This bottleneck is becoming incre-
asingly severe due to (1) the very limited latency reductions
in memory and storage devices over the last several years;
(2) aggressive manufacturing process technology scaling and
other techniques to improve memory density, such as multi-
level cell technology, which increase the storage capacity of
these devices, but introduce more raw bit errors and increase
manufacturing process variation; (3) limited pin counts in
chip packages, which prevent system designers from adding
more and/or wider buses to increase bandwidth; (4) overw-
helmingly data-intensive applications, which require high-
bandwidth access to very large amounts of data; and (5) the
increasing fraction of overall system energy consumed by me-
mory systems and data movement. To make matters worse,
it is becoming increasingly di�cult to continue scaling these
devices to smaller process technology nodes, and even though
alternative emerging memory and storage technologies can
potentially alleviate some of the shortcomings of existing
memory and storage technologies, they also introduce new
shortcomings that were previously absent. Therefore, there is
a pressing need to comprehensively understand and mitigate
these bottlenecks in both existing and emerging memory and
storage systems and technologies.

This issue features extended summaries and retrospectives
of some of the recent research done by our research group,
SAFARI [33,39], on (1) various critical problems in memory sy-
stems and (2) how memory system bottlenecks a�ect graphics
processing unit (GPU) systems. As more applications share a
single system, operations from each application can contend
with each other at various shared components within the
system. If left unmitigated, such contention can undermine
many of the bene�ts of parallelism, by slowing down each
application or thread of execution [24,26,27,28,29]. The com-
pound e�ect of contention, high memory latency and access
overheads, as well as ine�cient management of resources,
greatly degrades performance, quality-of-service (QoS), and
energy e�ciency. The ten works featured in this issue study
several aspects of (1) inter-application interference in mul-
ticore systems, heterogeneous systems, and GPUs; (2) the
growing overheads and expenses associated with growing
memory densities and latencies; and (3) performance, pro-
grammability, and portability issues in modern GPUs, especi-
ally those related to memory system resources.

These works rely on real system characterizations and
simulation to develop a rigorous understanding of the interfe-
rence and bottlenecks, and to provide solutions. Our analyses
have shown key scaling and performance bottlenecks, propo-
sed new solutions, and have inspired the research community
to develop further investigations (e.g., on interference and
fairness in main memory [41,42,43,45], subarray-level paralle-
lism [8,13], low-cost memory reliability [21], hybrid memory
management [20,22,23,32,50]). In order to aid future research,
we have released our �exible and extensible memory system
simulator, Ramulator, as open-source software [15, 38], and
have released open-source simulators that accurately mo-
del memory interference in multicore systems [34, 36] and
memory resource bottlenecks in GPU systems [35, 37].

In each work that is featured in this issue, based on our
rigorous studies and analyses, we propose novel solutions
that mitigate many of these problems. We examine GPUs
as a special example because they enable massively parallel
processing on a single chip and, as a result, are limited gre-
atly by the bottlenecks in the memory system. For each of
the works presented in this special issue, its corresponding
article examines the work’s signi�cance in the context of mo-
dern computer systems, and discusses several new research
questions and directions that each work motivates.

We start with three of our works that manage interference
and contention in main memory. When multiple applications
(or multiple threads of one or more applications) concur-
rently issue memory requests, these requests often contend
with each other in the main memory system, increasing the
average memory access latency and reducing per-application
or per-thread parallelism. This contention becomes especially
problematic when a highly-memory-intensive application is-
sues many more requests than other applications, causing
requests from the other applications to unfairly wait for very
long times as the memory system takes time to service all of
the requests from the highly-memory-intensive application.
To mitigate the interference that each application induces on
the other applications, memory systems must adopt new me-
chanisms to regulate the available memory bandwidth among
all applications and/or reduce the amount of memory-level
contention. Doing so can enable systems that are higher per-
formance, more predictable, and more energy e�cient at the
same time. The �rst three works featured in this issue enable
new mechanisms to more e�ciently manage interference and
contention in main memory.
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The �rst paper in the issue describes Memory Interference-
induced Slowdown Estimation (MISE), which originally ap-
peared in HPCA 2013 [43]. This work (1) develops a model
called MISE, which predicts the impact of interference in
DRAM on the overall system performance; and (2) uses this
model to design new memory schedulers that improve fair-
ness and QoS among concurrently-executing applications.
The work �nds that various MISE-based memory schedulers
can (1) provide predictable performance to designated ap-
plications and (2) signi�cantly improve the overall system
throughput.

The second paper in the issue describes Staged Memory
Scheduling, which originally appeared in ISCA 2012 [3]. This
work analyzes the high impact of interference between the
CPU and GPU in a heterogeneous system (e.g., a system-on-
chip), showing that the GPU can overwhelm CPU perfor-
mance and sometimes vice versa. Based on this �nding, the
work develops a new memory controller that provides fair
memory access for both CPU and GPU applications, impro-
ving the performance of CPU applications without a�ecting
the throughput of GPU applications.

The third paper in the issue describes Subarray-Level Paral-
lelism (SALP), which originally appeared in ISCA 2012 [13].
This work exploits the subarrays (i.e., sub-banking) in DRAM
architectures to greatly increase the amount of memory pa-
rallelism available to applications. SALP proposes three new
mechanisms to expose the subarrays to the memory con-
troller at low cost, improving row locality and reducing the
number of high-latency bank con�icts that occur when multi-
ple requests access the same memory bank. The reduced bank
con�icts and the improved row locality signi�cantly improve
overall system performance and reduce energy consumption.

Next, we look at several of our works that address the
growing overheads and expenses associated with growing
main memory densities and latencies. As systems execute
more applications in parallel, and as applications process
larger amounts of data, DRAM manufacturers have relied on
aggressive technology scaling to increase the density of each
DRAM device. Unfortunately, such scaling has introduced a
number of key challenges [25, 28, 29], which we methodically
address in the next four works.

Our fourth paper in the issue describes DSARP, which ori-
ginally appeared in HPCA 2014 [8]. This work explores how
increasing memory density will cause DRAM refresh operati-
ons to become a bigger performance bottleneck, preventing
the DRAM from e�ectively servicing outstanding memory
requests with low latency. The work proposes new memory
controller policies that almost completely eliminate the per-
formance overhead of DRAM refresh by performing refresh
operations in the background via low-cost changes to the
DRAM architecture and the memory controller.

Our �fth paper in the issue describes ChargeCache, which
originally appeared in HPCA 2016 [12]. This work �nds
that many applications must reopen memory rows soon after

they are closed because of interference (i.e., bank con�icts),
incurring a high access latency. ChargeCache is a new me-
chanism that takes advantage of the high charge held within
a recently-closed row to reduce the access latency to such a
row when it is accessed again soon in the future. The work
shows that ChargeCache signi�cantly improves the overall
system performance and energy consumption.

Our sixth paper in the issue describes heterogeneous-
reliability memory (HRM), which originally appeared in DSN
2014 [21]. This work demonstrates on real machines that
many data center applications can tolerate errors in large
regions of their memory address spaces without a�ecting
correctness. The work uses this observation to lower the
cost of memory subsystems for data centers, by introducing
a new memory system framework, HRM, where the memory
system consists of di�erent modules with di�erent types and
amounts of error correction/detection capabilities. By em-
ploying many DRAM modules without error correction and
intelligently mapping error-tolerant memory regions to these
modules and error-vulnerable memory regions to DRAM mo-
dules with error correction, HRM signi�cantly reduces the
cost of a data center system, while still providing high overall
reliability and availability.

Our seventh paper in the issue describes row bu�er locality
aware (RBLA) caching, which originally appeared in ICCD
2012 [50]. This work proposes a new technique to manage
data placement in hybrid memory systems, which combine
conventional DRAM with emerging memory technologies to
provide the bene�ts of both in a scalable yet cost-e�ective
manner. Exploiting the key observation that row bu�er hits
are of the same cost in both DRAM and emerging memory
technologies, RBLA avoids migrating data from the emer-
ging memory to conventional DRAM (and vice versa) when
the migration would not yield a signi�cant bene�t, thereby
preserving the precious DRAM space for data that really be-
ne�ts from the low access latency of DRAM arrays. The work
shows that RBLA improves both system performance and
energy consumption as a result.

Finally, we examine how to manage memory resources
within GPUs. For many general-purpose GPU (GPGPU) appli-
cations, programmers are responsible for explicitly managing
all memory resources, including registers, by specifying in
programs how much each application should get of each re-
source. Our solutions automatically manage these resources
in both hardware and software, and sometimes cooperatively
between the hardware and software, transparently to the
programmer. The solutions lift the burden of resource mana-
gement from the programmer, and improve the performance
and e�ciency of GPGPU applications.

Our eighth paper in the issue describes Zorua, which ori-
ginally appeared in MICRO 2016 [46]. Current GPU systems
require programmers to discover and explicitly specify the
quantities of each resource that are assigned to a thread, in or-
der to avoid signi�cant performance penalties. This work pro-
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poses a new resource virtualization mechanism for GPGPU
applications, called Zorua, which can assign resources to each
thread dynamically at runtime based on the thread’s needs
and the available resources in the GPU, with only annotations
provided by the compiler. With its e�ective resource virtuali-
zation, Zorua improves (1) programmability, by removing the
existing burden on programmers to tune the thread resource
allocation; (2) portability, by removing the need to retune
the resource allocation when an application tuned for one
GPU architecture is executed on a di�erent GPU architecture;
and (3) performance, by ensuring the careful allocation and
oversubscription of resources to best utilize the hardware.

Our ninth paper in the issue describes Memory Divergence
Correction (MeDiC), which originally appeared in PACT
2015 [4], This work �nds that di�erent warps (i.e., groups of
threads that execute in lockstep) exhibit di�erent levels of
memory divergence, where some, but not all, threads stall
on long-latency memory accesses, which prevents forward
progress for all threads in the warp. MeDiC consists of three
new mechanisms that work together to optimize cache and
memory resource management in a GPU, based on the di-
vergence behavior of the warps belonging to an application.
These three mechanisms provide signi�cant performance
improvements for GPGPU applications.

Our tenth paper in the issue describes Mosaic, which origi-
nally appeared in MICRO 2017 [1]. In contemporary GPUs,
limited resources for memory virtualization can cause a sin-
gle operation (e.g., an address translation that misses in the
GPU’s translation lookaside bu�er) to often stall hundreds of
threads for long latencies, leading to signi�cant underutiliza-
tion of the GPU. The memory virtualization bottleneck can
be alleviated by changing the page size, but a major hurdle
to this is the key trade-o� between two costly operations:
demand paging (which bene�ts from small page sizes) and
address translation (which bene�ts from large page sizes).
This work proposes a new hardware mechanism that takes
advantage of GPGPU memory access patterns to enable the
e�cient support of multiple page sizes transparently to the
programmer. By e�ciently supporting multiple page sizes,
Mosaic alleviates the high contention for memory virtuali-
zation resources, which in turn signi�cantly improves the
performance of GPGPU applications.

Throughout all of these works, we (1) identify various
points of interference, contention, and resource bottlenecks
in memory systems and GPUs; and (2) appropriately modify
the systems to mitigate these issues at low cost and low over-
head. These works improve the performance, fairness, energy
consumption, and/or programmability of a system, and often
improve scalability as more applications execute concurrently
on the system. Even though the works presented are descri-
bed in the context of DRAM, the dominant memory techno-
logy of today, we believe many of the basic ideas and concepts
can be applied or adapted to emerging memory technolo-
gies [22], e.g., phase-change memory [17, 18, 19, 31, 48, 49, 51],

STT-MRAM [11, 16, 30], and memristors/RRAM [10, 40, 47].
We hope that the works featured in this special issue in-
spire readers to explore other sources of interference, con-
tention, performance, and programmability issues in modern
systems, and to develop new solutions that can enable fair,
high-performance, energy-e�cient systems for the future.
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This paper summarizes the ideas and key concepts of MISE
(Memory Interference-induced Slowdown Estimation), which
was published in HPCA 2013 [97], and examines the work’s
signi�cance and future potential. Applications running con-
currently on a multicore system interfere with each other at
the main memory. This interference can slow down di�erent
applications di�erently. Accurately estimating the slowdown
of each application in such a system can enable mechanisms
that can enforce quality-of-service. While much prior work
has focused on mitigating the performance degradation due
to inter-application interference, there is little work on accura-
tely estimating slowdown of individual applications in a multi-
programmed environment. Our goal is to accurately estimate
application slowdowns, towards providing predictable perfor-
mance.
To this end, we �rst build a simple Memory Interference-

induced Slowdown Estimation (MISE) model, which accurately
estimates slowdowns caused by memory interference. We then
leverage ourMISEmodel to develop two newmemory scheduling
schemes: 1) one that provides soft quality-of-service guarantees,
and 2) another that explicitly attempts to minimize maximum
slowdown (i.e., unfairness) in the system. Evaluations show that
our techniques perform signi�cantly better than state-of-the-art
memory scheduling approaches to address the above problems.

Our proposed model and techniques have enabled signi�cant
research in the development of accurate performance models [35,
59, 98, 110] and interference management mechanisms [66, 66,
99, 100, 108, 119, 120].

1. Problem: Unpredictable Slowdowns
In a multicore system, multiple applications are consolida-

ted on the same machine. While consolidation may enable
better resource utilization, it results in interference between
applications at the shared resources, slowing down each ap-
plication to a di�erent degree. Speci�cally, main memory
is a heavily contended shared resource between applicati-
ons in a multicore system. Each application accessing the
memory experiences di�erent and unpredictable slowdowns
depending on the available memory bandwidth and the other
concurrently running applications.

A large body of work proposed several di�erent approaches
to mitigate memory interference between applications with
the goal of improving overall system performance. This inclu-
des memory scheduling [2, 18, 27, 32, 42, 43, 50, 72, 76, 77, 80, 99,
100, 103, 117], memory channel/bank partitioning [36, 64, 74],

memory interleaving [38], source throttling [3, 7, 17, 19, 102],
and thread scheduling [14,101,106,121] techniques. However,
few previous works (notably [15, 17, 19, 76]) have attempted
to estimate individual application slowdowns online with the
goal of providing predictable performance.
Our goal in our HPCA 2013 paper [97] is to provide pre-

dictable performance for individual applications. To this
end, we �rst design a model to accurately estimate memory-
interference-induced slowdowns of applications running con-
currently on a multicore system. We then leverage this model
to design e�ective mechanisms to enforce quality-of-service
(QoS) and achieve fairness.

2. The Memory Interference-Induced
Slowdown Estimation (MISE) Model

The slowdown of an application indicates the performance
of the application, when it is sharing resources with other
applications, relative to when the application is run alone.
Slowdown can be expressed as

Slowdown of an App. =
alone-performance
shared-performance

(1)

Hence, estimating the slowdown of an individual application
requires two pieces of information: 1) the performance of
the application when it is run concurrently with other ap-
plications (i.e., shared-performance), and 2) the performance
of the application when it is run alone on the same system
(i.e., alone-performance). While the former can be directly
measured, the key challenge is to estimate the performance
the application would have if it were running alone while
it is actually running alongside other applications. This re-
quires quantifying the e�ect of interference on application
performance.

2.1. Key Observations
In this work, we make two observations that lead to a

simple and e�ective model to estimate the slowdown of indi-
vidual applications.

Observation 1: The performance of a memory-bound ap-
plication is roughly proportional to the rate at which its me-
mory requests are served. This observation stems from a
memory-bound application’s characteristic to spend an over-
whelmingly large fraction of its execution time stalling on
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memory accesses. Therefore, the rate at which such an ap-
plication’s requests are served has signi�cant impact on its
performance.

To validate this observation, we conducted a real-system
experiment where we ran a memory-bound application from
the SPEC CPU2006 benchmark suite [96] alongside three
copies of a microbenchmark whose memory intensity can
be varied, on a 4-core Intel Core i7 [31].1 By varying the
memory intensity, i.e., the last-level cache (LLC) miss rate, of
the microbenchmark, we can change the rate at which the
requests of the SPEC application are served. Figure 1 plots
the results of this experiment for three memory-intensive
benchmarks, mcf, omnetpp, and astar. The �gure shows the
performance of each application versus the rate at which its
requests are served.
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Figure 1: Request service rate vs. performance. Reproduced
from [97].

The results of this experiment validate our observation.
The performance of a memory-bound application is directly
proportional to the rate at which its requests are served. This
suggests that we can use the request-service-rate of an appli-
cation as a proxy for its performance. More speci�cally, we
can estimate the slowdown of an application, i.e., the ratio
of its performance when it is run alone on a system vs. its
performance when it is run alongside other applications on
the same system, as follows:

Slowdown of an App. =
alone-request-service-rate
shared-request-service-rate

(2)

Estimating the shared-request-service-rate (SRSR) of an ap-
plication is straightforward. It only requires the memory
controller to keep track of how many requests of the appli-
cation are served in a given number of cycles. However, the
challenge is to estimate the alone-request-service-rate (ARSR)
of an application while it is run alongside other applications.
A naive way of estimating ARSR of an application would be
to prevent all other applications from accessing memory for

1The microbenchmark streams through a large region of memory (one
block at a time). The memory intensity of the microbenchmark (last-level
cache misses per kilo-instruction, i.e., LLC MPKI) is varied by changing the
amount of computation performed between memory operations.

a length of time and measure the application’s ARSR. While
this approach might provide an estimate of the application’s
ARSR, it would signi�cantly slow down other applications in
the system and is prone to incorrect estimations due to phase
�uctuations in the application. Our second observation helps
us to address this problem.
Observation 2: The ARSR of an application can be estimated

by giving the requests of the application the highest priority in
accessing memory.

Giving an application’s requests the highest priority in
accessing memory results in very little interference from
the requests of other applications. Therefore, requests of
the application are served almost as if the application were
the only one running on the system. Based on the above
observation, the ARSR of an application can be estimated as:

ARSR of an App. =
# Requests with Highest Priority
# Cycles with Highest Priority

(3)

where # Requests with Highest Priority is the number of reque-
sts served when the application is given highest priority, and
# Cycles with Highest Priority is the number of cycles an ap-
plication is given highest priority by the memory controller.

The memory controller can use Equation 3 to periodically
estimate the ARSR of an application. We add an interference
counter to capture the remaining interference cycles. The
details of the mechanisms we add to increase the accuracy
of the model are described in Section 4 of our HPCA 2013
paper [97]. Once we estimate ARSR, Equation 2 can be used
to estimate the slowdown of the application.

2.2. MISE Model for Non-Memory-Bound
Applications

So far, we have described the key observations of the MISE
model for a memory-bound application. We �nd that the
model presented above has low accuracy for non-memory-
bound applications. This is because a non-memory-bound
application spends a signi�cant fraction of its execution time
in the compute phase (when the core is not stalled waiting for
memory). Hence, varying the request service rate for such
an application will not a�ect the length of the large compute
phase. Therefore, we take into account the duration of the
compute phase to make the model accurate for non-memory-
bound applications.

Let α be the fraction of time spent by an application stal-
ling at memory. Therefore, the fraction of time spent by the
application in the compute phase is 1 – α. Since changing
the request service rate a�ects only the memory phase, we
augment Equation 2 to take into account α as follows:

Slowdown of an App. = (1 – α) + α
ARSR

SRSR
(4)

In addition to estimating ARSR and SRSR required by Equa-
tion 2, the above equation requires estimating the parameter
α, the fraction of time spent in the memory phase. However,

2
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precisely computing α for a modern out-of-order processor
is a challenge since such a processor overlaps computation
with memory accesses. The processor stalls waiting for me-
mory only when the oldest instruction in the reorder bu�er
is waiting on a memory request. For this reason, we estimate
α as the fraction of time the processor spends stalling for
memory:

α =
# Cycles spent stalling on memory requests

Total number of cycles
(5)

More details of our MISE slowdown estimation model are
described in Sections 3 and 4 of our HPCA 2013 paper [97].
More recently, we used this model to expand slowdown es-
timation to a memory hierarchy that also includes shared
caches, as part of the Application Slowdown Model [98].

3. Evaluation of the MISE Model
We compare the MISE model against the slowdown es-

timation model employed by the Stall Time Fair Memory
Scheduler (STFM) [76], which is the closest previous work on
estimating memory interference-induced slowdown.2 STFM
estimates the slowdown of an application by estimating the
number of cycles it stalls due to interference from other ap-
plications’ requests. In this section, we qualitatively and
quantitatively compare MISE with STFM.

There are two key di�erences between MISE and STFM in
estimating slowdown. First, MISE uses request service rates
rather than stall times to estimate slowdown. In MISE, the
alone-request-service-rate of an application can be fairly accu-
rately estimated by giving the application highest priority in
accessing memory. Giving the application highest priority
in accessing memory results in very little interference from
other applications. In contrast, STFM attempts to estimate
the alone-stall-time of an application while it is receiving
signi�cant interference from other applications, which turns
out to be di�cult to do accurately. Second, MISE takes into ac-
count the e�ect of the compute phase for non-memory-bound
applications. STFM, on the other hand, has no such provi-
sion to account for the compute phase. As a result, MISE’s
slowdown estimates for non-memory-bound applications are
signi�cantly more accurate than STFM’s estimates.

Figure 2 compares the accuracy of MISE with STFM for
two representative memory-bound applications, lbm and les-
lie3d. Figure 3 compares the accuracy of MISE with STFM
for two representative non-memory-bound applications, wrf
and povray. Each of these applications is run on a 4-core
system with three other applications. Our detailed experi-
mental methodology is provided in Section 5 of our HPCA
2013 paper [97]. This includes detailed descriptions of our
experimental setup, workloads and metrics. Furthermore,

2FST [17] and Du Bois et al.’s per-thread cycle accounting mecha-
nism [15] are the other two previous works that estimate application slo-
wdown. The mechanism to estimate main memory interference induced
slowdown in both of these previous works is similar to STFM.

our simulator implementing the MISE model is available on-
line [90]. As can be observed, MISE’s slowdown estimates
are much closer to the actual slowdown than STFM’s estima-
tes. This is because the MISE model eliminates a signi�cant
portion of the interference received by an application while
estimating slowdown, by prioritizing it in the memory con-
troller. On the other hand, STFM estimates slowdown while
an application is experiencing interference.
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Figure 2: Comparison of MISE with STFM for representative
memory-bound applications. Adapted from [97].

Table 1 shows the average slowdown estimation error for
each benchmark, with STFM and MISE, across 300 4-core
workloads of di�erent memory intensities. As can be ob-
served, MISE’s slowdown estimates have signi�cantly lower
error than STFM’s slowdown estimates across most bench-
marks. Across 300 workloads, STFM’s estimates deviate from
the actual slowdown by 29.8%, whereas, our proposed MISE
model’s estimates deviate from the actual slowdown by only
8.1%. Therefore, we conclude that our slowdown estimation
model provides better accuracy than STFM.

For a more detailed analysis of the MISE model’s accuracy
and characteristics, we refer the reader to our HPCA 2013
paper [97].

4. Leveraging the MISE Model
Accurate slowdown estimates are a key enabler towards

designing mechanisms to better enforce quality-of-service
(QoS) and fairness. Slowdown estimates from the MISE model
could be leveraged in hardware to design memory scheduling

3
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Figure 3: Comparison of MISE with STFM for representative
non-memory-bound applications. Adapted from [97].

Table 1: Average slowdown estimation error for each bench-
mark (in %). Adapted from [97].

Benchmark STFM MISE Benchmark STFM MISE
453.povray 56.3 0.1 473.astar 12.3 8.1
454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3
447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8
450.soplex 29.8 3.5 433.milc 26.4 9.5
444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5
403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18.0 13.6
459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8
473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5

policies to provide QoS guarantees and fairness. Alternati-
vely, the slowdown estimates could be communicated to the
system software, which could leverage them to perform appli-
cation scheduling, admission control and migration. We will
describe two such mechanisms that leverage the MISE model:
1) MISE-QoS, a mechanism to provide soft QoS guarantees
in the memory controller; and 2) MISE-Fair, a mechanism to
minimize maximum slowdown [13, 14, 42, 43, 92, 99, 100, 103]
to improve overall system fairness.

4.1. MISE-QoS: Providing Soft QoS Guarantees
MISE-QoS aims to provide soft slowdown guarantees to

an application of interest (AoI) in a workload with many
applications, while trying to maximize overall performance
for the remaining applications. There are two aspects of
providing a soft slowdown guarantee. One is to ensure that
the application of interest is not slowed down by more than
a system-software-speci�ed bound. The other aspect is to
detect if the bound is not met for some reason.

MISE-QoS addresses both of these aspects by using slo-
wdown estimates from the MISE model. It periodically
obtains slowdown estimates from the MISE model and incre-
ases/decreases the memory bandwidth allocated to the AoI
such that the AoI receives just enough bandwidth to meet
its slowdown bound. This enables the other applications to
use the remaining bandwidth, improving their performance.
MISE-QoS addresses the second aspect by comparing slow-
down estimates from the MISE model with the prescribed
bound periodically. When the prescribed bound cannot be
met despite always prioritizing the AoI, MISE-QoS detects
that the bound cannot be met just by prioritizing the applica-
tion at the memory controller.

Previous work [34] attempts to address the �rst aspect by
always prioritizing the AoI. This may unnecessarily slow-
down other applications in the system by excessively prio-
ritizing the AoI, especially when the AoI is meeting its per-
formance bound. Furthermore, such a mechanism, in the
absence of accurate slowdown estimates, does not have the
provision to detect whether or not the bound is met.
Slowdown Evaluation. We evaluate the MISE-QoS me-

chanism across 300 workloads with 10 di�erent slowdown
bounds for each workload. Our results show that the MISE-
QoS mechanism meets the prescribed slowdown bound for
97.5% of the workloads for which the naive mechanism that
always prioritizes the AoI meets the bound, while improving
overall system performance by 12%. Furthermore, MISE-QoS
also predicts whether or not the bound is met with an accu-
racy of 95.7%, while previous work [34] has no such provision.

To show the e�ectiveness of MISE-QoS, we compare the
AoI’s slowdown due to MISE-QoS and the mechanism that
always prioritizes the AoI (Always Prioritize) [34]. Figure 4
presents representative results for 8 di�erent AoIs when they
are run alongside three other applications. The label MISE-
QoS-n corresponds to a slowdown bound of 10

n . (Note that
Always Prioritize does not take into account the slowdown
bound.) Note that the slowdown bound decreases (i.e., beco-
mes tighter) from left to right for each benchmark in Figure 4
(as well as in other �gures).

We draw three conclusions from the results. First, for most
applications, the slowdown of Always Prioritize is considera-
bly more than one. This indicates that always prioritizing the
AoI does not completely prevent other applications from in-
terfering with the AoI. Second, as the slowdown bound for the
AoI is decreased (left to right), MISE-QoS gradually increases
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Figure 4: AoI performance: MISE-QoS vs. AlwaysPrioritize.
Reproduced from [97].

the bandwidth allocation for the AoI, eventually allocating all
the available bandwidth to the AoI. At this point, MISE-QoS
performs very similarly to the Always Prioritize mechanism.
Third, in almost all cases (in this �gure and across all our 3000
data points), MISE-QoS meets the speci�ed slowdown bound
if Always Prioritize is able to meet the bound (see Section 8.1
of our HPCA 2013 paper [97] for details).
System Performance and Fairness. Figure 5 compares

the system performance (harmonic speedup) and fairness
(maximum slowdown) of MISE-QoS and Always Prioritize
for di�erent values of the bound. We omit the AoI from the
performance and fairness calculations. The results are catego-
rized into four workload categories (0, 1, 2, 3) indicating the
number of memory-intensive benchmarks in the workload.
For clarity, the �gure shows results only for a few slowdown
bounds. Three conclusions are in order.

First, MISE-QoS signi�cantly improves performance com-
pared to Always Prioritize, especially when the slowdown
bound for the AoI is large. On average, when the bound is
10
3 , MISE-QoS improves harmonic speedup [67] by 12% and

weighted speedup [22, 95] by 10% (not shown due to lack
of space) over Always Prioritize, while reducing maximum
slowdown [13,14,42,43,92,99,100,103] by 13%. Second, as ex-
pected, the performance and fairness of MISE-QoS approach
that of Always Prioritize as the slowdown bound is decreased
(going from left to right for a set of bars). Finally, the bene-
�ts of MISE-QoS increase with increasing memory intensity
because always prioritizing a memory intensive application
will cause signi�cant interference to other applications.

Based on our results, we conclude that MISE-QoS can ef-
fectively ensure that the AoI meets the speci�ed slowdown
bound while achieving high system performance and fairness
across the other applications.

4.2. MISE-Fair: Minimizing Maximum Slowdown
The second mechanism we build on top of our MISE model

is one that seeks to improve overall system fairness. Speci-

�cally, this mechanism attempts to minimize the maximum
slowdown across all applications in the system. Ensuring
that no application is unfairly slowed down while maintai-
ning high system performance is an important goal in multi-
core systems where co-executing applications are similarly
important. Many prior works evaluate fairness in such sce-
narios in terms of the maximum slowdown of any applica-
tion [13, 14, 42, 43, 92, 99, 100, 103].

At a high level, our mechanism works as follows. The
memory controller maintains two pieces of information: 1) a
target slowdown bound (B) for all applications, and 2) a band-
width allocation policy that partitions the available memory
bandwidth across all applications. The memory controller
enforces the bandwidth allocation policy using a lottery-
scheduling technique proposed in [105]. The controller at-
tempts to ensure that the slowdown of all applications is
within the bound B. To this end, it modi�es the bandwidth
allocation policy so that applications that are slowed down
more get more memory bandwidth. Should the memory con-
troller �nd that bound B is not possible to meet, it increases
the bound. On the other hand, if the bound is easily met, it
decreases the bound.
Interaction with the Operating System. As we will

show in Section 4.2, our mechanism provides the best fair-
ness compared to three state-of-the-art approaches for me-
mory request scheduling [42,43,76]. In addition to this, there
is another bene�t to using our approach. Our mechanism,
based on the MISE model, can accurately estimate the slow-
down of each application. Therefore, the memory controller
can potentially communicate the estimated slowdown infor-
mation to the operating system (OS). The OS can use this
information to make more informed scheduling and mapping
decisions in order to further improve system performance
or fairness. Since prior memory scheduling approaches do
not explicitly attempt to minimize maximum slowdown by
accurately estimating the slowdown of individual applicati-
ons, such a mechanism to interact with the OS is not possible
with them. Evaluating the bene�ts of the interaction between
our mechanism and the OS is beyond the scope of this paper
but is an important area of future work.
Evaluation. Figure 6 compares the system fairness (max-

imum slowdown) of di�erent mechanisms with increasing
number of cores. The �gure shows results with four previ-
ously proposed memory scheduling policies (FRFCFS [89,122],
ATLAS [42], TCM [43], and STFM [76]), and our proposed me-
chanism using the MISE model (MISE-Fair). We draw three
conclusions from our results.

First, MISE-Fair provides the best fairness compared to all
other previous approaches. The reduction in the maximum
slowdown due to MISE-Fair when compared to STFM (the
best previous mechanism) increases with increasing num-
ber of cores. With 16 cores, MISE-Fair provides 7.2% better
fairness compared to STFM.
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Second, STFM, as a result of prioritizing the most slowed
down application, provides better fairness than all other pre-
vious approaches. While the slowdown estimates of STFM
are not as accurate as those of our mechanism, they are good
enough to identify the most slowed down application. Ho-
wever, as the number of concurrently-running applications
increases, simply prioritizing the most slowed down applica-
tion may not lead to better fairness. MISE-Fair, on the other
hand, works towards reducing maximum slowdown by stea-
ling bandwidth from those applications that are less slowed
down compared to others. As a result, the fairness bene�ts
of MISE-Fair compared to STFM increase with increasing
number of cores.

Third, ATLAS and TCM are more unfair compared to FRF-
CFS. As shown in prior work [42, 43], ATLAS trades o� fair-
ness to obtain better performance. TCM, on the other hand,
is designed to provide high system performance and fair-
ness. Further analysis showed us that the cause of TCM’s
unfairness is the strict ranking employed by TCM. TCM ranks
all applications based on its clustering and shu�ing techni-
ques [43] and strictly enforces these rankings. We found that
such strict ranking destroys the row-bu�er locality of low-

ranked applications. This increases the slowdown of such
applications, leading to high maximum slowdown.3

We conclude that the MISE model’s slowdown estimates
can be used to design a better and more fair memory scheduler.
We expect future works can take advantage of the MISE model
to design even better memory scheduling and other resource
management mechanisms.

5. Related Work
To our knowledge, this is the �rst paper to 1) provide a

simple and accurate model to estimate application slowdowns
in the presence of main memory interference, and 2) use
this model to devise two new memory scheduling techniques
that either aim to satisfy slowdown bounds of applications or
improve system fairness and performance. In this section, we
discuss several related works. We discuss works that build
upon MISE in Section 6.1.
Slowdown Estimation. Stall Time Fair Memory Sche-

duling (STFM) [76] attempts to estimate each application’s
slowdown, with the goal of improving fairness by prioritizing
the most slowed down application. STFM estimates an appli-
cation’s slowdown as the ratio of its memory stall time when
it is run alone versus when it is concurrently run alongs-
ide other applications. The challenge is in determining the
alone stall time of an application while the application is actu-
ally running alongside other applications. STFM proposes to
address this challenge by counting the number of cycles an ap-
plication is stalled due to interference from other applications
at the DRAM channels, banks and row-bu�ers. STFM uses
this interference cycle count to estimate the alone-stall-time
of the application, and hence the application’s slowdown.

Fairness via Source Throttling (FST) [17] estimates appli-
cation slowdowns due to inter-application interference at the
shared caches and memory, as the ratio of uninterfered to
interfered execution times. FST uses the slowdown estimates
to make informed source throttling decisions, to improve
fairness. The mechanism to account for memory interfe-

3Note that this observation later led us to develop the Blacklisting
Memory Scheduler (BLISS) [99, 100].
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rence to estimate uninterfered execution time is similar to
that employed in STFM. Prefetch-Aware Shared Resource Ma-
nagement [19] extends the FST model to take into account
prefetch requests.

A concurrent work by Du Bois et al. [15] proposes per-
thread cycle accounting (PTCA) for multicore processors,
which determines an application’s standalone execution time
when it shares cache and memory with other applications
in a multicore system. In order to quantify memory inter-
ference, PTCA counts the number of waiting cycles due to
inter-application interference and factors out these waiting
cycles to estimate alone execution times, which is similar to
STFM’s alone stall time estimation mechanism.

Eyerman and Eeckhout [23] and Cazorla et al. [5] propose
mechanisms to determine an application’s slowdown while
it is running alongside other applications on an SMT proces-
sor. Luque et al. [68] estimate application slowdowns in the
presence of shared cache interference. Lin and Balasubra-
monian [60] propose a regression-based model to estimate
performance for di�erent cache allocations. None of these
studies take into account inter-application interference at
the main memory. Therefore, MISE, which estimates slow-
down due to main memory interference, can be combined
with the above approaches to quantify interference at the
SMT processor and shared cache to build a comprehensive
mechanism.
Quality-of-Service (QoS). Several prior works provide

QoS guarantees in shared memory CMP systems. Mars et
al. [69] propose a mechanism to estimate an application’s
sensitivity towards interference and its propensity to cause
interference. They utilize this knowledge to make informed
mapping decisions between applications and cores. However,
this mechanism 1) assumes a priori knowledge of applications,
which may not always be possible to have, and 2) is designed
for only 2 cores, and it is not clear how it can be extended to
more than 2 cores. In contrast, MISE does not assume any a
priori knowledge of applications and works well with large
core counts, as we have shown in this paper. That said, MISE
can possibly be used to provide feedback to the mapping
mechanism proposed by [69] to overcome the shortcomings
of their mechanism.

Iyer et al. [30, 33, 34] propose mechanisms to provide gua-
rantees on shared cache space, memory bandwidth or IPC
for di�erent applications. The slowdown guarantee provided
by MISE-QoS is stricter than these mechanisms as MISE-QoS
takes into account the alone-performance of each applica-
tion. Nesbit et al. [80] propose a mechanism to enforce a
bandwidth allocation policy, by partitioning the available
bandwidth across concurrently running applications based
on some policy. While we use a scheduling technique similar
to lottery-scheduling [85, 105] to enforce the bandwidth allo-
cation policies of MISE-QoS and MISE-Fair, the mechanism
proposed by Nesbit et al. can also be used in our proposal to

allocate bandwidth instead of our lottery-scheduling appro-
ach.
Memory Interference Mitigation. Many prior works

focus on the problem of mitigating inter-application interfe-
rence at the main memory to improve system performance
and/or fairness. Most of these approaches address memory
interference by modifying the memory request scheduling
algorithm [2, 18, 27, 32, 34, 42, 43, 50, 51, 52, 53, 72, 73, 76, 77, 80,
99, 100, 115, 117]. We quantitatively compare MISE-Fair to
STFM [76], ATLAS [42], and TCM [43] in Section 4.2, and
show that MISE-Fair provides better fairness than these prior
approaches.

Other works examine approaches such as sub-row interle-
aving [38], channel/bank partitioning [36, 64, 74, 109], band-
width partitioning [61,97], source throttling [3,7,17,19,39,81,
82, 102], thread scheduling [14, 101, 106, 121], and changes to
DRAM design [44, 58]. These approaches are complementary
to MISE, and can be combined to achieve better fairness.
Prior Work on Analytical Performance Modeling.

Prior works attempt to quantify the impact of cache/memory
contention through o�ine pro�ling. Mars et al. [69] esti-
mate an application’s sensitivity/propensity to receive/cause
interference. Other previous works propose to estimate an ap-
plication’s sensitivity to cache capacity [20, 91] and memory
bandwidth [21] through pro�ling. Yang et al. [111] attempt
to estimate applications’ sensitivity to interference online.
However, this work assumes that latency-critical applicati-
ons run alone at times, when they can be pro�led (which
could degrade system throughput). These works assume the
ability to pro�le (1) entire applications o�ine; or (2) speci�c
execution scenarios, such as an application executing alone.
In contrast, MISE can estimate the slowdown of any applica-
tion online, in the general scenario of multiple applications
running together.

Several previous works [24, 25, 37, 104] propose analytical
models to estimate processor performance, as an alternative
to time consuming simulations. The goal of our MISE model,
in contrast, is to estimate slowdowns at runtime, in order to
enable mechanisms to provide QoS and high fairness. Its use
in simulation is possible, but is left to future work.

6. Signi�cance
To our knowledge, our HPCA 2013 paper [97] is the �rst to

build a simple yet accurate hardware-based model to estimate
application slowdowns due to main memory interference
online with the goal of providing predictable performance. Pre-
vious works [15, 17, 19, 76] propose mechanisms to estimate
application slowdowns. However, these mechanisms are not
accurate enough (as we demonstrate in Section 3) since they
were not designed with the goal of providing predictable per-
formance. Rather, the slowdown estimates were used to make
prioritization/throttling decisions to improve overall fairness.

This work is also the �rst to design a hardware-based me-
chanism to i) provide soft guarantees on slowdown for ap-
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plications and ii) detect when a prescribed slowdown bound
is not being met, by leveraging slowdown estimates from
the MISE model, while also improving overall system per-
formance. Previous work [34], in the absence of a model
to accurately estimate application slowdowns, always prio-
ritizes the application that needs guaranteed performance,
degrading the performance of other co-running applications.
Furthermore, previous work also does not have the provision
to detect whether or not the prescribed slowdown bounds
are being met (as we describe in Section 4).

6.1. Retrospective and Works Building on
Our HPCA 2013 Paper

Adoption of the Principles of the MISE Model. The
principles employed in the MISE model have been adopted
towards slowdown estimation in several works that followed.
The application slowdown model (ASM) [98], a follow-on
work, builds on top of MISE’s memory slowdown estimation
model and extended it to take into account shared cache in-
terference. In doing so, ASM also addressed one of the major
caveats of the MISE model, the estimation of slowdown for
non-memory-intensive applications. While MISE has a me-
chanism to address the slowdown of non-memory-intensive
applications, this mechanism relies on the estimation of the
memory-bound fraction of an application. Estimating the
fraction of an application’s execution that is memory bound,
with high �delity, is challenging. ASM addresses this chal-
lenge by applying the observation on request service rate as
a proxy for performance at the input to the shared caches.
This seamlessly enables slowdown estimation for applicati-
ons with di�erent memory and cache intensities/sensitivities.
The ASM work shows that it can accurately estimate slowdo-
wns with only 9.9% error across 100 workloads. We refer the
reader to [98] for details.

A later work by Xiong et al. [110] proposes a slowdown
estimation model that adopts the principle of giving an ap-
plication highest priority in order to estimate its alone run
behavior. This work directly measures alone-IPC during such
high priority periods, rather than estimating alone request
service rate and employs this alone-IPC estimate towards
determining slowdown.
Applications of the MISE Model. The MISE model has

been applied towards slowdown estimation in multiple con-
texts. Zhou and Wentzla� [120] employ the MISE model in
the context of throttling memory tra�c at the source, based
on inter-arrival times between requests. Speci�cally, they
employ a set of bins, each corresponding to a range of inter-
arrival times, and allocate a certain number of credits to each
bin, depending on an application’s request inter-arrival times.
In order to determine the optimal credit allocation in di�erent
bins corresponding to di�erent arrival times, they employ a
genetic algorithm. This credit allocation determines the even-
tual number of requests that can be served corresponding to
di�erent inter-arrival times, for an application, and hence,

shapes the memory tra�c of the application. Slowdown esti-
mates from the MISE model are leveraged to determine the
optimal bins/credits con�guration, to e�ectively shape me-
mory tra�c. Camou�age [119] employs the MISE model for
the purposes of tra�c shaping, but in the context of providing
security. Camou�age shapes memory tra�c into a predeter-
mined distribution, in order to prevent attackers from probing
the memory bus to infer the program’s memory access and
response patterns. Slowdown estimates from the MISE model
are used to determine the optimal bins/credits con�guration.
Employing Slowdown-Proportional Resource Allo-

cation. The general principle of allocating resources pro-
portionally, to the estimated slowdown at that resource is a
key principle employed in the MISE-QoS and MISE-Fair sche-
mes. Two prior works [66, 108] apply a similar principle in
the context of addressing interference at the on-chip network.
Towards mitigating on-chip network contention, they build
a scheme that allocates channel bandwidth proportional to
the aggregate rate of �ow of tra�c from each thread.

These works [66,98,110,119,120] are clear instances of the
applicability of the MISE model itself and its principles in
various contexts. The works that build on our original MISE
paper [97] are strongly indicative of the potential impact this
work could have in the long term, as we describe in the next
section.

6.2. Long-Term Impact
Predictable Performance in Current and Future Sy-

stems. Building predictable systems is a grand research
challenge [12, 75, 78]. Predictable performance is a key re-
quirement in current and future systems where 1) multiple
applications are consolidated onto the same machine, sharing
resources and 2) some applications need a certain guaranteed
performance. Data centers, virtualized systems, interactive
mobile systems and real- time systems are all examples of
scenarios where predictable performance is desirable or ne-
cessary. We expect the need for predictable performance to
increase in the future as more systems will likely move to-
wards consolidation as a means to e�ectively utilize resources.
Given this trend, accurately quantifying the e�ect of shared
resource interference on performance is an important enabler
towards providing predictable performance. Therefore, we
believe that slowdown estimates from the MISE model and
the hardware/software techniques that can be built on top of
our model are important steps towards providing predictable
performance.
Request Service Rate a Proxy for Performance. One

of the key ideas behind MISE is to use memory request service
rate as a proxy for performance for memory-bound applicati-
ons. We hypothesize that the performance of an application
that is bottlenecked at a certain resource is likely correlated
with the request service rate at that resource. Hence, the
notion of using request service rate as a proxy for perfor-
mance can be used as a primitive for performance prediction
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and applied more generally to other shared resources such
as shared caches, storage and network. ASM [98], described
in Section 6.1, is one such work that takes advantage of this
key idea of request service rate as a proxy for performance,
measured at the shared caches.
Accurate and E�cient Estimation of Alone Perfor-

mance. Another key idea behind MISE is to periodically
give each application the highest priority in order to estimate
alone-request-service-rate. In doing so, the highest priority
application receives minimal interference when its slowdown
is being estimated, while also not disrupting other applicati-
ons’ execution. This leads to better accuracy than previous
work [15, 17, 19, 76] that estimates an application’s slowdown
while it is receiving interference from other applications. We
believe that the principle of estimating slowdown while using
techniques such as prioritization to minimize interference
can be applied at other shared resources such as I/O, storage
and network as well.
Enabling Better Resource Management. The ability

to accurately estimate slowdown in the presence of shared
resource interference can enable a range of resource manage-
ment techniques to provide QoS in both hardware and soft-
ware. Slowdown estimates can be leveraged in the hardware
for resource management (as we demonstrate with memory
bandwidth). Slowdown estimates can also be communicated
to the software, enabling more e�ective and informed admis-
sion control and migration mechanisms across a cluster of
machines. Therefore, we believe MISE’s slowdown estimates
can enable substantial future research on resource allocation
policies.
Simplicity of the Technique. The MISE model requires

only simple hardware changes to the memory controller and
scheduling logic, while providing high accuracy. By virtue
of the memory bandwidth partitioning scheme we employ,
the memory scheduler only needs to give one application
the highest priority at any point in time, while treating other
applications’ requests similarly. On the other hand, previ-
ously proposed memory scheduling policies such as ATLAS,
TCM [42, 43] employ ranking policies where an ordered ran-
king is enforced across all applications’ requests. Hence,
MISE requires simpler comparator logic compared to pre-
vious proposals and can be more easily incorporated into
today’s memory controllers than previous proposals.
Applicability to Other Memory Technologies. In our

HPCA 2013 paper [97], we described MISE within the context
of a system using DRAM as main memory, for which the
reader can �nd detailed background information in our prior
works [6, 8, 9, 10, 28, 29, 40, 41, 42, 43, 44, 45, 54, 55, 56, 57, 58, 62,
63, 83, 93, 94]. We believe the principles of MISE are easily
applicable to other memory technologies, e.g., phase-change
memory [47, 48, 49, 87, 107, 112, 118], STT-MRAM [46, 70, 79],
and hybrid memory systems [1,4,11,16,26,59,65,70,71,84,86,
87, 88, 113, 114, 116]. We leave a detailed exploration of these
to future works.

7. Conclusion
Application slowdowns induced by memory interference

are a signi�cant deterrent to high and predictable per-
formance. Towards tackling such application slowdowns,
our HPCA 2013 paper [97] (1) builds a simple Memory
Interference-induced Slowdown Estimation (MISE) model
to accurately estimate application slowdowns, and (2) de-
monstrates two use cases that leverage our MISE model to
achieve predictable performance and fairness. Since our ori-
ginal HPCA 2013 paper [97] on the MISE model and its appli-
cations, several works have adopted and employed the MISE
model and its principles in di�erent contexts. We conclude
that the MISE model and the principles behind it can fuel
and inspire many more such works on high performance,
predictable, and fair memory systems.
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This paper summarizes the idea of the Staged Memory Sche-
duler (SMS), which was published at ISCA 2012 [14], and exami-
nes the work’s signi�cance and future potential. When multiple
processor cores (CPUs) and a GPU integrated together on the
same chip share the o�-chip DRAM, requests from the GPU
can heavily interfere with requests from the CPUs, leading to
low system performance and starvation of cores. Unfortunately,
state-of-the-art memory scheduling algorithms are ine�ective
at solving this problem due to the very large amount of GPU
memory tra�c, unless a very large and costly request bu�er
is employed to provide these algorithms with enough visibility
across the global request stream.

Previously-proposed memory controller (MC) designs use a
single monolithic structure to perform three main tasks. First,
the MC attempts to schedule together requests to the same
DRAM row to increase row bu�er hit rates. Second, the MC
arbitrates among the requesters (CPUs and GPU) to optimize
for overall system throughput, average response time, fairness
and quality of service. Third, the MC manages the low-level
DRAM command scheduling to complete requests while ensu-
ring compliance with all DRAM timing and power constraints.

This paper proposes a fundamentally new approach, called
the Staged Memory Scheduler (SMS), which decouples the three
primary MC tasks into three signi�cantly simpler structures
that together improve system performance and fairness. Our
three-stage MC �rst groups requests based on row bu�er locality.
This grouping allows the second stage to focus only on inter-
application scheduling decisions. These two stages enforce high-
level policies regarding performance and fairness, and therefore
the last stage can use simple per-bank FIFO queues (i.e., there is
no need for further command reordering within each bank) and
straightforward logic that deals only with the low-level DRAM
commands and timing.

We evaluated the design trade-o�s involved and compared it
against four state-of-the-art MC designs. Our evaluation shows
that SMS provides 41.2% performance improvement and 4.8×
fairness improvement compared to the best previous state-of-
the-art technique, while enabling a design that is signi�cantly
less complex and more power-e�cient to implement.

Our analysis and proposed scheduler have inspired signi�-
cant research on (1) predictable and/or deadline-aware memory
scheduling [91, 92, 194, 195, 197, 201, 202, 216] and (2) memory
scheduling for heterogeneous systems [161, 201, 202, 207].

1. Introduction

As the number of cores continues to increase in modern
chip multiprocessor (CMP) systems, the DRAM memory sy-
stem has become a critical shared resource [139, 145]. Me-
mory requests from multiple cores interfere with each other,
and this inter-application interference is a signi�cant impe-
diment to individual application and overall system perfor-
mance. Various works on application-aware memory sche-
duling [98, 99, 141, 142] address the problem by making the
memory controller aware of application characteristics and
appropriately prioritizing memory requests to improve sy-
stem performance and fairness.

Recent heterogeneous CPU-GPU systems [1, 27, 28, 37, 76,
77, 78, 133, 152, 153, 167, 209] present an additional challenge
by introducing integrated graphics processing units (GPUs)
on the same die with CPU cores. GPU applications typi-
cally demand signi�cantly more memory bandwidth than
CPU applications due to the GPU’s capability of executing
a large number of concurrent threads [1, 2, 3, 4, 13, 23, 27, 37,
38, 40, 62, 68, 77, 78, 133, 149, 150, 151, 152, 153, 154, 167, 176, 178,
179, 188, 189, 199, 200, 206, 209]. GPUs use single-instruction
multiple-data (SIMD) pipelines to concurrently execute mul-
tiple threads [53]. In a GPU, a group of threads executing the
same instruction is called a wavefront or warp, and threads in
a warp are executed in lockstep. When a wavefront stalls on a
memory instruction, the GPU core hides this memory access
latency by switching to another wavefront to avoid stalling
the pipeline. Therefore, there can be thousands of outstan-
ding memory requests from across all of the wavefronts. This
is fundamentally more memory intensive than CPU memory
tra�c, where each CPU application has a much smaller num-
ber of outstanding requests due to the sequential execution
model of CPUs.

Figure 1 (a) shows the memory request rates for a represen-
tative subset of our GPU applications and the most memory-
intensive SPEC2006 (CPU) applications, as measured by me-
mory requests per thousand cycles when each application
runs alone on the system. The raw bandwidth demands (i.e.,
memory request rates) of the GPU applications are often mul-
tiple times higher than the SPEC benchmarks. Figure 1 (b)
shows the row bu�er hit rates (also called row bu�er locality
or RBL [134]). The GPU applications show consistently high
levels of RBL, whereas the SPEC benchmarks exhibit more
variability. The GPU programs have high levels of spatial
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Figure 1: GPU memory characteristics. (a) Memory intensity, measured by memory requests per thousand cycles, (b) row
bu�er locality, measured by the fraction of accesses that hit in the row bu�er, and (c) bank-level parallelism. Reproduced
from [14].

locality, often due to access patterns related to large sequen-
tial memory accesses (e.g., frame bu�er updates). Figure 1(c)
shows the bank-level parallelism (BLP) [109, 142], which is the
average number of parallel memory requests that can be issued
to di�erent DRAM banks, for each application, with the GPU
programs consistently making use of four banks at the same
time.

In addition to the high-intensity memory tra�c of GPU
applications, there are other properties that distinguish GPU
applications from CPU applications. Prior work [99] obser-
ved that CPU applications with streaming access patterns
typically exhibit high RBL but low BLP, while applications
with less uniform access patterns typically have low RBL but
high BLP.

In contrast, GPU applications have both high RBL and high
BLP. The combination of high memory intensity, high RBL
and high BLP means that the GPU will cause signi�cant inter-
ference to other applications across all banks, especially when
using a memory scheduling algorithm that preferentially fa-
vors requests that result in row bu�er hits (e.g., [173, 220]).

Recent memory scheduling research has focused on me-
mory interference between applications in CPU-only scena-
rios. These past proposals are built around a single centra-
lized request bu�er at each memory controller (MC). The
scheduling algorithm implemented in the memory controller
analyzes the stream of requests in the centralized request buf-
fer to determine application memory characteristics, decides
on a priority for each core, and then enforces these priorities.
Observable memory characteristics may include the number
of requests that result in row bu�er hits, the bank-level pa-
rallelism of each core, memory request rates, overall fairness
metrics, and other information. Figure 2(a) shows the CPU-
only scenario where the request bu�er only holds requests
from the CPUs. In this case, the memory controller sees a
number of requests from the CPUs and has visibility into
their memory behavior. On the other hand, when the request
bu�er is shared between the CPUs and the GPU, as shown in
Figure 2(b), the large volume of requests from the GPU occu-
pies a signi�cant fraction of the memory controller’s request

X X X X X X X X

X X X X X X X X X X X X X X X X

X X

X X X X X X X X

CPU Requests

GPU Requests

(a)

(b)

(c)

Figure 2: Example of the limited visibility of the memory
controller. (a) CPU-only information, (b) Memory control-
ler’s visibility, (c) Improved visibility. Adapted from [14].

bu�er, thereby limiting the memory controller’s visibility of
the CPU applications’ memory characteristics.

One approach to increasing the memory controller’s visibi-
lity across a larger window of memory requests is to increase
the size of its request bu�er. This allows the memory con-
troller to observe more requests from the CPUs to better
characterize their memory behavior, as shown in Figure 2(c).
For instance, with a large request bu�er, the memory control-
ler can identify and service multiple requests from one CPU
core to the same row such that they become row bu�er hits,
however, with a small request bu�er as shown in Figure 2(b),
the memory controller may not even see these requests at
the same time because the GPU’s requests have occupied the
majority of the entries.

Unfortunately, very large request bu�ers impose signi�-
cant implementation challenges, including the die area for
the larger structures and the additional circuit complexity
for analyzing so many requests, along with the logic nee-
ded for assignment and enforcement of priorities [194, 195].
Therefore, while building a very large, centralized memory
controller request bu�er could perhaps lead to reasonable
memory scheduling decisions, the approach is unattractive
due to the resulting area, power, timing and complexity costs.

In this work, we propose the Staged Memory Scheduler
(SMS), a decentralized architecture for memory scheduling
in the context of integrated multi-core CPU-GPU systems.
The key idea in SMS is to decouple the various functional
tasks of memory controllers and partition these tasks across
several simpler hardware structures which operate in a sta-
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ged fashion. The three primary functions of the memory
controller, which map to the three stages of our proposed
memory controller architecture, are:
1. Detection of basic intra-application memory characteris-

tics (e.g., row bu�er locality).
2. Prioritization across applications (CPUs and GPU) and

enforcement of policies to re�ect the priorities.
3. Low-level command scheduling (e.g., activate, precharge,

read/write), enforcement of DRAM device timing con-
straints (e.g., tRAS, tFAW, etc.), and resolution of resource
con�icts (e.g., data bus arbitration).1
Our speci�c SMS implementation makes widespread use

of distributed FIFO structures to maintain a very simple im-
plementation, but at the same time SMS can provide fast
service to low memory-intensity (likely latency-sensitive)
applications and e�ectively exploit row bu�er locality and
bank-level parallelism for high memory-intensity (bandwidth-
demanding) applications. While SMS provides a speci�c im-
plementation, our staged approach for memory controller
organization provides a general framework for exploring sca-
lable memory scheduling algorithms capable of handling the
diverse memory needs of integrated heterogeneous proces-
sing systems of the future (e.g., systems-on-chip that contain
CPUs, GPUs, and accelerators).

2. Staged Memory Scheduler Design
Overview: Our proposed Staged Memory Scheduler [14]

architecture introduces a new memory controller (MC) de-
sign that provides 1) scalability and simpler implementation
by decoupling the primary functions of an application-aware
MC into a simpler multi-stage MC, and 2) performance and
fairness improvement by reducing the interference caused by
very bandwidth-intensive applications. SMS provides these
bene�ts by introducing a three-stage design. The �rst stage
is the per-core batch formation stage, which groups reque-
sts from the same application that access the same row to
improve row bu�er locality. The second stage is the batch
scheduler, which schedules batches of requests from across
di�erent applications. The last stage is the DRAM command
scheduler, which sends requests to DRAM while satisfying all
DRAM constraints.

The staged organization of SMS lends directly to a
low-complexity hardware implementation. Figure 3 illustra-
tes the overall hardware organization of the SMS. We brie�y
discuss each stage below. Section 4 of our ISCA 2012 pa-
per [14] includes a detailed description of each stage.
Stage 1 - Batch Formation. The goal of this stage is to

combine individual memory requests from each source into
batches of requests that are to the same row bu�er entry. It
consists of several simple FIFO structures, one per source (i.e.,
a CPU core or the GPU). Each request from a given source

1We refer the reader to our prior works [32, 33, 34, 35, 66, 67, 93, 96, 97, 98,
99, 100, 112, 113, 114, 115, 116, 120, 121, 158, 183, 184] for a detailed background
on DRAM.
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Figure 3: The organization of SMS. Adapted from [14].

is initially inserted into its respective FIFO upon arrival at
the MC. A batch is simply one or more memory requests
from the same source that access the same DRAM row. That
is, all requests within a batch, except perhaps for the �rst
one, would be row bu�er hits if scheduled consecutively. A
batch is deemed complete or ready when an incoming request
accesses a di�erent row, when the oldest request in the batch
has exceeded a threshold age, or when the FIFO is full. Only
ready batches are considered for future scheduling by the
second stage of SMS.
Stage 2 - Batch Scheduler. The batch scheduler deals

directly with batches, and therefore does not need to worry
about optimizing for row bu�er locality. Instead, the batch
scheduler focuses on higher-level policies regarding inter-
application interference and fairness. The goal of this stage is
to prioritize batches from applications that are latency critical,
while making sure that bandwidth-intensive applications (e.g.,
those running on the GPU) still make good progress.

The batch scheduler considers every source FIFO (from
stage 1) that contains a ready batch. It picks one ready batch
based on either a shortest job �rst (SJF) or a round-robin
policy. Using the SJF policy, the batch scheduler chooses
the oldest ready batch from the source with the fewest to-
tal in-�ight memory requests across all three stages of SMS.
SJF prioritization reduces average request service latency,
and it tends to favor latency-sensitive applications, which
tend to have fewer total requests [98, 99, 109, 142]. Using the
round-robin policy, the batch scheduler simply picks the next
ready batch in a round-robin manner across the source FIFOs.
This ensures that memory-intensive applications receive ade-
quate service. The batch scheduler uses the SJF policy with
probability p and the round-robin policy with probability
1 –p. The value of p determines whether the CPU or the GPU
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receives higher priority. When p is high, the SJF policy is
applied more often and applications with fewer outstanding
requests are prioritized. Hence, the batches of the likely less
memory-intensive CPU applications are prioritized over the
batches of the GPU application. On the other hand, when p is
low, request batches are scheduled in a round-robin fashion
more often. Hence, the memory-intensive GPU application’s
naturally-large request batches are likely scheduled more
frequently, and the GPU is thus prioritized over the CPU.

After picking a batch, the batch scheduler enters a drain
state where it forwards the requests from the selected batch
to the �nal stage of the SMS. The batch scheduler dequeues
one request per cycle until all requests from the batch have
been removed from the selected FIFO.
Stage 3 - DRAMCommand Scheduler (DCS). DCS con-

sists of one FIFO queue per DRAM bank. The drain state of
the batch scheduler places the memory requests directly into
these FIFOs. Note that because batches are moved into DCS
FIFOs one batch at a time, row bu�er locality within a batch
is preserved within a DCS FIFO. At this point, higher-level
policy decisions have already been made by the batch sche-
duler. Therefore, the DCS simply issues low-level DRAM
commands, ensuring DRAM protocol compliance.

In any given cycle, DCS considers only the requests at
the head of each of the per-bank FIFOs. For each request,
DCS determines whether that request can issue a command
based on the request’s current row bu�er state (e.g., is the row
bu�er already open with the requested row?) and the current
DRAM state (e.g., time elapsed since a row was opened in
a bank, and data bus availability). If more than one request
is eligible to issue a command in any given cycle, the DCS
arbitrates between DRAM banks in a round-robin fashion.

3. Qualitative Comparison with
Previous Scheduling Algorithms

In this section, we compare SMS qualitatively to previously
proposed scheduling policies and analyze the basic di�erences
between SMS and these policies. The fundamental di�erence
between SMS and previously-proposed memory scheduling
policies for CPU-only scenarios is that the latter are designed
around a single, centralized request bu�er which has poor
scalability and complex scheduling logic, while SMS is built
around a decentralized, scalable framework.
First-Ready FCFS (FR-FCFS). FR-FCFS [173, 220] is a

commonly used scheduling policy in commodity DRAM sys-
tems. An FR-FCFS scheduler prioritizes requests that result in
row bu�er hits over row bu�er misses and otherwise prioriti-
zes older requests. Since FR-FCFS unfairly prioritizes applica-
tions with high row bu�er locality to maximize DRAM throug-
hput, prior works [42, 45, 98, 99, 134, 137, 141, 142, 194, 195]
have observed that it has low system performance and high
unfairness.
Parallelism-Aware Batch Scheduling (PAR-BS). PAR-

BS [142, 143] aims to improve both fairness and system per-

formance. In order to prevent unfairness, it forms batches of
outstanding memory requests and prioritizes the oldest batch,
to avoid request starvation. To improve system throughput,
it prioritizes applications with smaller number of outstan-
ding memory requests within a batch. However, PAR-BS has
two major shortcomings. First, batching could cause older
GPU requests and requests of other memory-intensive CPU
applications to be prioritized over latency-sensitive CPU ap-
plications. Second, as previous work [98] has also observed,
PAR-BS does not take into account an application’s long term
memory-intensity characteristics when it assigns application
priorities within a batch. This could cause memory-intensive
applications’ requests to be prioritized over latency-sensitive
applications’ requests within a batch, due to the application-
agnostic nature of batching.
Adaptive Per-Thread Least-Attained-Serviced Me-

mory Scheduling (ATLAS). ATLAS [98] aims to improve
system performance by prioritizing requests of applications
with lower attained memory service. This improves the per-
formance of low memory-intensity applications as they tend
to have low attained service. However, ATLAS has the disad-
vantage of not preserving fairness. Previous works [98, 99]
have shown that simply prioritizing applications based on
attained service leads to signi�cant slowdown of memory-
intensive applications.
Thread ClusterMemory Scheduling (TCM). TCM [99]

is a state-of-the-art application-aware cluster memory sche-
duler providing both high system throughput and high fair-
ness. It groups an application into either a latency-sensitive
or a bandwidth-sensitive cluster based on the application
memory intensity. In order to achieve high system throug-
hput and low unfairness, TCM employs a di�erent prioritiza-
tion policy for each cluster. To improve system throughput,
a fraction of total memory bandwidth is dedicated to the
latency-sensitive cluster and applications within the cluster
are then ranked based on memory intensity with the least
memory-intensive application receiving the highest priority.
On the other hand, TCM minimizes unfairness by periodi-
cally shu�ing applications within the bandwidth-sensitive
cluster to avoid starvation. This approach provides both high
system performance and fairness in CPU-only systems. In
an integrated CPU-GPU system, the GPU generates a sig-
ni�cantly larger number of memory requests compared to
the CPUs and �lls up the centralized request bu�er. As a
result, the memory controller lacks the visibility into CPU
memory requests to accurately determine each application’s
memory access characteristics. Without such visibility, TCM
makes incorrect and non-robust clustering decisions, which
classify some applications with high memory intensity into
the latency-sensitive cluster and vice versa. Such misclassi-
�ed applications cause interference not only to low memory
intensity applications, but also to each other. Therefore, TCM
cannot always provide high system performance and high
fairness in an integrated CPU-GPU system. Increasing the
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Figure 4: System performance, and fairness for 7 categories of workloads (total of 105 workloads). Reproduced from [14].
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Figure 5: CPUs and GPU Speedup for 7 categories of workloads (total of 105 workloads). Reproduced from [14].

request bu�er size is a practical way to gain more visibi-
lity into CPU applications’ memory access characteristics.
However, this approach is not scalable as we show in our eva-
luations [14]. In contrast, SMS provides much better system
performance and fairness than TCM with the same number
of request bu�er entries and lower hardware cost, as we show
in Section 5.

4. Evaluation Methodology
We use an in-house cycle-accurate simulator to perform

our evaluations. For our performance evaluations, we model
a system with sixteen x86 CPU cores and a GPU. For the
CPUs, we model three-wide out-of-order processors with a
cache hierarchy including per-core L1 caches and a shared,
distributed L2 cache. The GPU does not share the CPU caches.
In order to prevent the GPU from taking the majority of
request bu�er entries, we reserve half of the request bu�er
entries for the CPUs. To model the memory bandwidth of
the GPU accurately, we perform coalescing on GPU memory
requests before they are sent to the memory controller [119].

We evaluate our system with a set of 105 multiprogrammed
workloads simulated for 500 million cycles. Each workload
consists of sixteen SPEC CPU2006 benchmarks and one GPU
application selected from a mix of video games and graphics
performance benchmarks. We classify CPU benchmarks into
three categories (Low, Medium, and High) based on their me-
mory intensities, measured as last-level cache misses per thou-
sand instructions (MPKI). Based on these three categories,
we randomly choose sixteen CPU benchmarks from these
three categories and one randomly selected GPU benchmark
to form workloads consisting of seven intensity mixes: L (All
low), ML (Low/Medium), M (All medium), HL (High/Low),
HML (High/Medium/Low), HM (High/Medium) and H(All
high). For each CPU benchmark, we use Pin [125, 172] with

PinPoints [159] to select the representative phase. For the
GPU applications, we use an industrial GPU simulator to
collect memory requests with detailed timing information.
These requests are collected after having �rst been �ltered
through the GPU’s internal cache hierarchy, therefore we
do not further model any caches for the GPU in our �nal
hybrid CPU-GPU simulation framework. More detail on our
experimental methodology is in Section 5 of our ISCA 2012
paper [14].

5. Experimental Results
We present the performance of �ve memory scheduler con-

�gurations: FR-FCFS [173, 220], ATLAS [98], PAR-BS [142],
TCM [99], and SMS [14] on the 16-CPU/1-GPU four-memory-
controller system. All memory schedulers use 300 request
bu�er entries per memory controller. This size was chosen
based on empirical results, which showed that performance
does not appreciably increase for larger request bu�er si-
zes. Results are presented in the workload categories, with
workload memory intensities increasing from left to right.

Figure 4 shows the system performance (measured as weig-
hted speedup [50, 51]) and fairness (measured as maximum
slowdown [43, 98, 99, 194, 195, 203]) of the previously propo-
sed algorithms and SMS. Compared to TCM, which is the
previous state-of-the-art algorithm for both system perfor-
mance and fairness, SMS provides 41.2% system performance
improvement and 4.8× fairness improvement. Therefore,
we conclude that SMS provides better system performance
and fairness than all previously proposed scheduling poli-
cies, while incurring much lower hardware cost and simpler
scheduling logic, as we show in Section 5.2.

We study the performance of the CPU system and the
GPU system separately and provide two major observations
in Figure 5. First, SMS gains 1.76× improvement in CPU
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Figure 6: SMS vs. TCM on a 16 CPU/1 GPU, 4 memory controller system with varying the number of cores.
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Figure 7: SMS vs. TCM on a 16 CPU/1 GPU system with varying the number of channels.

system performance over TCM. Second, SMS achieves this
1.76× CPU performance improvement while delivering simi-
lar GPU performance as the FR-FCFS baseline. The results
show that TCM (and the other algorithms) end up allocating
far more bandwidth to the GPU, at signi�cant performance
and fairness cost to the CPU applications. SMS appropriately
deprioritizes the memory bandwidth intensive GPU applica-
tion in order to enable higher CPU performance and overall
system performance, while preserving fairness. Previously
proposed scheduling algorithms, on the other hand, allow the
GPU to hog memory bandwidth and therefore signi�cantly
degrade system performance and fairness.

We provide a more detailed analysis in Sections 6.1 and 6.2
of our ISCA 2012 paper [14].

5.1. Scalability with Cores and
Memory Controllers

Figure 6 compares the performance and fairness of SMS
against TCM (averaged over 75 workloads)2 with the same
number of request bu�ers, as the number of cores is varied.
We make the following observations: First, SMS continues to
provide better system performance and fairness than TCM.
Second, the system performance gains and fairness gains
increase signi�cantly as the number of cores and hence, me-
mory pressure is increased. SMS’s performance and fairness
bene�ts are likely to become more signi�cant as core counts
in future technology nodes increase.

Figure 7 shows the system performance and fairness of
SMS compared against TCM as the number of memory chan-
nels is varied. For this, and all subsequent results, we perform
our evaluations on 60 workloads from categories that contain

2We use 75 randomly selected workloads per core count. We could not
use the same workloads/categorizations as speci�ed in Section 4 because
those were for 16-core systems, whereas we are now varying the number of
cores.

high memory-intensity applications (HL, HML, HM and H
workload categories). We observe that SMS scales better as
the number of memory channels increases. As the perfor-
mance gain of TCM diminishes when the number of memory
channels increases from 4 to 8 channels, SMS continues to
provide performance improvement for both CPU and GPU.
We provide a detailed scalability analysis in Section 6.3 of our
ISCA 2012 paper [14].

5.2. Power and Area
We present the power and area of FR-FCFS and SMS. We

�nd that SMS consumes 66.7% less leakage power than FR-
FCFS, which is the simplest of all of the prior memory schedu-
lers that we evaluate. In terms of die area, SMS requires 46.3%
less area than FR-FCFS. The majority of the power and area
savings of SMS over FR-FCFS come from the decentralized
request bu�er queues and simpler scheduling logic in SMS.
In comparison, FR-FCFS requires centralized request bu�er
queues, content-addressable memory (CAMs), and complex
scheduling logic. Because ATLAS and TCM require more
complex ranking and scheduling logic than FR-FCFS, we ex-
pect that SMS also provides power and area reductions over
ATLAS and TCM.

We provide the following additional results in our ISCA
2012 paper [14]:
• Combined performance of CPU-GPU heterogeneous sys-

tems for di�erent SMS con�gurations with di�erent Shor-
test Job First (SJF) probability.

• Sensitivity analysis to SMS’s con�guration parameters.
• Performance of SMS in CPU-only systems.

6. Related Work
To our knowledge, our ISCA 2012 paper is the �rst to

provide a fundamentally new memory controller design for
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heterogeneous CPU-GPU systems in order to reduce interfe-
rence at the shared o�-chip main memory. There are several
prior works that reduce interference at the shared o�-chip
main memory in other systems. We provide a brief discussion
of these works.

6.1. Memory Partitioning Techniques
Instead of mitigating the interference problem between

applications by scheduling requests at the memory control-
ler, Awasthi et al. [18] propose a mechanism that spreads
data in the same working set across memory channels in
order to increase memory level parallelism. Memory channel
partitioning (MCP) [137] maps applications to di�erent me-
mory channels based on their memory intensities and row
bu�er locality, to reduce inter-application interference. Mao
et al. [128] propose to partition GPU channels and allow only
a subset of threads to access each memory channel. In ad-
dition to channel partitioning, several works [74, 122, 210]
also propose to partition DRAM banks to improve perfor-
mance. These partitioning techniques are orthogonal to our
proposals, and can be combined with SMS to improve the
performance of heterogeneous CPU-GPU systems.

6.2. Memory Scheduling Techniques
Memory Scheduling on CPUs. Numerous prior works

propose memory scheduling algorithms for CPUs that im-
prove system performance. The �rst-ready, �rst-come-�rst-
serve (FR-FCFS) scheduler [173, 220] prioritizes requests that
hit in the row bu�er over requests that miss in the row bu�er,
with the aim of reducing the number of times rows must be
activated (as row activation incurs a high latency). Several
memory schedulers improve performance beyond FR-FCFS by
identifying critical threads in multithreaded applications [47],
using reinforcement learning to identify long-term memory
behavior [79, 136], prioritizing memory requests based on
the criticality (i.e., latency sensitivity) of each memory re-
quest [57, 123, 211], distinguishing prefetch requests from
demand requests [109, 111], or improving the scheduling of
memory writeback requests [110, 182, 193]. While all of these
schedulers increase DRAM performance and/or throughput,
many of them introduce fairness problems by under-servicing
applications that only infrequently issue memory requests.
To remedy fairness problems, several application-aware me-
mory scheduling algorithms [98,99,135,141,142,194,195,197]
use information on the memory intensity of each application
to balance both performance and fairness. Unlike SMS, none
of these schedulers consider the di�erent needs of CPU me-
mory requests and GPU memory requests in a heterogeneous
system.
Memory Scheduling on GPUs. Since GPU applications

are bandwidth intensive, often with streaming access pat-
terns, a policy that maximizes the number of row bu�er hits
is e�ective for GPUs to maximize overall throughput. As a
result, FR-FCFS with a large request bu�er tends to perform

well for GPUs [22]. In view of this, prior work [213] proposes
mechanisms to reduce the complexity of FR-FCFS scheduling
for GPUs. Ausavarungnirun et al. [15] propose MeDiC, which
is a cache and memory management scheme to improve the
performance of GPGPU applications. Jeong et al. [80] propose
a QoS-aware memory scheduler that guarantees the perfor-
mance of GPU applications by prioritizing memory requests
from graphics applications over those from CPU applications
until the system can guarantee that a frame can be rendered
within a given deadline, after which it prioritizes requests
from CPU applications. Jog et al. [83] propose CLAM, a me-
mory scheduler that identi�es critical memory requests and
prioritizes them in the main memory. Ausavarungnirun et
al. [17] propose a scheduling algorithm that identi�es and pri-
oritizes TLB-related memory requests in GPU-based systems,
to reduce the overhead of memory virtualization. Unlike SMS,
none of these works holistically optimize the performance
and fairness of requests when a memory controller is shared
by a CPU and a GPU.
Memory Scheduling on Emerging Systems. Recent

proposals investigate memory scheduling on emerging plat-
forms. Usui et al. [201, 202] propose accelerator-aware me-
mory controller designs that improve the performance of
systems that contain both CPUs and hardware accelerators.
Zhao et al. [216] decouple the design of a memory control-
ler for persistent memory into multiple stages. These works
build upon principles for heterogeneous system memory sche-
duling that were �rst proposed in SMS.

6.3. Other Related Works

DRAM Designs. Aside from memory scheduling and me-
mory partitioning techniques, previous works propose new
DRAM designs that are capable of reducing memory latency
in conventional DRAM [9,10,31,32,33,34,36,63,69,72,90,100,
112,113,114,115,116,126,132,155,166,177,187,190,208,218] and
non-volatile memory [102,105,106,107,130,131,170,171,212].
Previous works on bulk data transfer [30, 34, 59, 60, 75, 81, 86,
124,180,183,215,217] and in-memory computation [7,8,11,19,
25,26,44,52,54,55,56,58,61,70,71,87,94,101,127,157,160,161,
168, 181, 184, 185, 192, 198, 214] can be used improve DRAM
bandwidth. Techniques to reduce the overhead of DRAM
refresh [5, 6, 20, 24, 95, 118, 121, 146, 156, 169, 204] can be app-
lied to improve the performance of GPU-based systems. Data
compression techniques [162, 163, 164, 165, 205] can also be
used on the main memory to increase the e�ective available
DRAM bandwidth. All of these techniques can mitigate the
performance impact of memory interference and improve the
performance of GPU-based systems. They are orthogonal
to, and can be combined with, SMS to further improve the
performance of heterogeneous CPU-GPU systems.

Previous works on data prefetching [12, 21, 29, 39, 41, 46, 48,
49,64,65,73,84,85,104,108,109,111,138,140,144,148,186,191]
can also be used to mitigate high DRAM latency. However,
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these techniques generally increase DRAM bandwidth utili-
zation, which can lead to lower GPU performance.
Other Ways to Improve Performance on Systems

with GPUs. Other works have proposed various methods
of decreasing memory divergence. These methods range
from thread throttling [88, 89, 103, 174] to warp schedu-
ling [117, 129, 147, 174, 175, 219]. While these methods share
our goal of reducing memory divergence, none of them ex-
ploit inter-warp heterogeneity and, as a result, are orthogonal
or complementary to our proposal. Our work also makes new
observations about memory divergence that are not covered
by these works.

7. Signi�cance and Long-Term Impact

SMS exposes the need to redesign components of the me-
mory subsystem to better serve integrated CPU-GPU sy-
stems. Systems-on-chip (SoCs) that integrate CPUs and
GPUs on the same die are growing rapidly in popularity
(e.g., [37, 133, 152, 153]), due to their high energy e�ciency
and lower costs compared to discrete CPUs and GPUs. As
a result, SoCs are commonly used in mobile devices such as
smartphones, tablets, and laptops, and are being used in many
servers and data centers. We expect that as more powerful
CPUs and GPUs are integrated in SoCs, and as the workloads
running on the CPUs/GPUs become more memory-intensive,
SMS will become even more essential to alleviate the shared
memory subsystem bottleneck.

The observations and mechanisms in our ISCA 2012 pa-
per [14] expose several future research problems. We brie�y
discuss two future research areas below.
Interference Management in Emerging Heterogene-

ous Systems. Our ISCA 2012 paper [14] considers hete-
rogeneous systems where a CPU executes various general-
purpose applications while the GPU executes graphics wor-
kloads. Modern heterogeneous systems contain an increa-
singly diverse set of workloads. For example, programmers
can use the GPU in an integrated CPU-GPU system to execute
general-purpose applications (known as GPGPU applicati-
ons). GPGPU applications can have signi�cantly di�erent
access patterns from graphics applications, requiring di�e-
rent memory scheduling policies (e.g., [15, 17, 83]). Future
work can adapt the mechanisms of SMS to optimize the per-
formance of GPGPU applications.

Many heterogeneous systems are being deployed in mobile
or embedded environments, and must ensure that memory
requests from some or all of the components of the hetero-
geneous system meet real-time deadlines [91, 92, 201, 202].
Traditionally, applications with real-time deadlines are exe-
cuted using embedded cores or �xed-function accelerators,
which are often integrated into modern SoCs. We believe that
the observations and mechanisms in our ISCA 2012 paper [14]
can be used and extended to ensure that these deadlines are
met. Recent works [201, 202] have shown that the principles

of SMS can be extended to provide deadline-aware memory
scheduling for accelerators within heterogeneous systems.

Even though the mechanisms proposed in our ISCA 2012
paper [14] aim to minimize the slowdown caused by inter-
ference, they do not provide actual performance guarantees.
However, we believe it is possible to combine principles from
SMS with prediction mechanisms for memory access latency
(e.g., [91,92,196,197] to provide hard performance guarantees
for real-time applications, while still ensuring fairness for all
applications executing on the heterogeneous system.
Memory Scheduling for Concurrent GPGPU Appli-

cations. While SMS allows CPU applications and graphics
applications to share DRAM more e�ciently, we assume that
there is only a single GPU application running at any given
point in time. Recent works [16, 82] propose methods to
e�ciently share the same GPU across multiple concurrently-
executing GPGPU applications. We believe that the techni-
ques and observations provided in our ISCA 2012 paper [14]
can be applied to reduce the memory interference induced by
additional GPGPU applications. Furthermore, as concurrent
GPGPU application execution becomes more widespread, the
concepts of SMS can be extended to provide prioritization
and fairness across multiple GPGPU applications.

Our analysis of memory interference in heterogeneous
systems, and our new Staged Memory Scheduler, have in-
spired a number of subsequent works. These works include
signi�cant research on predictable and/or deadline-aware
memory scheduling [91, 92, 194, 195, 197, 201, 202, 216], and
on other memory scheduling algorithms for heterogeneous
systems [161, 201, 202, 207].

8. Conclusion

While many advancements in memory scheduling policies
have been made to deal with multi-core processors, the inte-
gration of GPUs on the same chip as the CPUs has created new
system design challenges. Our ISCA 2012 paper [14] demon-
strates how the inclusion of GPU memory tra�c can cause
severe di�culties for existing memory controller designs in
terms of performance and especially fairness. We propose a
new approach, Staged Memory Scheduler, which delivers su-
perior performance and fairness for integrated CPU-GPU sys-
tems compared to state-of-the-art memory schedulers, while
providing a design that is signi�cantly simpler to implement
(thus improving the scalability of the memory controller).
The key insight behind simplifying the implementation of
SMS is that the primary functions of sophisticated memory
controller algorithms can be decoupled. As a result, SMS
proposes a multi-stage memory controller architecture. We
show that SMS signi�cantly improves the performance and
fairness in integrated CPU-GPU systems. We hope and ex-
pect that our observations and mechanisms can inspire future
work in memory system design for existing and emerging
heterogeneous systems.
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This paper summarizes the idea of Subarray-Level Paralle-
lism (SALP) in DRAM, which was published in ISCA 2012 [66],
and examines the work’s signi�cance and future potential. Mo-
dern DRAMs have multiple banks to serve multiple memory
requests in parallel. However, when two requests go to the same
bank, they have to be served serially, exacerbating the high
latency of o�-chip memory. Adding more banks to the system
to mitigate this problem incurs high system cost. Our goal in
this work is to achieve the bene�ts of increasing the number of
banks with a low-cost approach. To this end, we propose three
new mechanisms, SALP-1, SALP-2, and MASA (Multitude of
Activated Subarrays), to reduce the serialization of di�erent
requests that go to the same bank. The key observation ex-
ploited by our mechanisms is that a modern DRAM bank is
implemented as a collection of subarrays that operate largely
independently while sharing few global peripheral structures.

Our three proposed mechanisms mitigate the negative impact
of bank serialization by overlapping di�erent components of the
bank access latencies of multiple requests that go to di�erent
subarrays within the same bank. SALP-1 requires no changes
to the existing DRAM structure, and needs to only reinterpret
some of the existing DRAM timing parameters. SALP-2 and
MASA require only modest changes (< 0.15% area overhead)
to the DRAM peripheral structures, which are much less design
constrained than the DRAM core. Our evaluations show that
SALP-1, SALP-2 and MASA signi�cantly improve performance
for both single-core systems (7%/13%/17%) and multi-core sys-
tems (15%/16%/20%), averaged across a wide range of workloads.
We also demonstrate that our mechanisms can be combined
with application-aware memory request scheduling in multi-
core systems to further improve performance and fairness.
Our proposed technique has enabled signi�cant research in

the use of subarrays for various purposes (e.g., [15,16,21,37,76,78,
84, 87, 128, 129, 130, 135, 156, 159]). SALP has also been described
and evaluated by a recent work by Samsung and Intel [54] as a
promising mechanism to tolerate long write latencies that are a
result of aggressive DRAM technology scaling.

1. Introduction
To be able to serve multiple memory requests in paral-

lel, modern DRAM chips employ multiple banks that can be
accessed independently, providing bank level parallelism. Un-
fortunately, if two memory requests go to the same bank,
they have to be served one after another. This is called a
bank con�ict. In the worst case, bank con�icts may delay

a memory request by hundreds or even thousands of nano-
seconds [16, 37, 66, 129]. In particular, bank con�icts cause
three speci�c problems that degrade the access latency, band-
width utilization, and energy e�ciency of the main memory
subsystem:
1. Serialization. Bank con�icts serialize requests that could

potentially have been served in parallel. Such serialization
exacerbates the already large latency of a memory access,
and may cause processor cores to stall for much longer.

2. Write Recovery. A request scheduled after a write re-
quest to the same bank experiences an extra delay called
the write recovery penalty, which is an additional time re-
quired to safely store new data in the cells. This write
recovery latency further aggravates the impact of seriali-
zation.

3. Row Bu�er Thrashing. Each bank has a row bu�er that
caches the last accessed row. A request that hits in the row
bu�er is much cheaper in terms of both latency and energy
than a request that misses in the row bu�er. However, bank
con�icts between requests that access di�erent rows lead
to costly row bu�er misses.
A naive solution to bank con�icts is to increase the number

of banks. Unfortunately, as we discuss in Section 1 of our
ISCA 2012 paper [66], simply adding more banks to the me-
mory subsystem comes at signi�cantly high costs or reduced
performance regardless of the way it is done: more banks per
chip, more ranks per channel, or more channels.1

The goal in our ISCA 2012 paper [66] is to mitigate such
detrimental e�ects of bank con�icts in a cost-e�ective manner.
Toward that end, we make two key observations that lead to
our proposed solutions.
Observation 1. A modern DRAM bank is not implemen-

ted as a monolithic component equipped with only a single
row bu�er. Implementing a DRAM bank in such a way requi-
res very long internal wires (called bitlines) to connect the
row bu�er to all the rows in the bank, which can signi�cantly
increase the access latency. Instead, as Figure 1b shows, a
bank consists of multiple subarrays, each with its own local
row bu�er. Subarrays within a bank share two important
global structures: i) a global row address decoder, and ii) a
global row bu�er.

1We refer the reader to our prior works [14, 15, 16, 17, 37, 38, 61, 62, 63,
64, 65, 66, 75, 76, 77, 78, 79, 80, 81, 115, 129, 130] for a detailed background on
DRAM.
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Figure 1: DRAM bank organization. Adapted from [66].

Observation 2. The latency of a bank access predomi-
nantly consists of three major components: i) loading a row
into the local row bu�er (activation), ii) accessing the data
from the local row bu�er (read or write), and iii) clearing the
local row bu�er (precharging) [14, 37, 38, 66, 76, 77, 78]. In ex-
isting DRAM banks, all three operations must be completed
for one request before serving another request to a di�erent
row, even if the two rows reside in di�erent subarrays. Howe-
ver, this does not need to be the case for two reasons. First,
activation and precharging are mostly local to each subarray,
which enables the opportunity to overlap these operations
when they are to di�erent subarrays. Second, if we reduce
the sharing of the global structures among subarrays, we can
parallelize the concurrent activation of di�erent subarrays.
Doing so would allow us to exploit the existence of multiple
local row bu�ers across the subarrays, enabling more than
just a single row to be cached for each bank and thereby
increasing the row bu�er hit rate.

2. Subarray-Level Parallelism
Subarray-Oblivious Baseline. Let us consider the base-

line example shown in Figure 2, which presents a timeline
of four memory requests being served at the same bank in
a subarray-oblivious manner. This example highlights the
three key problems that we discussed in Section 1. First, re-
quests are completely serialized, even though they are to
di�erent subarrays. Second, although the write-recovery pen-
alty is local to a subarray, it delays a subsequent request to
a di�erent subarray. Third, a request to one subarray unne-
cessarily evicts (i.e., precharges) the other subarray’s local
row bu�er, which must be reloaded (i.e., activated) when a
future request accesses the evicted row. In this section, we
describe how SALP-1, SALP-2 and MASA can take an ad-
vantage of the DRAM bank organization to enable parallel
DRAM operations in a cost-e�ective manner.

2.1. SALP-1: Subarray-Level-Parallelism-1
We observe that precharging and activation are mostly

local to a subarray. Based on this observation, we propose
SALP-1, which overlaps the precharging of one subarray
with the activation of another subarray. In contrast, existing
systems always serialize precharging and activation to the
same bank, conservatively provisioning for when they are
to the same subarray. SALP-1 requires no modi�cations to

existing DRAM structure. It only requires reinterpretation
of an existing timing constraint (tRP) and, potentially, the
addition of a new timing constraint (which we describe in
Section 5.1 of our ISCA 2012 paper [66]). Figure 3 (top) shows
the timeline of the same four requests from Figure 2 when we
use SALP-1 instead of our Baseline. As the timeline shows,
overlapping the precharge operation reduces the overall time
needed to complete the four requests.

2.2. SALP-2: Subarray-Level-Parallelism-2
While SALP-1 pipelines the precharging and activation of

di�erent subarrays, the relative ordering between the two
commands is still preserved. This is because existing DRAM
banks do not allow two subarrays to be activated at the same
time. As a result, the write-recovery latency of an activated
subarray delays not only a PRECHARGE to itself, but also a
subsequent ACTIVATE to another subarray. Based on the ob-
servation that the write-recovery latency is also local to a
subarray, we propose SALP-2. SALP-2 issues the ACTIVATE
to another subarray before the PRECHARGE to the currently-
activated subarray. As a result, SALP-2 can overlap the write
recovery of the currently-activated subarray with the activa-
tion of another subarray, further reducing the service time
compared to SALP-1 (as shown in the middle timeline of
Figure 3).

However, as highlighted in the �gure, SALP-2 requires
two subarrays to remain activated at the same time. This
is not possible in existing DRAM banks as the global row-
address latch, which determines the wordline in the bank
that is raised, is shared by all of the subarrays. Section 5.2 of
our ISCA 2012 paper [66] discusses how to enable SALP-2 by
eliminating this sharing. The key idea is to push the global
address latch to each subarray, thereby creating local address
latches, one per subarray.

2.3. MASA: Multitude of Activated Subarrays
Although SALP-2 allows two subarrays within a bank to be

activated, it requires the controller to precharge one of them
before issuing a column command (e.g., READ) to the bank.
This is because when a bank receives a column command, all
activated subarrays in the bank will connect their local row
bu�ers to the global bitlines. If more than one subarray is
activated, this will result in a short circuit. As a result, SALP-
2 cannot allow multiple subarrays to concurrently remain
activated and serve column commands.

To solve this, we propose MASA, whose key idea is to allow
multiple subarrays to be activated at the same time, while al-
lowing the memory controller to designate exactly one of the
activated subarrays to drive the global bitlines during the next
column command. MASA has two advantages over SALP-2.
First, MASA overlaps the activation of di�erent subarrays
within a bank. Just before issuing a column command to any
of the activated subarrays, the memory controller designates
one particular subarray whose row bu�er should serve the co-
lumn command. Second, MASA eliminates extra ACTIVATEs

2
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to the same row, thereby mitigating row bu�er thrashing.
This is because the local row bu�ers of multiple subarrays
can remain activated at the same time without experiencing
collisions on the global bitlines. As a result, MASA further
improves performance compared to SALP-2, as shown in the
bottom timeline of Figure 3.
MASA: Overhead. To designate one of the multiple

activated subarrays, the controller needs a new command,
SA_SEL (subarray-select). In addition to the changes required
by SALP-2, MASA requires a single-bit latch per subarray to
denote whether a subarray is designated or not. According to
our detailed circuit-level analysis, MASA increases the DRAM
die-size by only 0.15% (due to extra latches) and the static
power consumption by only ∼1% (each additional activated
subarray consumes 0.56mW). Also, the memory controller
needs less than 256 bytes to track the status of subarrays
across all DRAM banks. We discuss a detailed implementa-
tion of MASA, along with its overhead, in Section 5.3 of our
ISCA 2012 paper [66].

3. Experimental Methodology
We evaluate our three mechanisms for subarray-level pa-

rallelism using Ramulator [62, 124], an open-source cycle-
accurate DRAM simulator that we developed which accu-
rately models DRAM subarrays. We use Ramulator as part
of a cycle-level in-house x86 multi-core simulator, whose
front-end is based on Pin [85]. We calculate DRAM dyna-
mic energy consumption by associating an energy cost with

each DRAM command, derived using Micron’s DDR3 DRAM
tool [93], Rambus’ DRAM power model [123], and previously
published data [150].

We evaluate SALP-1, SALP-2, and MASA on a wide va-
riety of workloads [39, 41, 89, 146] and system con�gurati-
ons [45,46,134,143]. The results shown in Section 4 are based
on the conservative assumption that a DRAM bank expo-
ses only 8 subarrays to be exploited by our subarray-level
parallelism mechanisms, whereas in practice the number of
subarrays in current DRAM banks is typically much higher
(∼64). Section 9.2 of our ISCA 2012 paper [66] shows that the
performance improvement of our three mechanisms over a
subarray-oblivious baseline increases with a greater number
of subarrays.

For our full methodology, we refer the reader to Section 8
of our ISCA 2012 paper [66].

4. Evaluation
Figure 4 shows the performance improvement of SALP-1,

SALP-2, and MASA on a system with 8 subarrays-per-bank
over a subarray-oblivious baseline. The �gure also shows
the performance improvement of an “Ideal” scheme which is
the subarray-oblivious baseline with 8 times as many banks
(this represents a system where all subarrays are fully inde-
pendent). The benchmarks are sorted along the x-axis by
increasing memory intensity. We make two observations
from the �gure. First, SALP-1, SALP-2, and MASA consis-
tently perform better than the baseline for all benchmarks.
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On average, they improve the average performance by 6.6%,
13.4%, and 16.7%, respectively. Second, MASA captures most
of the bene�ts of “Ideal,” which improves performance by
19.6% compared to baseline.

The di�erence in performance improvement across bench-
marks can be explained by a combination of three factors re-
lated to the benchmarks’ individual memory access behavior.
First, subarray-level parallelism in general is most bene�-
cial for memory-intensive benchmarks that frequently access
memory (e.g., the benchmarks located towards the right of
Figure 4). By increasing the memory throughput for such
applications, subarray-level parallelism signi�cantly allevia-
tes their memory bottleneck. The average memory intensity
of the applications that gain >5% performance with SALP-1
is 18.4 MPKI (last-level cache misses per kilo-instruction),
compared to 1.14 MPKI for the other applications.

Second, the advantage of SALP-2 is large for applications
that are write-intensive (i.e., those with the most write mis-
ses per kilo-instruction, or WMPKI). For such applications,
SALP-2 can overlap the long write-recovery latency with the
activation of a subsequent access. In Figure 4, the three appli-
cations that improve more than 38% with SALP-2 are among
both the most memory-intensive (>25 MPKI) and the most
write-intensive (>15 WMPKI).

Third, MASA is bene�cial for applications that experience
frequent bank con�icts. For such applications, MASA paral-
lelizes accesses to di�erent subarrays by concurrently activa-
ting multiple subarrays (ACTIVATE) and allowing the appli-
cation to switch between the activated subarrays at low cost
(SA_SEL). Therefore, the subarray-level parallelism o�ered by
MASA can be gauged by the SA_SEL-to-ACTIVATE ratio. For
the nine applications that bene�t more than 30% from MASA,
on average, one SA_SEL was issued for every two ACTIVATEs,
compared to one-in-seventeen for all other applications. For a
few benchmarks, MASA performs slightly worse than SALP-2.
This is because the baseline scheduling algorithm used with
MASA tries to overlap as many ACTIVATEs as possible, and in
the process inadvertently delays the column command of the
most critical request. This delay to the most critical request
slightly degrades performance for these benchmarks.2
Energy E�ciency. We focus on the energy e�ciency of

MASA. MASA utilizes multiple local row bu�ers across sub-
arrays and increases the chance that an access will hit in a
local row bu�er. Speci�cally, MASA increases the row bu�er
hit rate by an average of 12.8% across 32 benchmarks. A row
bu�er hit not only has a lower access latency, but also consu-
mes less energy, since it does not require the power-hungry
operations of activation and, to a lesser degree, precharging.
Consequently, MASA reduces the dynamic energy consump-
tion by 18.6% as shown in Figure 5.

Our ISCA 2012 paper [66] provides a detailed evaluation
of SALP-1, SALP-2, and MASA, including:

2For one benchmark, MASA performs slightly better than “Ideal” due
to interactions with the scheduler.

• Sensitivity studies to (1) the number of channels (1–8),
ranks (1–8), banks (8–64), and subarrays per bank (1–128)
in the memory system; (2) the mapping policy (row-/line-
interleaved); and (3) an open-row or closed-policy (Secti-
ons 9.2 and 9.3 of [66]).

• Multi-core results using an application-aware memory sche-
duling algorithm, where we show signi�cant performance
improvements (Section 9.3 of [66]).

• An analysis of the power and area overhead at both the
DRAM chip and the memory controller (Section 6 of [66]).

5. Related Work
To our knowledge, our ISCA 2012 paper [66] is the �rst to

exploit the existence of subarrays within a DRAM bank and
enable their parallel operation in a cost-e�ective manner. We
propose three schemes that exploit the existence of subarrays
within DRAM banks to mitigate the negative e�ects of bank
con�icts. Related works propose increasing the performance
and energy-e�ciency of DRAM through approaches such
as DRAM module reorganization, changes to DRAM chip
design, and memory controller optimizations. We brie�y
discuss these works here.
DRAMModule Reorganization. Several prior works [3,

4, 151, 164] partition a DRAM rank and the DRAM data bus
into multiple rank subsets, each of which can be operated
independently. While these techniques increase parallelism,
they reduce the width of the data bus of each rank subset,
leading to longer latencies to transfer a 64 byte cache line.
Furthermore, having many rank subsets requires a correspon-
dingly large number of DRAM chips to compose a DRAM
rank, an assumption that does not hold in mobile DRAM
systems where a rank may consist of as few as two chips [95].
Unlike these works, our mechanisms increase memory-level
parallelism [72, 100, 101, 105, 107, 108, 120] without increasing
memory latency or the number of DRAM chips.
Changes to DRAM Design. Cached DRAM organiza-

tions, which have been widely proposed [25, 36, 40, 44, 56,
110, 125, 152, 161], augment DRAM chips with an additional
SRAM cache that can store recently accessed data in order
to reduce memory access latency. However, these proposals
increase the chip area and design complexity of DRAM de-
signs. Furthermore, cached DRAM provides parallelism only
when accesses hit in the SRAM cache, while serializing cache
misses that access the same DRAM bank. Our schemes pa-
rallelize DRAM bank accesses while incurring signi�cantly
lower area and logic complexity.

Fujitsu’s FCRAM [126] and Micron’s RLDRAM [57] pro-
pose to implement shorter local bitlines (i.e., fewer cells per
bitline) that are quickly drivable due to their lower capaci-
tance in order to reduce DRAM latency. However, this signi-
�cantly increases the DRAM die size (30-40% for FCRAM, 40-
80% for RLDRAM) because the large area of sense-ampli�ers
is amortized over a smaller number of cells. Hybrid memory
systems can reduce the die size overhead by using a small
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amount of FCRAM [126] or RLDRAM [57] in conjunction
with conventional DRAM and managing which subset of the
data resides in FCRAM/RLDRAM at any given time to lower
the latency of memory accesses.

A patent by Qimonda [113] proposes the high-level no-
tion of separately addressable sub-banks, but lacks concrete
mechanisms for exploiting the independence between sub-
banks. Yamauchi et al. propose the Hierarchical Multi-Bank
(HMB) [154], which parallelizes accesses to di�erent subar-
rays in a �ne-grained manner. However, this scheme adds
complex logic to all subarrays.

Udipi et al. [147] propose two techniques (SBA and SSA) to
lower DRAM power. In SBA, global wordlines are segmented
and controlled separately so that tiles in the horizontal di-
rection are not activated in lockstep, but selectively. However,
this increases DRAM chip area by 12-100% [147]. SSA com-
bines SBA with chip-granularity rank-subsetting to achieve
even higher energy savings. Both SBA and SSA increase
DRAM latency, more signi�cantly so for SSA (due to rank-
subsetting).

When transitioning from serving a write request to serving
a read request, and vice versa [18, 73, 137], a DRAM chip
experiences bubbles in the data bus, called the bus-turnaround
penalty (tWTR and tRTW). During the bus turnaround penalty,
Chatterjee et al. [18] propose to internally “prefetch” data for
subsequent read requests into extra registers that are added
to the DRAM chip.

Other works propose new DRAM designs that are capa-
ble of reducing memory latency of conventional DRAM [3,
4, 14, 16, 19, 36, 40, 44, 56, 75, 76, 77, 78, 79, 86, 94, 112, 118, 126,
133, 135, 151, 164] as well as non-volatile memory [68, 69, 70,
71, 90, 91, 121, 122, 155]. Previous works on bulk data trans-
fer [13,16,33,34,47,51,53,84,127,129,158,163] and in-memory
computation [1, 2, 5, 9, 11, 12, 23, 26, 27, 28, 29, 30, 32, 35, 42, 43,
55, 60, 67, 88, 114, 116, 117, 119, 128, 130, 131, 132, 136, 144, 157]
can be used improve DRAM bandwidth utilization and lower

the number of costly data movements between CPU cores
and DRAM. All these works can bene�t from SALP as the
underlying memory substrate.
Memory Controller Optimizations. To reduce bank

con�icts and increase row bu�er locality, Zhang et al. [160]
propose to randomize the bank address of memory requests
by XOR hashing. Sudan et al. [142] propose to improve row
bu�er locality by placing frequently-referenced data from dif-
ferent rows together in the same row bu�er. Both proposals
can be combined with our mechanisms to further improve
parallelism and row bu�er locality.

Prior works propose memory scheduling algorithms for
CPUs (e.g., [24, 31, 48, 58, 59, 64, 65, 72, 73, 74, 82, 96, 97, 98, 99,
106, 107, 111, 137, 138, 139, 140, 141, 153, 162]), GPUs (e.g., [7,
8, 20, 50, 52]), and other systems (e.g., [148, 149, 162]) that
prioritize certain favorable requests in the memory controller
to improve system performance and/or fairness. Subarrays
expose more parallelism to the memory controller, increasing
the controller’s �exibility to schedule requests. Our subarray-
level parallelism mechanisms can be combined with many of
these schedulers to provide increased performance bene�ts.
Enabling higher bene�t from SALP by designing SALP-aware
memory scheduling algorithms is a promising open research
topic.

6. Signi�cance and Long-Term Impact
We believe SALP will have long-term impact because: i) it

tackles a critical problem, bank con�icts and memory paral-
lelism, whose importance will increase in the future; and ii)
the memory substrate it provides can further be leveraged to
enable other novel optimizations in the memory subsystem.
In fact, as Section 6.2 shows, there has been a signi�cant
amount of work that built upon our ISCA 2012 paper in the
past six years.

6.1. Trends and Opportunities in Favor of SALP
Worsening Bank Con�icts. Future many-core systems

with large numbers of cores and accelerators (e.g., bandwidth-
hungry GPUs) will exert increasingly larger amount of pres-
sure on the memory subsystem. On the other hand, naively
adding more DRAM banks is di�cult without incurring high
costs, high energy or reduced performance. Therefore, as
more and more memory requests contend to access a limited
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er of banks, bank con�icts will occur with increasing like-
lihood and severity. SALP is a cost-e�ective mechanism to
alleviate the bank con�ict problem by exploiting the existing
subarrays in DRAM at low cost.

Challenges in DRAM Scaling. DRAM process scaling
is becoming more di�cult due to increased manufacturing
complexity/cost and reduced cell reliability [6, 49, 54, 63, 102,
103, 104, 109]. As a result, it is critical to examine alternative
ways of improving memory performance while still maintai-
ning low cost. SALP is a new cost-e�ective DRAM design
whose advantages are mostly orthogonal to the advantages of
DRAM process scaling. Therefore, SALP can further improve
the performance and the energy-e�ciency of future DRAM.
In fact, a recent industry proposal to enhance the DDR stan-
dard incorporates one of our SALP mechanisms [54]. This
work by Samsung and Intel quantitatively shows that SALP is
an e�ective mechanism to tolerate increasing write latencies
in DRAM, corroborating the results in our ISCA 2012 paper
on SALP-2.

A Building Block for New Optimizations. SALP ena-
bles new DRAM optimizations that were not possible be-
fore. We discuss three potential examples. First, exploiting
subarray-level parallelism can potentially mitigate DRAM
unavailability during refresh by parallelizing refreshes in one
subarray with accesses to another subarray within the same
bank. Work by Chang et al. [15], which builds on our ISCA
2012 paper, shows that such parallelization can eliminate
most of the performance overhead of refresh. Second, sub-
arrays provide an additional degree of freedom in mapping
the physical address space onto di�erent levels of the DRAM
hierarchy (channels, ranks, banks, subarrays, rows, columns).
Thus, they enable more �exibility in performance and energy
optimization via data mapping. Third, DRAM can be divided
among di�erent applications (to provide quality-of-service)
at the �ner-grained partitions of subarrays that are less vul-
nerable to capacity and bandwidth fragmentation. As we
discuss, some research has explored these approaches (also
see Section 6.2). We expect even more future research will tap
into these and other opportunities that can use our proposed
SALP substrate as a building block for other optimizations.

Widely Applicable Substrate. SALP is a general-
purpose substrate that is also applicable to embedded DRAM
(eDRAM) [10] and 3D die-stacked DRAM (3D-DRAM), both
of which consist of subarrays [75, 83]. For example, eDRAM
is known to be vulnerable to the write-recovery penalty [22],
since it is typically used as the last-level cache and thus ex-
posed to higher amounts of write tra�c. SALP can increase
the availability of eDRAM by hiding the write-recovery pen-
alty. In addition, SALP may be applied to future emerging
memory technologies as long as their banks are organized
hierarchically [69, 92], similar to how a DRAM bank consists
of subarrays.

New Research Opportunities. SALP creates new oppor-
tunities for exploiting and enhancing the parallelism and the
locality of the memory subsystem.
• Enhancing Memory-Level Parallelism. To tolerate the long

latency of DRAM, computer architects often design me-
chanisms that perform multiple memory requests in a con-
current manner [72, 100, 101, 105, 107, 108, 120, 145]. Such
e�orts may become ine�ective when requests access the
same DRAM bank and, as a consequence, are not actually
served in parallel [107]. SALP, on the other hand, paralleli-
zes requests to di�erent subarrays within the same bank. In
this regard, we believe SALP not only enhances previous
approaches to memory-level parallelism, but also creates
opportunities for developing new techniques that preserve
memory-level parallelism in a subarray-aware manner.

• Enhancing Memory Locality. Memory access patterns that
exhibit high locality bene�t greatly from a DRAM bank’s
row bu�er where the last accessed row is cached (4–8kB).
While a DRAM bank has multiple row bu�ers across multi-
ple subarrays, an existing DRAM system exposes only one
row bu�er at a time in a bank and, as a result, is prone to
row bu�er thrashing. In contrast, SALP allows a DRAM
bank to utilize multiple row bu�ers concurrently. This
enables the opportunity for new techniques that can take
advantage of the multiple row bu�ers, whether they be
for streaming/strided accesses (demand or prefetch), vector
processing, or GPUs.

6.2. Works Building on SALP
The introduction of the notion of subarrays and their

microarchitecture has enabled the use of the subarrays
in many works. These include RowClone [129], TL-
DRAM [78], DSARP [15], DIVA-DRAM [76], LISA [16],
ChargeCache [37], Multiple Clone Row DRAM [21], Am-
bit [128, 130], ERUCA [87], and other works on improving
DRAM [84, 135, 156, 159]. Some of these works exploit subar-
ray level parallelism, e.g., DSARP [15] reduces the overhead
of a DRAM refresh by decoupling independent subarrays
from the subarray that is being refreshed. This decoupling
allows DRAM to service memory accesses while a subarray
is being refreshed. Others make changes to subarrays to im-
prove an aspect, e.g., TL-DRAM [78] creates two di�erent
latency regions in a subarray to improve DRAM latency at
low cost.

7. Conclusion
Our ISCA 2012 paper [66] introduces three new mecha-

nisms that exploit the existence of subarrays within a DRAM
bank to mitigate the performance impact of bank con�icts.
Our mechanisms are built on the key observation that subar-
rays within a DRAM bank operate largely independently and
have their own row bu�ers. Hence, the latencies of accesses
to di�erent subarrays within the same bank can potentially
be overlapped to a large degree. Our three mechanisms take
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advantage of this fact and progressively increase the inde-
pendence of operation of subarrays by making small modi�-
cations to the DRAM chip. Our most sophisticated scheme,
MASA, enables i) multiple subarrays to be accessed in paral-
lel, and ii) multiple row bu�ers to remain activated at the
same time in di�erent subarrays, thereby improving both
memory-level parallelism and row bu�er locality. We show
that our schemes signi�cantly improve system performance
on both single-core and multi-core systems on a variety of
workloads while incurring little (<0.15%) or no area overhead
in the DRAM chip. Our techniques can also improve memory
energy e�ciency.

We conclude that exploiting subarray-level parallelism in
a DRAM bank can be a promising and cost-e�ective method
for overcoming the negative e�ects of DRAM bank con�icts,
without paying the large cost of increasing the number of
banks in the DRAM system. Signi�cant recent work has
built upon our ISCA 2012 paper, and we expect many other
new works can exploit the new substrate we have enabled to
achieve even bigger goals and higher bene�ts.
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This article summarizes the idea of “refresh–access paralle-
lism,” which was published in HPCA 2014 [17], and examines
the work’s signi�cance and future potential. The overarching
objective of our HPCA 2014 paper is to reduce the signi�cant
negative performance impact of DRAM refresh with intelligent
memory controller mechanisms.
To mitigate the negative performance impact of DRAM re-

fresh, our HPCA 2014 paper proposes two complementary me-
chanisms, DARP (Dynamic Access Refresh Parallelization) and
SARP (Subarray Access Refresh Parallelization). The goal is
to address the drawbacks of state-of-the-art per-bank refresh
mechanism by building more e�cient techniques to parallelize
refreshes and accesses within DRAM. First, instead of issuing
per-bank refreshes in a round-robin order, as it is done today,
DARP issues per-bank refreshes to idle banks in an out-of-order
manner. Furthermore, DARP proactively schedules refreshes
during intervals when a batch of writes are draining to DRAM.
Second, SARP exploits the existence of mostly-independent sub-
arrays within a bank. With minor modi�cations to DRAM
organization, it allows a bank to serve memory accesses to an
idle subarray while another subarray is being refreshed. Our
extensive evaluations on a wide variety of workloads and sys-
tems show that our mechanisms improve system performance
(and energy e�ciency) compared to three state-of-the-art re-
fresh policies, and their performance bene�ts increase as DRAM
density increases.

1. Introduction
Modern main memory is predominantly built using dy-

namic random access memory (DRAM) cells. A DRAM cell
consists of a capacitor to store one bit of data as electrical
charge. The capacitor leaks charge over time, causing stored
data to change. As a result, DRAM requires an operation
called refresh that periodically restores electrical charge in
DRAM cells to maintain data integrity.

There are two major ways refresh operations are perfor-
med in modern DRAM systems: all-bank refresh (or, rank-level
refresh) and per-bank refresh. These methods di�er in what
levels of the DRAM hierarchy refresh operations tie up. A mo-
dern DRAM system is organized as a hierarchy of ranks and
banks. Each rank is composed of multiple banks. Di�erent
ranks and banks can be accessed independently. Each bank
contains a number of rows (e.g., 16-32K in modern chips).
Because successively refreshing all rows in a DRAM chip
would cause very high delay by tying up the entire DRAM

device, modern memory controllers issue a number of refresh
commands that are evenly distributed throughout the refresh
interval [38, 40, 73, 74, 93]. Each refresh command refreshes a
small number of rows.1 The two common refresh methods
of today di�er in where in the DRAM hierarchy the rows
refreshed by a refresh command reside.

In all-bank refresh (REFab), employed by both commodity
DDR and LPDDR DRAM chips, a refresh command operates
at the rank level: it refreshes a number of rows in all banks
of a rank concurrently. This causes every bank within a rank
to be unavailable to serve memory requests until the refresh
command is complete. Therefore, it degrades performance
signi�cantly [4, 17, 74, 88, 93, 96, 115].

An alternative method is to perform refresh operations
at the bank level, called per-bank refresh (REFpb), which is
currently supported in LPDDR DRAM used in mobile plat-
forms [40]. In contrast to REFab, REFpb enables a bank to be
accessed while another bank is being refreshed, alleviating
part of the negative performance impact of refresh. Figure 1
shows pictorially how REFpb provides performance bene�ts
over REFab from parallelization of refreshes and reads. REFpb
reduces refresh interference on reads by issuing a refresh to
Bank 0 while Bank 1 is serving reads. Subsequently, it refres-
hes Bank 1 while allowing Bank 0 to serve a read. As a result,
REFpb alleviates part of the performance loss due to refreshes
by enabling parallelization of refreshes and accesses across
banks.

Saved Cycles in REFpb
READ Time

Time

Bank0

Bank1

Per-Bank 
Refresh READ READ

REFpb

REFpb

READ Time

Time

Bank0

Bank1

All-Bank 
Refresh

REFab

REFab READ READ

READ Time

Time

Bank0

Bank1
No-Refresh

READ READ

Figure 1: Service timelines of all-bank and per-bank refresh.
Adapted from [17].

Unfortunately, there are two shortcomings of per-bank
refresh. First, refreshes to di�erent banks are scheduled in
a strict round-robin order, as speci�ed by the LPDDR stan-
dard [40]. Using this static policy may force a busy bank to
be refreshed, delaying the memory requests queued in that

1The time between two refresh commands is �xed to an amount that is
dependent on the DRAM type and temperature. We refer the reader to our
prior works [17, 18, 19, 20, 30, 31, 49, 52, 53, 54, 55, 56, 67, 68, 69, 70, 71, 73, 74, 96,
107, 108] for a detailed background on DRAM.
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bank, while other idle banks are available to be refreshed.
Second, a bank that is refreshing cannot concurrently serve
memory requests. Hence, requests to a refreshing bank get
delayed due to a “refresh–access bank con�ict.”

We show that the negative performance impact of DRAM
refresh becomes exacerbated as DRAM density increases in
the future. Figure 2 shows the average performance degrada-
tion of all-bank/per-bank refresh compared to ideal baseline
without any refresh.2 Although REFpb performs slightly better
than REFab, the performance loss due to refresh is still signi-
�cant, especially as the density grows (16.6% loss at 32Gb).
Therefore, the goal this work is to provide practical mecha-
nisms to overcome the aforementioned two shortcomings to
mitigate the performance overhead of DRAM refresh.
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Figure 2: Performance loss due to all-bank refresh (REFab)
and per-bank refresh (REFpb). Reproduced from [17].

2. Parallelizing Refreshes with
Memory Accesses

We propose two mechanisms, Dynamic Access Refresh Pa-
rallelization (DARP) and Subarray Access Refresh Paralleli-
zation (SARP), that hide refresh latency by parallelizing re-
freshes with memory accesses across banks and subarrays,
respectively. In this section, we present a brief overview of
these two new mechanisms. We refer the reader to Section 4
of our HPCA 2014 paper [17] for more detail on the algorithm
and implementation.

2.1. Dynamic Access Refresh Parallelization
(DARP)

DARP is a new refresh scheduling policy that consists of
two components. The �rst component is out-of-order per-
bank refresh, which enables the memory controller to specify
a particular (idle) bank to be refreshed as opposed to the stan-
dard per-bank refresh policy that refreshes banks in a strict
round-robin order. With out-of-order refresh scheduling,
DARP can avoid refreshing (non-idle) banks with pending
memory requests, thereby avoiding the refresh latency for
those requests. The second component is write-refresh paral-
lelization that proactively issues REFpb to a bank while DRAM
is draining write batches to other banks, thereby overlapping
refresh latency with write request latencies.
2.1.1. DARP: Out-of-order Per-bank Refresh. A major
limitation of the current REFpb mechanism is that it disallows
a memory controller from specifying which bank to refresh.
Instead, a DRAM chip has internal logic that strictly refres-
hes banks in a sequential round-robin order. Because DRAM

2Our detailed methodology is described in Section 5 of our full pa-
per [17].

lacks visibility into a memory controller’s state (e.g., request
queues’ occupancy), simply using an in-order REFpb policy
can unnecessarily refresh a bank that has multiple pending
requests to be served when other banks may be free to serve
a refresh command. To address this problem, we propose the
�rst component of DARP, out-of-order per-bank refresh. The
idea is to remove the bank selection logic from DRAM and
make it the memory controller’s responsibility to determine
which bank to refresh. As a result, the memory controller can
refresh an idle bank to enhance parallelization of refreshes
and accesses, avoiding refreshing a bank that has pending
requests as much as possible.

Due to REFpb reordering, the memory controller needs to
guarantee that deviating from the original in-order refresh
schedule still preserves data integrity. To achieve this, we take
advantage of the fact that the contemporary DDR JEDEC stan-
dard [39] provides some refresh scheduling �exibility. The
standard allows up to eight all-bank refresh commands to
be issued late (postponed) or early (pulled-in). This implies
that each bank can tolerate up to eight REFpb commands to
be postponed or pulled in. Therefore, the memory control-
ler ensures that reordering REFpb preserves data integrity by
limiting the number of postponed or pulled-in commands.
Our HPCA 2014 paper [17] describes our new algorithm for
out-of-order per-bank refresh in detail.

2.1.2. DARP:Write-refresh Parallelization. The key idea
of the second component of DARP is to actively avoid refresh
interference on read requests and instead enable more pa-
rallelization of refreshes with write requests. We make two
observations that lead to our idea. First, write batching in
DRAM [65] creates an opportunity to overlap a refresh opera-
tion with a sequence of writes, without interfering with reads.
A modern memory controller typically bu�ers DRAM writes
and drains them to DRAM in a batch to amortize the bus tur-
naround latency, also called tWTR or tRTW [39,56,65], which
is the additional latency incurred from switching between
serving writes to reads and vice versa. Typical systems start
draining writes when the write bu�er occupancy exceeds a
certain threshold until the bu�er reaches a low watermark.
This draining time period is called the writeback mode, during
which no rank within the draining channel can serve read
requests [22, 65, 116]. Second, DRAM writes are usually not
latency-critical because processors do not stall to wait for
them: DRAM writes are due to dirty cache line evictions from
the last-level cache [65, 105, 116].

Given that writes are not latency-critical and are drained
in a batch for some time interval, they are more �exible to
be scheduled with minimal performance impact. We propose
the second component of DARP, write-refresh parallelization,
that attempts to maximize parallelization of refreshes and
writes. Write-refresh parallelization selects the bank with the
minimum number of pending demand requests (both read
and write) and preempts the bank’s writes with a per-bank

2
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refresh. As a result, the bank’s refresh operation is hidden by
the writes in other banks.

Figure 3 shows the service timeline and bene�ts of
write-refresh parallelization. There are two scenarios when
the scheduling policy parallelizes refreshes with writes to in-
crease DRAM’s availability to serve read requests. Figure 3a
shows the �rst scenario when the scheduler postpones issuing
a REFpb command to avoid delaying a read request in Bank
0 and instead serves the refresh in parallel with writes from
Bank 1, e�ectively hiding the refresh latency in the writeback
mode. Even though the refresh can potentially delay indivi-
dual write requests during writeback mode, the delay does
not impact performance as long as the length of writeback
mode remains the same as in the baseline due to longer prio-
ritized write request streams in other banks. In the second
scenario shown in Figure 3b, the scheduler proactively pulls
in a REFpb command early in Bank 0 to fully hide the refresh
latency from the later read request while Bank 1 is draining
writes during the writeback mode (note that the read request
cannot be scheduled during the writeback mode).
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Figure 3: Service timeline of a per-bank refresh operation
along with read and write requests using di�erent refresh
scheduling policies. Reproduced from [17].

2.2. Subarray Access Refresh Parallelization
(SARP)

To tackle the problem of refreshes and accesses colliding
within the same bank, we propose SARP (Subarray Access
Refresh Parallelization), which exploits the existence of sub-
arrays [56] within a bank. A DRAM bank is sub-divided into
multiple subarrays [19,23,31,56,67,69,70,76,106,107,108,110,
120, 125, 126], as shown in Figure 4. A subarray consists of
a 2-D array of cells organized in rows and columns.3 Each
DRAM cell has two components: 1) a capacitor that stores one

3Physically, DRAM has 32 to 128 subarrays, which varies depending
on the number of rows (typically 16-64K) within a bank. This work divides
them into 8 subarray groups. We refer to a subarray group as a subarray [56],
without loss of generality.

bit of data as electrical charge, and 2) an access transistor that
connects the capacitor to a wire called bitline that is shared
by a column of cells. The access transistor is controlled by a
wire called wordline that is shared by a row of cells. When a
wordline is raised to VDD , a row of cells becomes connected
to the bitlines, allowing reading or writing data to the con-
nected row of cells. The component that reads (i.e., senses)
or writes a bit of data on a bitline is called a sense ampli�er,
shared by an entire column of cells. A row of sense ampli�ers
is also called a row bu�er. All subarrays’ row bu�ers are con-
nected to an I/O bu�er [22, 48, 68, 87] that reads and writes
data from/to the bank’s I/O bus.
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Figure 4: DRAM bank and subarray organization. Reprodu-
ced from [17].

The key observation leading to our second mechanism,
SARP, is that a refresh operation is constrained to only a few
subarrays within a bank whereas the other subarrays and
the I/O bus remain idle during the process of refreshing. The
reasons for this are two-fold. First, refreshing a row requires
only its subarray’s sense ampli�ers that restore the charge in
the row without transferring any data through the I/O bus.
Second, each subarray has its own set of sense ampli�ers that
are not shared with other subarrays.

Based on this observation, SARP’s key idea is to allow me-
mory accesses to an idle subarray while other subarrays are
refreshing. Figure 5 shows the service timeline and the perfor-
mance bene�t of our mechanism. As shown, SARP reduces
the read latency by performing the read operation to Subar-
ray 1 in parallel with the refresh in Subarray 0. Compared
to DARP, SARP provides the following advantages: 1) SARP
is applicable to both all-bank and per-bank refresh, 2) SARP
enables memory accesses to a refreshing bank, which cannot
be achieved with DARP, and 3) SARP also utilizes bank-level
parallelism [66, 91] by serving memory requests to multiple
banks in parallel while the entire rank is under refresh.

SARP requires modi�cations to 1) the DRAM architecture,
because two distinct wordlines in di�erent subarrays need
to be raised simultaneously (to accommodate parallel refresh
and access to the two subarrays), which cannot be done in
today’s DRAM due to the shared peripheral logic among
subarrays; and 2) the memory controller, such that it can
keep track of which subarray is under refresh in order to send
the appropriate memory request to an idle subarray. Section
4.3 of our HPCA 2014 paper [17] describes these changes in
detail. To evaluate the bene�ts and die area overhead of SARP,
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Figure 5: Service timeline of a refresh and a read request to
two di�erent subarrays within the same bank. Reproduced
from [17].

we use 8 subarrays per bank and 8 banks per DRAM chip.
Based on this con�guration, we calculate the area overhead
of SARP using parameters from a Rambus DRAM model at
55nm technology [101], and �nd it to be 0.71% in a 2Gb DDR3
DRAM chip with a die area of 73.5mm2. The power overhead
of the additional components is negligible compared to the
entire DRAM chip.

3. Evaluation
We brie�y summarize our results on an eight-core system.

Section 6 of our HPCA 2014 paper provides detailed evaluati-
ons on a wide variety of systems and sensitivity studies. We
evaluate the performance of our proposed mechanisms on an
eight-core system using Ramulator [52, 103], an open-source
cycle-level DRAM simulator, driven by CPU traces generated
from Pin [77]. We use benchmarks from SPEC CPU2006 [113],
STREAM [83], TPC [118], and a microbenchmark with random-
access behavior similar to HPCC RandomAccess [34]. Table 1
summarizes the con�guration of our evaluated system.

Processor 8 cores, 4GHz, 3-wide issue, 8 MSHRs/core,
128-entry instruction window

Last-level
Cache

64B cache-line, 16-way associative,
512KB private cache-slice per core

Memory
Controller

64/64-entry read/write request queue, FR-FCFS [102],
writes are scheduled in batches [22, 65, 116] with
low watermark = 32, closed-row policy [22, 54, 55, 102]

DRAM DDR3-1333 [86], 2 channels, 2 ranks per channel,
8 banks/rank, 8 subarrays/bank, 64K rows/bank, 8KB rows

Refresh
Settings

tRFCab = 350/530/890ns for 8/16/32Gb DRAM chips,
tREFIab = 3.9µs, tRFCab-to-tRFCpb ratio = 2.3

Table 1: Evaluated system con�guration. Adapted from [17].

Figure 6 shows the average system performance (left) and
energy per DRAM access (right) of our �nal mechanism, DS-
ARP, the combination of DARP and SARP, compared to two
baseline refresh schemes and an ideal scheme without any re-
freshes. We measure system performance with the commonly-
used weighted speedup (WS) [26, 109] metric. The percentage
numbers on top of the bars are the performance improvement
of DSARP over REFab.

We make two observations. First, DSARP consistently im-
proves system performance and energy e�ciency over prior
refresh schemes, capturing most of the bene�t of the ideal sy-
stem with no refresh. Second, as DRAM density (i.e., refresh
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Figure 6: Average system performance and energy consump-
tion due to di�erent refresh mechanisms.

latency) increases, the performance bene�t of DSARP gets
larger. We conclude that DSARP is an e�ective mechanism to
alleviate the negative performance impact of DRAM refresh.

3.1. Comparison to DDR4
Fine Granularity Refresh

DDR4 DRAM supports a new refresh mode called �ne gra-
nularity refresh (FGR) in an attempt to mitigate the increasing
refresh latency (tRFCab) [39]. FGR trades o� shorter tRFCab
with a faster refresh rate (1/tREFIab) that increases by either
2x or 4x. Figure 7 shows the e�ect of FGR in comparison
to REFab, adaptive refresh policy (AR) [88], and DSARP. 2x
and 4x FGR actually reduce average system performance by
3.9%/4.0%/4.3% and 8.1%/13.7%/15.1% compared to REFab with
8/16/32Gb densities, respectively. As the refresh rate incre-
ases by 2x/4x (higher refresh penalty), tRFCab does not scale
down with the same constant factors. Instead, tRFCab reduces
by 1.35x/1.63x with 2x/4x higher rate [39], thus increasing the
worst-case refresh latency by 1.48x/2.45x. This performance
degradation due to FGR has also been observed in Mukundan
et al. [88]. AR [88] dynamically switches between 1x (i.e.,
REFab) and 4x refresh modes to mitigate the downsides of FGR.
AR performs slightly worse than REFab (within 1%) for all den-
sities. Because using 4x FGR greatly degrades performance,
AR can only mitigate the large loss from the 4x mode and
cannot improve performance over REFab. On the other hand,
DSARP is a more e�ective mechanism to tolerate the long
refresh latency than both FGR and AR as it overlaps refresh
latency with access latency without increasing the refresh
rate.
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We conclude that DSARP is an e�ective mechanism that
can e�ectively tolerate and hide longer refresh latencies,
which are expected in future DRAM devices as DRAM techno-
logy scales to even smaller feature sizes.
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4. Related Work

To our knowledge, this is the �rst work to comprehensi-
vely study the e�ect of per-bank refresh and propose 1) a
refresh scheduling policy built on top of per-bank refresh
and 2) a mechanism that achieves parallelization of refresh
operations and memory accesses within a refreshing bank.
We discuss prior works that mitigate the negative e�ects of
DRAM refresh and compare them to our mechanisms.
Retention-Aware Refresh. Various works (e.g., [1, 3, 4, 5,

27,50,72,74,94,95,96,98,119]) propose mechanisms to reduce
unnecessary refresh operations by taking advantage of the
fact that di�erent DRAM cells have widely di�erent retention
times [51,73,96]. These works assume that the retention time
of DRAM cells can be accurately pro�led and they depend on
having this accurate pro�le to guarantee data integrity [73].
However, as shown in Liu et al. [73] and later analyzed in
detail by several other works [44, 45, 46, 47, 96, 98], accura-
tely determining the retention time pro�le of DRAM is an
outstanding research problem due to the Variable Retention
Time (VRT) and Data Pattern Dependence (DPD) phenomena,
which can cause the retention time of a cell to �uctuate over
time. As such, retention-aware refresh techniques need to
overcome the pro�ling challenges to be viable. A recent work,
AVATAR [98], proposes a retention-aware refresh mechanism
that addresses VRT by using ECC chips, which introduces
extra cost. In contrast, our refresh mitigation techniques ena-
ble parallelization of refreshes and accesses without relying
on cell data retention pro�les or ECC, thus providing high
reliability at low cost.
Refresh Scheduling. Stuecheli et al. [115] propose elastic

refresh that postpones refreshes by a time delay that varies ba-
sed on the number of postponed refreshes and the predicted
rank idle time to avoid interfering with demand requests.
Elastic refresh has two shortcomings. First, it becomes less
e�ective when the average rank idle period is shorter than
tRFCab as the refresh latency cannot be fully hidden in that pe-
riod. This occurs especially with 1) more memory-intensive
workloads that inherently have less idleness and 2) higher
density DRAM chips that have higher tRFCab. Second, elastic
refresh incurs more refresh latency when it incorrectly pre-
dicts a time period as idle when the time period actually has
pending requests. In contrast, our mechanisms parallelize
refresh operations with accesses even if there is no idle period
and therefore outperform elastic refresh.

Ishii et al. [37] propose a write scheduling policy that pri-
oritizes write draining over read requests in a rank while
another rank is refreshing (even if the write queue has not
reached the threshold to trigger write mode). This techni-
que is only applicable in multi-ranked memory systems. Our
mechanisms are also applicable to single-ranked memory sy-
stems by enabling parallelization of refreshes and accesses at
the bank and subarray levels, and they can be combined with
Ishii et al. [37].

Mukundan et al. [88] propose scheduling techniques (in ad-
dition to adaptive refresh discussed in Section 3.1) to address
the problem of command queue seizure, whereby a command
queue gets �lled up with commands to a refreshing rank,
blocking commands to another non-refreshing rank. In our
work, we use a di�erent memory controller design that does
not have command queues, similarly to prior work [32]. Our
controller generates a command for a scheduled request right
before the request is sent to DRAM instead of pre-generating
the commands and queuing them up. Thus, our baseline de-
sign does not su�er from the problem of command queue
seizure.

Subarray-Level Parallelism (SALP). Kim et al. [56] pro-
pose SALP to reduce bank serialization latency by enabling
multiple accesses to di�erent subarrays within a bank to pro-
ceed in a pipelined manner. In contrast to SALP, our mecha-
nism (SARP) parallelizes refreshes and accesses to di�erent
subarrays within the same bank. Therefore, SARP exploits
the existence of subarrays for a di�erent purpose and in a
di�erent way from SALP. We reduce the sharing of the pe-
ripheral circuits for refreshes and accesses, not for arbitrary
accesses. As such, our implementation is not only di�erent,
but also less intrusive than SALP: SARP does not require
new DRAM commands and timing constraints. We note
that several other works exploit the existence of subarrays
for various performance and energy improvement purpo-
ses [19, 67, 69, 70, 106, 107, 108]. We refer the reader to the
SALP paper in this very same issue for a detailed treatment
of SALP [57].

DRAM Refresh Architecture. Several other works pro-
pose di�erent refresh architectures. Nair et al. [93] propose
Refresh Pausing, which pauses a refresh operation to serve
pending memory requests when the refresh causes con�icts
with the requests. Although our work already signi�cantly
reduces con�icts between refreshes and memory requests
by enabling parallelization, it can be combined with Refresh
Pausing to address rare con�icts. Tavva et al. [117] propose
EFGR, which exposes non-refreshing banks during an all-
bank refresh operation so that a few accesses can be sche-
duled to those non-refresh banks during the refresh opera-
tion. However, such a mechanism does not provide addi-
tional performance and energy bene�ts over per-bank re-
fresh, which we use to build our mechanism in this disser-
tation. Isen and John [36] propose ESKIMO, which modi-
�es the ISA to enable memory allocation libraries to skip
refreshes on memory regions that do not a�ect programs’
execution. ESKIMO is orthogonal to our mechanism, and its
modi�cation has high system-level complexity by requiring
system software libraries to make refresh decisions. Other
techniques (e.g., heterogeneous-reliability memory [81] or
Flikker [75]) can eliminate or reduce refreshes in parts of
memory. Our techniques are complementary to such refresh
elimination/reduction techniques.
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eDRAM Concurrent Refresh. Kirihata et al. [58] pro-
pose a mechanism to enable a bank to refresh independently
while another bank is being accessed in embedded DRAM
(eDRAM). Our work di�ers from [58] in two major ways. First,
unlike SARP, [58] parallelizes refreshes only across banks,
not within each bank. Second, there are signi�cant di�eren-
ces between DRAM and eDRAM architectures, which make
it non-trivial to apply [58]’s mechanism directly to DRAM.
In particular, eDRAMs have no standardized timing/power
integrity constraints and access protocol, making it simpler
for each bank to independently manage its refresh schedule.
In contrast, refreshes in DRAM need to be managed by the
memory controller to ensure that parallelizing refreshes with
accesses does not violate other constraints. Other works
(e.g., [2, 25]) exploit the fact that eDRAM is used as a cache
to avoid refresh operations.

5. Signi�cance
In this section, we describe three trends in the current and

future DRAM subsystem that will likely make our proposed
solutions more important and attractive in the future, and
examine the work’s impact on future research.

5.1. Long-Term Impact
Worsening Retention Time. As the DRAM cell feature

size continues to scale, the cells’ retention time will likely
become shorter, exacerbating the refresh penalty [43, 89, 90].
When the surface area of cells gets smaller with further sca-
ling, the depth/height of the cell needs to increase to maintain
the same amount of capacitance that can be stored in a cell. In
other words, the aspect ratio (the ratio of a cell’s depth to its
diameter) needs to be increased to maintain the capacitance.
However, many works have shown that fabricating high as-
pect ratio cells is becoming more di�cult due to processing
technology [33, 43, 82]. Therefore, the cells’ capacitance (and,
thus, their retention time) may potentially decrease with furt-
her scaling, increasing the refresh frequency. Using DSARP
is a cost-e�ective way to alleviate the increasing negative
impact of refresh as our results show [17]. Note that errors
have started appearing in DRAM chips due to aggressive
technology scaling [53,85,89,104,111,112]. The RowHammer
problem is a prime example of DRAM errors that have been
slipping into the �eld [53, 89], and one solution for it is to
increase the refresh rate [53,89]. Such solutions to technology
scaling issues clearly exacerbate the refresh problem. The-
refore, DSARP can alleviate the performance impact under
these conditions.
New DRAM Standards with Flexible Per-Bank Re-

fresh. According to newer DRAM standards, the industry is
already in the process of implementing a similar concept of
enabling the memory controller to determine which bank to
refresh. In particular, the two standards are: 1) HBM [41, 71]
(October 2013, after the submission of our HPCA 2014 pa-
per [17]) and 2) LPDDR4 [42] (August 2014). Both stan-
dards have incorporated a new refresh mode that allows

per-bank refresh commands to be issued in any order by
the memory controllers. Neither standard speci�es a prefer-
red order which the memory controller needs to follow for
issuing refresh commands.

Our work has done extensive evaluations to show that our
proposed per-bank refresh scheduling policy, DARP, outper-
forms a naive round-robin policy by opportunistically refres-
hing idle banks. As a result, our policy can be potentially
adopted in the future processors that use HBM or LPDDR4
DRAM.
Increasing Number of Subarrays. As DRAM density

keeps increasing, more rows of cells are added within each
DRAM bank. To avoid the disadvantage of increasing sensing
latency due to longer bitlines in subarrays [18, 70], more
subarrays will likely be added within a single bank instead of
increasing the size of each subarray. Our proposed refreshing
scheme at the subarray level, SARP, becomes more e�ective
at mitigating refresh as the number of subarrays increases
because the probability of a refresh and a demand request
colliding at the subarray level decreases with more subarrays.

5.2. Potential Research Impact
Impact on Recent Research Work. To our knowledge,

this is the �rst work to comprehensively study and extend the
concept of per-bank refresh to DDRx DRAM chips. Several
works [5, 28, 117] use our per-bank refresh mechanism as
a baseline for comparison. Kotra et al. [60] propose a new
refresh mechanism to further enhance our per-bank refresh
mechanism. Kong et al. [59] extend our per-bank refresh idea
to eDRAM.
FutureResearchDirections. This work will likely create

new research opportunities for studying refresh scheduling
policies at di�erent dimensions (i.e., bank and subarray level)
to mitigate worsening refresh overheads. Among many po-
tential opportunities, one potential way to further reduce the
refresh latency (i.e., tRFCab/pb) is to trade o� higher refresh
rate (i.e., tREFI ), which is currently supported as �ne granu-
larity refresh in DDR4 DRAM for all-bank refresh. In this
work, we assume a �xed refresh rate for per-bank refresh
as it is speci�ed in the standard. Therefore, a new research
question that our work raises is how can one combine per-bank
refresh with �ne granularity refresh and design a new sche-
duling policy for that? We think that DARP can inspire new
scheduling policies to improve the performance of existing
DRAM designs.
Applicability to Other Memory Technologies. Re-

fresh is used in NAND �ash memory to improve lifetime [12,
13, 14, 78], and can be used as a general solution to several
other NAND �ash reliability problems that are characterized
and discussed in various recent works [6, 7, 8, 9, 10, 11, 15, 16,
79, 80]. We believe the idea of DSARP and refresh scheduling
can also be applied to refresh mechanisms in �ash memory,
and this can be especially bene�cial toward the end of the
lifetime of �ash memory when the device is refreshed more
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frequently [7,8,9,13]. We refer the reader to our recent works
to understand the mechanisms for refresh in modern �ash
memories [7, 8, 9].

We believe the principles of DSARP are also applica-
ble to emerging memory technologies [84], e.g., phase-
change memory (PCM) [62, 63, 64, 99, 100, 122, 123, 124], STT-
MRAM [21, 29, 61, 92], or RRAM/memristors [24, 114, 121].
For example, PCM su�ers from resistance drift [35, 97, 122],
where the resistance used to represent the value becomes
higher over time (and eventually can introduce a bit error).
To mitigate resistance drift, PCM can use refresh-like opera-
tions to rewrite the original data value, and as the density of
PCM grows, more such operations are required. We leave a
detailed exploration of how DSARP can be used for emerging
memory technologies to future works.

6. Conclusion
We introduced two new complementary techniques, DARP

(Dynamic Access Refresh Parallelization) and SARP (Subar-
ray Access Refresh Parallelization), to mitigate the DRAM
refresh penalty by enhancing refresh–access parallelization at
the bank and subarray levels, respectively. DARP 1) issues
per-bank refreshes to idle banks in an out-of-order manner
instead of issuing refreshes in a strict round-robin order, 2)
proactively schedules per-bank refreshes during intervals
when a batch of writes are draining to DRAM. SARP enables
a bank to serve requests from idle subarrays in parallel with
other subarrays that are being refreshed. Our extensive evalu-
ations on a wide variety of systems and workloads show that
these mechanisms signi�cantly improve system performance
and outperform state-of-the-art refresh policies, approaching
the performance of ideally eliminating all refreshes. We con-
clude that DARP and SARP are e�ective at hiding the refresh
latency penalty in modern and near-future DRAM systems,
and that their bene�ts increase as DRAM density increases.

We believe these techniques are also applicable to other me-
mory technologies, such as NAND �ash memory and phase
change memory. We hope our work inspires future rese-
arch to develop even more e�ective refresh latency tolerance
techniques.
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This paper summarizes the idea of ChargeCache, which was
published in HPCA 2016 [51], and examines the work’s signi-
�cance and future potential. DRAM latency continues to be
a critical bottleneck for system performance. In this work, we
develop a low-cost mechanism, called ChargeCache, that ena-
bles faster access to recently-accessed rows in DRAM, with no
modi�cations to DRAM chips. Our mechanism is based on the
key observation that a recently-accessed row has more charge
and thus the following access to the same row can be perfor-
med faster. To exploit this observation, we propose to track
the addresses of recently-accessed rows in a table in the me-
mory controller. If a later DRAM request hits in that table, the
memory controller uses lower timing parameters, leading to
reduced DRAM latency. Row addresses are removed from the
table after a speci�ed duration to ensure rows that have leaked
too much charge are not accessed with lower latency. We eva-
luate ChargeCache on a wide variety of workloads and show
that it provides signi�cant performance and energy bene�ts for
both single-core and multi-core systems.

1. Problem: DRAM Latency
DRAM technology is commonly used as the main memory

of modern computer systems. This is because DRAM is at
a more favorable point in the trade-o� spectrum of density
(cost-per-bit) and access latency compared to other technolo-
gies like SRAM or �ash. However, commodity DRAM devices
are heavily optimized to maximize cost-per-bit. In fact, the
latency of commodity DRAM has not reduced signi�cantly
in the past two decades [23, 25, 80, 83, 84, 108].

The latency of DRAM is heavily dependent on the design of
the DRAM chip architecture, speci�cally the length of a wire
called bitline. A DRAM chip consists of millions of DRAM
cells. Each cell is composed of a transistor-capacitor pair.
To access data from a cell, DRAM uses a component called
sense ampli�er. Each cell is connected to a sense ampli�er
using a bitline. To amortize the large cost of the sense am-
pli�er, hundreds of DRAM cells are connected to the same
bitline [84]. A longer bitline leads to higher resistance and
parasitic capacitance on the path between a DRAM cell and
the sense ampli�er. As a result, longer bitlines result in higher
DRAM access latency [80, 83, 84, 136].

To mitigate the negative e�ects of long DRAM access la-
tency, existing systems rely on several major approaches.

First, they employ large on-chip caches to exploit the tempo-
ral and spatial locality of memory accesses. However, cache
capacity is limited by chip area. Even caches as large as tens
of megabytes may not be e�ective for some applications due
to very large working sets and memory access characteris-
tics that are not amenable to caching [61, 90, 113, 117, 118].
Second, systems employ aggressive prefetching techniques
to preload data from memory before it is needed [5, 28, 138].
However, prefetching is ine�cient for many irregular access
patterns and it increases the bandwidth requirements and
interference in the memory system [36, 38, 39, 76, 131, 138].
Third, systems employ multithreading [86, 134, 145]. Ho-
wever, this approach increases contention in the memory
system [32, 37, 98, 106] and does not aid single-thread per-
formance [62, 144]. Fourth, systems exploit memory level
parallelism [31, 47, 104, 106, 107]. The DRAM architecture
provides various levels of parallelism that can be exploited to
simultaneously process multiple memory requests generated
by modern processor architectures [78, 107, 115, 146]. While
prior works [31, 33, 60, 78, 106, 112] propose techniques to
better utilize the available parallelism, the bene�ts of these
techniques are limited due to 1) address dependencies bet-
ween instructions in the programs [6,40,103], and 2) resource
con�icts in the memory subsystem [73, 120]. Unfortunately,
none of these four approaches fundamentally reduce memory
latency at its source and the DRAM latency continues to be a
performance bottleneck in many systems.

2. Existing Techniques That Reduce
DRAM Latency

DRAM latency can be reduced using several techniques, all
of which have their own speci�c shortcomings. One simple
approach to reduce DRAM latency is to use shorter bitlines.
In fact, some specialized DRAM chips [48,96,125] o�er lower
latency by using shorter bitlines compared to commodity
DRAM chips. Unfortunately, such chips come at a signi�-
cantly higher cost than chips that use long bitlines, as they
reduce the overall density of the device because they require
more sense ampli�ers, which occupy signi�cant area [84].
Therefore, such specialized chips are usually not desirable for
systems that require high memory capacity [29]. Prior works
have proposed several heterogeneous DRAM architectures
(e.g., segmented bitlines [84], asymmetric bank organizati-
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ons [136], mechanisms that exploit the inherent latency vari-
ation across cells [25,82]) that divide DRAM into two regions:
one with low latency, and another with slightly higher la-
tency. Such schemes propose to map frequently accessed data
to the low-latency region, thereby achieving lower average
memory access latency. However, such schemes might re-
quire 1) non-negligible changes to the cost-sensitive DRAM
design, 2) techniques to create or identify low-latency regi-
ons in DRAM, and/or 3) mechanisms to identify, map, and
migrate frequently-accessed data to low-latency regions. As a
result, even though they reduce the latency for some portions
of the DRAM chip, they may not be easy to adopt.

3. Key Observations
In our HPCA 2016 paper [51], we make two major obser-

vations that motivate a new mechanism for reducing DRAM
latency,
Charge Variation. The amount of charge in the DRAM

cells of a row determines the required latency for a DRAM
access to that row. If the amount of charge in the cell is low,
the sense ampli�er completes its operation in longer time.
Therefore, DRAM access latency increases. A DRAM cell
loses its charge over time and the charge is replenished by a
refresh operation or an access to the row. The access latency
of a cell whose charge has been replenished recently can thus
be signi�cantly lower than the access latency of a cell that
has less charge. Our SPICE simulations show that the �rst
read/write command can be issued 44% faster to a highly-
charged DRAM row compared to a row with less charge (see
Section 6.2 and our HPCA 2016 paper [51]).
Row-Level Temporal Locality. We �nd that, mainly due

to DRAM bank con�icts [73, 120], many applications tend
to access rows that were recently closed (i.e., closed within
a very short time interval). We refer to this form of tem-
poral locality where certain rows are frequently closed and
re-opened as Row-Level Temporal Locality (RLTL). An impor-
tant outcome of this observation is that a DRAM row remains
in a highly-charged state when accessed for the second time
within a short interval after the prior access. This is be-
cause accessing the DRAM row inherently replenishes the
charge within the DRAM cells (just like a refresh operation
does) [26, 46, 87, 88, 109, 133].

We de�ne t-RLTL of an application for a given time inter-
val t as the fraction of row activations in which the activa-
tion occurs within the time interval t after a previous pre-
charge to the same row. Figure 1 shows the average RLTL
for single-core and eight-core workloads with �ve di�erent
time intervals (from 0.125ms to 32ms). Our detailed experi-
mental methodology is described in Section 5 of our HPCA
2016 paper [51]. For single-core workloads, the average 1ms-
RLTL is 83%. In other words, 83% of all the row activations
occur within 1ms after the same row was previously pre-
charged. Due to the additional bank con�icts incurred as
the number of workloads executing increases, for eight-core

workloads, the average 1ms-RLTL is 89%, signi�cantly higher
than that for the single-core workloads. These results show
that RLTL of both single-core and eight-core workloads is
signi�cantly high even for small values of t, motivating us
to exploit RLTL (i.e., row-level temporal locality) to detect
highly-charged DRAM rows.1

Note that a major reason for the high row-level temporal
locality is the occurrence of bank con�icts in the DRAM
subsystem. We �nd that, due to the bank con�icts, a row is
likely to be requested again soon after it is precharged due to
an intervening request to the same bank.
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Figure 1: Average row-level temporal locality (RLTL) for 22
single-core and 20 eight-core workloads.

4. Our Goal
We observe that many applications exhibit high row-level

temporal locality. In other words, for many applications, a
signi�cant fraction of the row activations occur within a small
interval after the corresponding rows are precharged. As a
result, such row activations can be served with lower acti-
vation latency than speci�ed by the DRAM standard. Our
goal in this work is to exploit this observation to reduce the
e�ective DRAM access latency by tracking recently-accessed
DRAM rows in the memory controller and reducing the la-
tency for their next access(es). To this end, we propose an
e�cient mechanism, ChargeCache, which we describe in the
next section.

5. Solution: ChargeCache
ChargeCache is based on three observations: 1) a row

whose cells’ charge has been recently replenished can be
accessed with lower activation latency, 2) activating a row
replenishes the charge on the cells of that row and the cells
start leaking only after the following precharge command,
and 3) many applications exhibit high row-level temporal
locality, i.e., recently-activated rows are more likely to be
activated again. Based on these observations, ChargeCache
tracks rows that are recently activated, and serves near-future
activates to such rows with lower latency by lowering the
DRAM timing parameters for such activations.

As we show in Figure 2, ChargeCache adds a small ta-
ble (structured as a cache), called High-Charged Row Address
Cache (HCRAC), to the memory controller that tracks the ad-
dresses of recently-accessed DRAM rows, i.e., highly-charged

1For a more detailed study of row-level temporal locality, please see
Section 3 of our HPCA 2016 paper [51].
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rows. ChargeCache performs three operations. First, when a
precharge command is issued to a bank, ChargeCache inserts
the address of the row that was activated in the corresponding
bank to the table ( 1 in the �gure). Second, when an activate
command is issued, ChargeCache checks if the corresponding
row address is present in the table ( 2 ). If the address is not
present, then ChargeCache uses the standard DRAM timing
parameters to issue subsequent commands to the bank. Ho-
wever, if the address of the activated row is present in the
table, ChargeCache employs reduced timing parameters for
subsequent commands to that bank. Our experimental results
on multi-programmed applications show that, on average,
ChargeCache can reduce the latency of 67% of all DRAM
row activations (as shown in Section 6.4 of our HPCA 2016
paper [51]). Third, ChargeCache periodically invalidates old
entries from the table to ensure that only rows that have suf-
�cient amount of charge for being accessed with low latency
remain in the table ( 3 ). Since a row may potentially reside
in the table for very long time without being activated, such
an operation is necessary to avoid a low-latency access to a
row with small amount of charge (which could lead to wrong
results).
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Address Cache (HCRAC)
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Counter  (IIC)

Entry 
Counter (EC)

Invalidate

3
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Per-Bank 
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2Per-Bank 
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[PRE] 
Insert 1

Figure 2: Components of the ChargeCache Mechanism. Re-
produced from [51].

We name our mechanism ChargeCache, as it provides a
cache-like bene�t, i.e., latency reduction based on a locality
property (i.e., RLTL), and does so by taking advantage of the
charge level stored in a recently-activated row. The mecha-
nism could potentially be used with current and emerging
DRAM-based memories where the stored charge level leads to
di�erent access latencies. We release the source code of Char-
geCache for two di�erent versions of Ramulator [74,122,123]
to enable future research to build upon our ideas.

6. Experimental Evaluation
In this section, we �rst explain our experimental methodo-

logy. Later, we quantitatively analyze the system performance
improvement and DRAM energy savings that ChargeCache
provides.

6.1. Methodology
We use circuit-level SPICE simulations to evaluate the

DRAM latency reduction that can be achieved when acces-
sing a highly-charged DRAM row. In Section 6.2, we show

the reduction in two DRAM timing parameters, tRCD and
tRAS, that are a�ected by high charge amount stored in a
DRAM cell.2

To evaluate the performance of ChargeCache, we use a
cycle-accurate DRAM simulator, Ramulator [74,122], in CPU-
trace-driven mode. CPU traces are collected using a Pin-
tool [91]. Table 1 lists the con�guration of the evaluated
systems. We implement the HCRAC table, which ChargeCa-
che uses to store the addresses of recently accessed DRAM
rows, similarly to a 2-way associative cache that uses the LRU
policy.
Table 1: Simulated system con�guration. Reproduced
from [51].

Processor
1-8 cores, 4GHz clock frequency,
3-wide issue, 8 MSHRs/core, 128-
entry instruction window

Last-level Ca-
che

64B cache-line, 16-way associative,
4MB cache size

Memory
Controller

64-entry read/write request queues,
FR-FCFS scheduling policy [121,
153], open/closed row policy [71,72]
for single/multi core

DRAM

DDR3-1600 [97], 800MHz bus
frequency, 1/2 channels, 1
rank/channel, 8 banks/rank,
64K rows/bank, 8KB row-bu�er
size, tRCD/tRAS 11/28 cycles

ChargeCache

128-entry (672 bytes)/core, 2-way
associativity, LRU replacement
policy, 1ms caching duration,
tRCD/tRAS reduction 4/8 cycles

For area, power, and energy measurements, we modify
McPAT [85] to implement ChargeCache using 22nm process
technology. We use DRAMPower [22] to obtain power/energy
results for the o�-chip main memory subsystem. We feed
DRAMPower with DRAM command traces obtained from
our simulations using Ramulator.

We run 22 workloads from the SPEC CPU2006 [137],
TPC [147], and STREAM [94] benchmark suites. We use
SimPoint [50] to obtain traces from representative phases of
each application. For single-core evaluations, unless stated ot-
herwise, we run each workload for 1 billion instructions. For
multi-core evaluations, we use 20 multiprogrammed worklo-
ads by assigning a randomly-chosen application to each core.
We evaluate each con�guration with its best-performing row-
bu�er management policy. Speci�cally, we use the open-row
policy for single-core and closed-row policy for multi-core
con�gurations. We simulate the benchmarks until each core

2For detail on DRAM timing parameters and operation, we refer the
reader to our prior works [24, 25, 27, 51, 52, 68, 71, 72, 73, 74, 82, 83, 84, 87, 88,
114, 127, 128].
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executes at least 1 billion instructions. For both single- and
multi-core con�gurations, we �rst warm up the caches and
ChargeCache by fast-forwarding 200 million cycles.

We measure performance improvement for single-core
workloads using the Instructions per Cycle (IPC) metric.
We measure multi-core performance using the weighted
speedup [135] metric. Prior work has shown that weighted
speedup is a measure of system-level job throughput [42].

6.2. Reduction in DRAM Timing Parameters

We evaluate the potential reduction in tRCD and tRAS
for ChargeCache using circuit-level SPICE simulations. We
implement the DRAM sense ampli�er circuit using 55nm
DDR3 model parameters [119] and PTM low-power transistor
models [3, 152]. Figure 3 plots the variation in bitline voltage
level during cell activation for di�erent initial charge amounts
of the cell.
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Figure 3: E�ect of initial cell charge on bitline voltage. Re-
produced from [51].

Depending on the initial charge (i.e., voltage level) of the
cell, the bitline voltage increases at di�erent speeds. When
the cell is fully-charged, the sense ampli�er is able to drive
the bitline voltage to the ready-to-access voltage level in only
10ns. However, a partially-charged cell (i.e., one that has not
been accessed for 64ms) brings the bitline voltage up slower.
Speci�cally, the bitline connected to such a partially-charged
cell reaches the ready-to-access voltage level in 14.5ns. Since
DRAM timing parameters are dictated by this worst-case
partially-charged state right before the refresh interval, we
can achieve a 4.5ns reduction in tRCD for a fully-charged
cell. Similarly, the charge of the cell capacitor is restored at
di�erent times depending on the initial voltage of the cell.
For a fully-charged cell, this results in a 9.6ns reduction in
tRAS.

In practice, we expect DRAM manufacturers to identify
the lowered timing constraints for di�erent caching dura-
tions. Today, DRAM manufacturers test each DRAM chip
to determine if it meets the timing speci�cations. Similarly,
we expect the manufacturers would also test each chip to
determine if it meets the ChargeCache timing constraints.

6.3. Results
We experimentally evaluate the following mechanisms:

1) ChargeCache, 2) NUAT [133], which accesses only rows
that are recently-refreshed at lower latency than the DRAM
standard, 3) ChargeCache + NUAT, which is a combination
of ChargeCache and NUAT [133] mechanisms, and 4) Low-
Latency DRAM (LL-DRAM) [96], which is an idealized com-
parison point where we assume all rows in DRAM can be
accessed with low latency, compared to our baseline DDR3-
1600 memory, at any time, irrespective of when they are
accessed or refreshed.

We compare the performance of our mechanism against
the most closely related previous work, NUAT [133]. The
key idea of NUAT is to access recently-refreshed rows at low
latency, because these rows are already highly-charged. Thus,
NUAT does not use low latency for rows that are recently-
accessed, and hence it does not exploit the RLTL (Row-Level
Temporal Locality) present in many applications.

Figure 4 shows the performance of single-core and eight-
core workloads. The �gure also includes the number of row
misses per kilo-cycles (RMPKC) to show row activation inten-
sity, which provides insight into the RLTL of the workload.

Single-Core Performance: Figure 4a shows the performance
improvement over the baseline system for single-core wor-
kloads. These workloads are sorted in ascending order of
RMPKC. ChargeCache achieves up to 9.3% (an average of 2.1%)
speedup. Our mechanism outperforms NUAT and achieves a
speedup close to LL-DRAM with a few exceptions. Applicati-
ons that have a wide gap in performance between ChargeCa-
che and LL-DRAM (e.g., mcf, omnetpp) access a large number
of DRAM rows and exhibit high row-reuse distance [63]. A
high row-reuse distance indicates that there is a large num-
ber of accesses to other rows between two accesses to the
same row. Due to this reason, ChargeCache cannot retain the
addresses of highly-charged rows until the next access to that
row. Increasing the number of ChargeCache entries or em-
ploying cache management policies aware of reuse distance
or thrashing [35, 117, 130, 148] may improve the performance
of ChargeCache for such applications. We leave the evalu-
ation of these methods for future work. We conclude that
ChargeCache signi�cantly reduces execution time for most
high-RMPKC workloads and outperforms NUAT for all but
few workloads.
Eight-Core Performance: Figure 4b shows the speedup on

eight-core multiprogrammed workloads. On average, Char-
geCache and NUAT improve performance by 8.6% and 2.5%,
respectively. Employing ChargeCache in combination with
NUAT achieves a 9.6% speedup, which is only 3.8% less than
the improvement obtained using LL-DRAM. Although the
multiprogrammed workloads are composed of the same appli-
cations as in single-core evaluations, we observe much higher
performance improvements for the eight-core workloads. The
reason is twofold. First, since multiple cores share a limited
capacity LLC, simultaneously running applications compete
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Figure 4: Speedup with ChargeCache, NUAT and Low-Latency DRAM for single-core and eight-core workloads. Reproduced
from [51].

for the LLC. Thus, individual applications access main me-
mory more often, which leads to higher RMPKC. This makes
the workload performance more sensitive to main memory
latency [20, 58, 73]. Second, the memory controllers receive
memory requests from multiple simultaneously-running ap-
plications to a limited number of memory banks. Such reque-
sts are likely to target di�erent rows since they use separate
memory regions and these regions map to separate rows.
Therefore, applications running concurrently exacerbate the
bank-con�ict rate and increase the number of row activations
that hit in ChargeCache.

Overall, ChargeCache improves performance by up to
11.3% (8.1%) and on average 8.6% (2.1%) for eight-core (single-
core) workloads. It outperforms NUAT for most of the ap-
plications. Using NUAT in combination with ChargeCache
improves chsystem performance even further.

6.4. Impact on DRAM Energy
ChargeCache incurs negligible area and power overheads

(see Section 6.5). Because it reduces execution time with neg-
ligible overhead, it leads to signi�cant energy savings. Even
though ChargeCache increases the energy e�ciency of the
entire system, we quantitatively evaluate the energy savings
only for the DRAM subsystem since Ramulator [74] currently
does not have a detailed CPU model. Figure 5 shows the
average and maximum DRAM energy savings for single-core
and eight-core workloads. ChargeCache reduces energy con-
sumption by an average of 7.9% (1.8%), and by up to 14.1%
(6.9%), for eight-core (single-core) workloads. We conclude
that ChargeCache is e�ective at improving the energy e�-
ciency of the DRAM subsystem, as well as the entire system.
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Figure 5: DRAM energy reduction of ChargeCache. Reprodu-
ced from [51].

6.5. Area and Power Consumption Overhead
HCRAC (Highly-Charged Row Address Cache) is the most

area/power demanding component of ChargeCache. As we re-
plicate HCRAC on a per-core and per-memory channel basis,
the total area and power overhead ChargeCache introduces
depends on the number of cores and memory channels.3 The
total storage requirement is given by Equation 1, where C are
MC are the number of cores and memory channels, respecti-
vely. LRUbits depends on HCRAC associativity. EntrySize
is calculated using Equation 2, where R, B, and Ro are the
number of ranks, banks, and rows in DRAM, respectively.

Storagebits = C ∗ MC ∗ Entries ∗ (EntrySizebits + LRUbits) (1)
EntrySizebits = log2(R) + log2(B) + log2(Ro) + 1 (2)

Area. Our eight-core con�guration has two memory chan-
nels. This introduces a total of 5376 bytes in storage requi-

3Note that sharing a single HCRAC across all or multiple cores can result
in even lower overhead. We leave the exploration of such shared-HCRAC
designs to future work.
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rement for a 128-entry HCRAC, corresponding to an area of
0.022 mm2. This overhead is only 0.24% of the 4MB LLC.
Power Consumption. HCRAC is accessed on every acti-

vate and precharge command issued by the memory controller.
On an activate command, HCRAC is searched for the corre-
sponding row address. On a precharge command, the address
of the precharged row is inserted into HCRAC. HCRAC en-
tries are periodically invalidated to ensure they do not exceed
a speci�ed caching duration. These three operations increase
dynamic power consumption in the memory controller, and
the HCRAC storage increases static power consumption. Our
analysis indicates that ChargeCache consumes 0.149 mW on
average. This is only 0.23% of the average power consump-
tion of the entire 4MB LLC. Note that we include the e�ect
of this additional power consumption in our DRAM energy
evaluations in Section 6.4. We conclude that ChargeCache
incurs almost negligible chip area and power consumption
overheads.

6.6. Other Results
We also evaluate and assess the sensitivity of ChargeCache

bene�ts to ChargeCache capacity, caching duration, and tem-
perature in Sections 6.4 and 7.1 of our HPCA 2016 paper [51].

7. Related Work
To our knowledge, this paper is the �rst to (i) show that

applications typically exhibit signi�cant Row-level Temporal
Locality (RLTL) and (ii) exploit this locality to improve system
performance by reducing the latency of requests to recently-
accessed memory rows.

We have already (in Section 6.3) qualitatively and quantita-
tively compared ChargeCache to NUAT [133], which reduces
access latency to only recently-refreshed rows. We have
also shown that ChargeCache provides signi�cantly higher
average latency reduction than NUAT because RLTL is usu-
ally high, whereas the fraction of accesses to rows that are
recently-refreshed is typically low (see Section 3 in our HPCA
2016 paper [51]).

Other previous works propose techniques to reduce per-
formance degradation caused by long DRAM latencies. They
focus on 1) enhancing the DRAM, 2) exploiting variations
in manufacturing process and operating conditions, 3) de-
veloping various memory scheduling policies. We brie�y
summarize how ChargeCache di�ers from these works.
Enhancing DRAM Architecture. Lee at al. propose

Tiered-Latency DRAM (TL-DRAM) [84], which divides each
subarray into near and far segments using isolation transis-
tors. With TL-DRAM, the memory controller accesses the
near segment with lower latency since the isolation tran-
sistor reduces the bitline capacitance in that segment. Our
mechanism could be implemented on top of TL-DRAM to
reduce the access latency for both the near and far segment.
Kim et al. propose SALP, which unlocks parallelism bet-
ween subarrays at low cost, by modifying the DRAM chip

to enable pipelined access to subarrays [73]. The goal of
SALP is to reduce the impact of bank con�icts by providing
more parallelism and thereby reducing the latency of bank-
con�ict accesses. O et al. [110] propose a DRAM architecture
where sense ampli�ers are decoupled from bitlines to miti-
gate precharge latency. Choi et al. [30] propose to utilize
multiple DRAM cells to store a single bit when su�cient
DRAM capacity is available. By using multiple cells, they
reduce activation, precharge and refresh latencies. Other
works [24, 26, 49, 79, 126, 127, 128, 129, 136, 151] also propose
new DRAM architectures to lower DRAM latency for various
types of operations and accesses.

Processing-in-memory (PIM) architectures [1, 2, 8, 9, 34, 41,
44, 53, 54, 65, 69, 75, 111, 116, 127, 128, 129, 132, 139] using 3D-
stacked memory [56, 59, 81, 89] reduce the observed latency,
from the perspective of the processor, by moving some compu-
tation operations closer to DRAM. 3D-stacked memories are
well suited for processing-in-memory due to their inclusion
of a logic layer, which allows for the e�cient implementation
of CMOS logic in DRAM and o�ers high bandwidth to the
DRAM layers. However, PIM architectures do not fundamen-
tally reduce the access latency of the DRAM device, which
ChargeCache does (for certain access patterns).

Unlike ChargeCache, a large number of these works re-
quire changes to the DRAM architecture itself. The appro-
aches taken by these works are largely orthogonal to the
ChargeCache approach and ChargeCache could be imple-
mented together with any of these mechanisms to further
reduce the DRAM latency.
Exploiting Process and Operating Condition Variati-

ons. Recent studies [21, 25, 27, 82, 83] propose methods to
reduce the safety margins of the DRAM timing parameters
when operating conditions are appropriate (i.e., not worst-
case). Unlike these works, ChargeCache is largely indepen-
dent of operating conditions like temperature, as discussed
in Section 8.3, and is orthogonal to these latency reduction
mechanisms.
Memory Request Scheduling Policies. Memory re-

quest scheduling policies (e.g., [4,45,55,57,66,71,72,77,99,100,
105, 106, 121, 140, 141, 142, 143, 149, 153]) reduce the average
DRAM access latency by improving DRAM parallelism, row
bu�er locality, and fairness in especially multi-core and hete-
rogeneous systems. ChargeCache can be employed in con-
junction with the scheduling policy that best suits the appli-
cation and the underlying architecture.

8. Signi�cance

Main memory latency has a critical impact on system per-
formance [101]. Our work proposes a new low-cost mecha-
nism to reduce DRAM latency, without any modi�cations
to the existing DRAM chip architecture. In this section, we
discuss the signi�cance of our work by describing its novelty
and expected long-term impact.
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8.1. Novelty
ChargeCache reduces average DRAM latency by exploiting

a type of DRAM access locality, Row-Level Temporal Loca-
lity (RLTL), that commonly exists in workloads due to the
presence of DRAM bank con�icts. Our work is the �rst to
observe and formally de�ne RLTL and exploit it to reduce
DRAM latency by designing a new mechanism that takes ad-
vantage of RLTL and the fact that a DRAM row gets inherently
refreshed on access. Our mechanism does not require any
changes to the existing DRAM array structure of the DRAM
chips and can be easily implemented on top of any DRAM
standard with negligible overhead in the memory controller
logic.

8.2. Applicability to Emerging DRAM Standards
ChargeCache is applicable to any memory technology

where cells are volatile (leak charge over time) and the charge
variation due to charge leakage has impact on access latency.
ChargeCache can be used with to a large set of standards
derived from DDR (DDRx, GDDRx, LPDDRx, etc.) [74] in a
manner similar to the mechanism described in this work, wit-
hout modifying the DRAM architecture. Using ChargeCache
with 3D-stacked memories [81, 89] such as Wide I/O, HBM,
and HMC [74] is also straightforward. The di�erence is that,
for the technologies that implement the memory controller
in the logic layer, the DRAM controller, and hence Charge-
Cache, can be easily implemented in the logic layer of the
3D-stacked memory chip instead of the processor chip.

We also believe that the key idea of ChargeCache is not
limited to DRAM, and can potentially be applied to other me-
mory technologies that store information in form of electrical
charge, such as NAND �ash memory [10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 92, 93].

8.3. Long-Term Impact
8.3.1. Reducing DRAM Latency. During the last several
decades, DRAM capacity increased signi�cantly by shrinking
the feature size of the transistors. Similarly, more e�cient
DRAM standards enabled memories with high bandwidth.
The new 3D-stacking technology o�ers even higher band-
width by incorporating DRAM and the logic layer on the
same chip in a 3D-stacked manner. However, none of these
advances lead to large improvements in the row access la-
tency of the DRAM arrays. Hence, DRAM latency is already
a critical bottleneck for system performance. Our work alle-
viates the DRAM latency problem with no overhead to the
area-optimized DRAM chip, which is di�cult to change, and
with low overhead to the memory controller.
8.3.2. Row-Level Temporal Locality. Our paper is the �rst
work to observe row-level temporal locality (RLTL). Note that
RLTL is di�erent from Row-Reuse Distance [63] that a prior
work studies. Row-Reuse Distance is a metric indicating
the number of accesses between two consecutive accesses to
the same row. On the other hand, RLTL indicates the time

between two consecutive accesses to the same row. A row
locality metric that includes time is important since charge
leakage in DRAM is a function of time. In this work, we ex-
ploit RLTL to reduce DRAM latency. However, RLTL can also
potentially be used to discover new techniques to improve
di�erent aspects of DRAM, such as reliability [70,95,101,102]
and bandwidth.
8.3.3. Importance for Future Systems. We believe the la-
tency reduction mechanism of ChargeCache will become
more important in future systems for four reasons. First,
DRAM latency will become a much bigger bottleneck, as
applications will become more data-intensive [101, 108]. Hig-
her demand for data will result in more bank con�icts, as the
number of DRAM banks is not scaling as fast as data intensity.
Such applications will also have fast data access requirements,
which will increase their sensitivity to the memory access
latency [43, 64, 101, 108, 150]. As bank con�icts increase and
accesses become more latency-critical, the bene�ts of Char-
geCache will increase, as there will be higher RLTL, which
ChargeCache can exploit to provide higher performance im-
provement.

Second, ChargeCache is likely to remain much more com-
petitive than other state-of-the-art latency reduction techni-
ques for the 3D-stacked memories of the future. These me-
mories will likely operate at higher temperatures compared
to conventional DRAM chips. The charge leakage rate of
DRAM cells approximately doubles for every 10◦C increase
in temperature [67, 83, 87, 114]. This observation can be ex-
ploited to lower the DRAM latency when operating at low
temperatures. A previous study, Adaptive-Latency DRAM
(AL-DRAM) [83], proposes a mechanism to improve system
performance by reducing the DRAM timing parameters at
low operating temperature. AL-DRAM is based on the pre-
mise that DRAM typically does not operate at temperatures
close to the worst-case temperature (85◦ C) even when it is
heavily accessed. However, new 3D-stacked DRAM technolo-
gies such as HMC, HBM, WideIO may operate at signi�cantly
higher temperatures due to tight integration of multiple stack
layers [7]. Therefore, state-of-the-art and compelling dyna-
mic latency scaling techniques such as AL-DRAM may be less
useful in these scenarios. In contrast to AL-DRAM, Charge-
Cache is not based on the charge di�erence that occurs due
to temperature dependence. Rather, we exploit the high level
of charge in recently-precharged rows to reduce timing para-
meters during later accesses to such rows. After conducting
tests to determine the possible latency reduction in accessing
highly-charged rows (for ChargeCache hits) at worst-case
temperatures, we show that ChargeCache can be employed
independently of the operating temperature (see Section 7.1
in our HPCA 2016 paper [51]).

Third, ChargeCache is complementary to other
temperature-based and structural DRAM latency reduction
techniques [24, 25, 73, 82, 84, 96, 133, 136]. ChargeCache can
easily be used in conjunction with any of these techniques.
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Fourth, ChargeCache is a low-cost mechanism, which does
not require any changes to the existing DRAM chips, and
requires only small changes to the memory controller. The
low cost makes the adoption of ChargeCache more feasible
in future systems than other proposed mechanisms, as these
systems will be bottlenecked by power consumption, and
thus by complexity [108].

Overall, we believe that ChargeCache will help to signi�-
cantly reduce the memory access latency in future systems.
To this end, to aid future research, we have released the source
code of our ChargeCache simulator [123, 124] as part of our
Ramulator releases [122, 123].

9. Conclusion
We introduce ChargeCache, a new, low-overhead mecha-

nism that dynamically reduces the DRAM timing parameters
for recently-accessed DRAM rows. ChargeCache exploits
two key observations that we demonstrate in this work: 1)
a recently-accessed DRAM row has cells with high amounts
of charge and thus it can be accessed faster, and 2) many ap-
plications repeatedly access rows that are recently-accessed,
due to bank con�icts.

Our extensive evaluations of ChargeCache on both single-
core and multi-core systems show that it provides signi�cant
performance bene�t and DRAM energy reduction at very
modest hardware overhead. ChargeCache requires no mo-
di�cations to the existing DRAM chips and occupies only a
small area on the memory controller.

We conclude that ChargeCache is a simple yet e�cient
mechanism to dynamically reduce DRAM latency, which
signi�cantly improves both the performance and energy e�-
ciency of modern systems. We hope that our observation of
the phenomenon of row-level temporal locality and its simple
exploitation to reduce DRAM latency inspires other works to
develop other new techniques to improve memory subsystem
characteristics like performance, e�ciency, and reliability.
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This paper summarizes our work on characterizing applica-
tion memory error vulnerability to optimize datacenter cost via
Heterogeneous-ReliabilityMemory (HRM), which was published
in DSN 2014 [104], and examines the work’s signi�cance and
future potential. Memory devices represent a key component of
datacenter total cost of ownership (TCO), and techniques used
to reduce errors that occur on these devices increase this cost.
Existing approaches to providing reliability for memory devices
pessimistically treat all data as equally vulnerable to memory
errors. Our key insight is that there exists a diverse spectrum of
tolerance to memory errors in new data-intensive applications,
and that traditional one-size-�ts-all memory reliability techni-
ques are ine�cient in terms of cost. For example, we found that
while traditional error protection increases memory system cost
by 12.5%, some applications can achieve 99.00% availability on
a single server with a large number of memory errors without
any error protection. This presents an opportunity to greatly
reduce server hardware cost by provisioning the right amount
of memory reliability for di�erent applications.

Toward this end, in our DSN 2014 paper [104], we make three
main contributions to enable highly-reliable servers at low da-
tacenter cost. First, we develop a new methodology to quantify
the tolerance of applications to memory errors. Second, using
our methodology, we perform a case study of three new data-
intensive workloads (an interactive web search application, an
in-memory key–value store, and a graph mining framework)
to identify new insights into the nature of application memory
error vulnerability. Third, based on our insights, we propose
several new hardware/software heterogeneous-reliability me-
mory system designs to lower datacenter cost while achieving
high reliability and discuss their trade-o�s. We show that our
new techniques can reduce server hardware cost by 4.7% while
achieving 99.90% single server availability.

We believe the notion of HRM opens up a sea of opportunities
in optimizing memory system and overall system cost, reliabi-
lity, e�ciency, and performance in a manner that is aware of
applications’ tolerance to memory errors. Thus, our paper just
scratches the surface of a large HRM exploration space, which
we hope future works will undertake in various novel ways, in
a wide variety of systems, ranging from datacenters to mobile
and embedded systems.

1. Introduction
A warehouse-scale datacenter consists of many thousands

of machines running a diverse set of applications, and com-

prises the foundation of the modern web [4, 151]. While such
datacenters are vital to the operation of companies such as
Facebook, Google, Microsoft, and Yahoo!, reducing the cost
of such large-scale deployments of machines poses a signi�-
cant challenge to these and other companies. Recently, the
need for reduced datacenter cost has driven companies to
examine more energy-e�cient server designs [38] and build
their datacenter installations in cold environments to reduce
cooling costs [49, 59] or use built-in power plants to reduce
electricity supply costs [139].

There are two main components of the total cost of ow-
nership (TCO) of a datacenter [4]: (1) capital costs (those
associated with server hardware) and (2) operational costs
(those associated with providing electricity and cooling). Re-
cent studies have shown that capital costs can account for
the majority (e.g., around 57% in [4]) of datacenter TCO, and
thus represent the main impediment for reducing datacenter
TCO. In addition, this component of datacenter TCO is only
expected to increase going forward as companies adopt more
e�cient cooling and power supply techniques.

Of the dominant component of datacenter TCO (capital
costs associated with server hardware), the cost of server pro-
cessors and memory represents the key component—around
60% in modern servers [77]. Furthermore, the cost of the
memory in today’s servers is comparable to that of the pro-
cessors [77], and is likely to exceed processor cost for data-
intensive applications such as web search and social media
services, which use in-memory caching to improve response
time [54, 127, 128, 129, 159] (e.g., a popular key–value store,
Memcached, has been used at Google and Facebook [54, 127]
for this purpose).

Exacerbating the cost of memory in modern servers is the
use of memory devices (such as dynamic random access me-
mory, or DRAM) that provide error detection and correction.
This cost arises from two components: (1) quality assurance
testing performed by memory vendors to ensure devices sold
to customers are of a high enough caliber and (2) additional
memory capacity for error detection and correction. Device
testing has been shown to account for an increasing fraction
of the cost of memory for DRAM [2, 33]. The cost of addi-
tional memory capacity, on the other hand, depends on the
technique used to provide error detection and correction.

Table 1 compares several common memory error detection
and correction techniques in terms of which types of errors
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they are able to detect/correct and the additional amount of
capacity/logic they require (which, for DRAM devices, whose
design is �ercely cost-driven [120, 121], is proportional to
cost). Techniques range from the relatively low-cost (and
widely employed) parity, SEC-DED (single error correction,
double error detection), Chipkill [35], and DEC-TED (dou-
ble error correction, triple error detection), all of which use
di�erent error-correcting codes (ECC) to detect and correct
a small number of bits or chip errors, to the more expen-
sive RAIM [111] and Mirroring [53] techniques that replicate
some (or all) of memory to tolerate the failure of an entire
DRAM dual in-line memory module (DIMM). The additional
cost of memory with high error-tolerance can be signi�cant
(e.g., 12.5% of the total memory capacity for SEC-DED and
Chipkill, and as high as 125% for Mirroring).

Table 1: Memory error detection and correction techniques.
“X /Y Z” means a technique can detect/correct X out of every
Y failures of Z . n represents the parity of any odd number of
bits between 1 and 63. Adapted from [104].

Technique Error Detection (Correction) Added Capacity Added Logic

Parity n/64 bits (None) 1.6% Low
SEC-DED 2/64 bits (1/64 bits) 12.5% Low
DEC-TED 3/64 bits (2/64 bits) 23.4% Low
Chipkill [35] 2/8 chips (1/8 chips) 12.5% High
RAIM [111] 1/5 modules (1/5 modules) 40.6% High
Mirroring [53] 2/8 chips (1/2 modules) 125.0% Low

Yet even with well-tested and error-tolerant memory devi-
ces, recent studies from the �eld have observed a rising rate of
memory error occurrences [55,72,116,120,123,141,146]. This
trend presents an increasing challenge for ensuring high per-
formance and high reliability in future systems, as memory
errors can be detrimental to both. In terms of performance,
existing error detection and correction techniques incur a
slowdown on each memory access due to their additional
circuitry [55, 92] and up to an additional 10% slowdown due
to techniques that operate DRAM at a slower speed to reduce
the chances of random bit �ips due to electrical interference
in higher-density devices that pack more and more cells per
square nanometer [148]. In addition, whenever an error is de-
tected or corrected on modern hardware, the processor raises
an interrupt that must be serviced by the system �rmware
(e.g., BIOS), incurring up to 100 µs latency—roughly 2000×
the latency of a typical 50 ns memory access latency [58]—
leading to unpredictable slowdowns and sometimes even
system hangs [116].

In terms of reliability, memory errors can cause an ap-
plication to slow down, hang, crash, or produce incorrect
results [40]. Software-level techniques such as the retirement
of regions of memory with errors [55, 76, 116, 118, 150] have
been proposed to reduce the occurrence of memory error
correction events and prevent correctable errors from tur-
ning into uncorrectable errors over time. Hardware-level
techniques, such as those listed in Table 1, are used to detect
and correct errors without software intervention (but with

additional hardware cost). All of these techniques are app-
lied homogeneously to memory systems in a one-size-�ts-all
manner.

Our goal in our DSN 2014 paper [104] is to (1) understand
how tolerant di�erent data-intensive applications and dif-
ferent memory regions of each application are to memory
errors, and (2) design a new memory system organization
that matches hardware reliability to the error tolerance of
the application and the memory region in order to reduce
system cost. The main idea of our approach is to classify
applications and memory regions based on their memory
error tolerance, and map applications and memory regions
to heterogeneous-reliability memory (HRM) system designs
managed cooperatively between hardware and software to
reduce system cost. We make the following contributions:
1. A new methodology to quantify the tolerance of appli-

cations and their memory regions to memory errors. Our
approach measures the e�ect of memory errors on appli-
cation correctness and quanti�es an application’s ability
to mask or recover from memory errors.

2. A comprehensive characterization of the memory error
tolerance of three data-intensive workloads: an interactive
web search application [104,138], an in-memory key–value
store [34, 104], and a graph mining framework [103, 104].
We �nd that there exists an order of magnitude di�erence
in memory error tolerance across these three applications.
We also �nd that there exists an order of magnitude di�e-
rence in memory error tolerance across di�erent memory
regions of each application.

3. An exploration of the design space of a family of new me-
mory system organizations, called heterogeneous-reliability
memory, which combines a heterogeneous mix of relia-
bility techniques that leverage application and memory
region error tolerance to reduce system cost. We show that
an example use of our techniques reduces server hardware
cost by 4.7%, while achieving 99.90% single server availa-
bility, based on a preliminary evaluation of an example
HRM system.

2. Characterizing Memory Error Tolerance
We characterize three commonly-used data-intensive ap-

plications to quantify their tolerance to memory errors:
• WebSearch [138], an interactive web search application,
• Memcached [34], an in-memory key-value store, and
• GraphLab [103], a graph mining framework.

We run these three applications in real production systems,
and sample hundreds to tens of thousands of unique memory
addresses for each application.

2.1. Characterization Methodology
To understand how tolerant di�erent data-intensive appli-

cations are to memory errors, our characterization consists
of three components: (1) characterizing the outcomes of me-
mory errors on an application based on how they propagate
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through an application’s code and data, (2) characterizing
how safe or unsafe it is for memory errors to occur in di�e-
rent regions of an application’s data, and (3) determining how
amenable an application’s data is to recovery in the event of
an error. We describe the implementation of each component
in detail in Sections III and IV of our DSN 2014 paper [104].

We characterize an application’s vulnerability to a memory
error based on its behavior after a memory error is introdu-
ced (we assume for the moment that no error detection or
correction is being performed). Figure 1 shows a taxonomy of
memory error outcomes. Our taxonomy is mutually exclusive
(no two outcomes occur simultaneously) and exhaustive (it
captures all possible outcomes). At a high level, a memory
error may be either (1) masked by an overwrite, in which
case it is never detected and causes no change in application
behavior; or (2) consumed by the application. In the case
that an error is consumed by the application, it may either
(2.1) be masked by application logic, in which case it is never
detected and causes no change in application behavior; (2.2)
cause the application to generate an incorrect response; or
(2.3) cause the application or system to crash.

(a) Memory Error Fates

Memory Error

System/
App Crash

Incorrect 
Response

Masked by 
Logic

Masked by 
Overwrite

Consumed by 
Application

2.1

21

2.2 2.3

Correct Result Incorrect Result

Figure 1: Memory error outcomes. Reproduced from [104].

When we refer to the tolerance of an application to memory
errors, we mean the likelihood of an error occurring in some
data results in outcomes (1) or (2.1). Conversely, when we
refer to the vulnerability of an application to memory errors,
we mean the likelihood of an error occurring in some data
results in outcomes (2.2) or (2.3).

We have three design goals when implementing our met-
hodology for quantifying application memory error tolerance.
First, due to the sporadic and inconsistent nature of memory
errors in the �eld [65, 72, 100, 116, 135, 141, 145, 146, 147], we
want to design a framework that emulates the occurrence
of a memory error in an application’s data in a controlled
manner. Second, we want an e�cient way to measure how
an application accesses its data. Third, we want our frame-
work to be easily adaptable to other workloads or system
con�gurations.

Figure 2 shows a �ow diagram illustrating the �ve steps
involved in our error emulation framework. We assume that
the application under examination has already been run out-
side of the framework and its expected output without any
memory errors has been recorded. The framework proceeds

as follows. (1) We start the application under the error in-
jection framework. Our memory error emulation framework
is described in Section IV of our DSN 2014 paper [104]. (2)
We use software debuggers1 to inject the desired number and
types of memory errors. (3) We initiate the connection of a
client and start executing the desired workload. (4) Throug-
hout the course of the application’s execution, we check to
see if the machine has crashed; if it has, we log this outcome
and proceed to step (1) to begin testing once again. (5) If
the application �nishes its workload, we check to see if its
output matches the expected results; if the output does not
match the expected results, we log this outcome and proceed
to step (1) to test again. Each run injects a particular pattern
of errors into the application. We can run this framework as
many times as needed to test an application with di�erent
patterns of injected errors.

(b) Error Injection
Framework

(Re)Start App

Inject Errors 
(Soft/Hard)

Run Client 
Workload

App 
Crash?

Compare Result 
with Expected 

Output

NO

YES

Re
pe

at

Start

2

3

4

5

1

Figure 2: Memory error emulation framework. Reproduced
from [104].

There are two main types of memory errors: (1) soft or
transient errors and (2) hard or recurring errors.2 Soft me-
mory errors occur at random due to charged particle emissi-
ons from chip packaging or the atmosphere [110]. Hard me-
mory errors may occur from physical device defects or wea-
rout [55,141,146], and are in�uenced by environmental factors
such as humidity, temperature, and utilization [141, 144, 147].
Hard errors typically a�ect multiple bits (for example, large
memory regions and entire DRAM chips have been shown
to fail [55, 146, 147]). Our characterization covers single-bit
soft and hard errors. For a detailed background on DRAM,
we refer the reader to prior works [24, 25, 26, 27, 51, 52, 66, 71,
72, 73, 74, 75, 83, 84, 85, 86, 87, 99, 100, 131, 142, 143].

1WinDBG [119] in Windows and GDB [42] in Linux.
2Recent studies [62,64,65,72,100,135] examined the e�ects of intermittent

and access-pattern dependent errors, which are increasingly common as
DRAM technology scales down to smaller technology nodes [120].
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2.2. Key Findings
We summarize two of the most important �ndings from

our characterization below. We brie�y list four other �ndings
in Section 2.3, and describe all six of our �ndings in detail in
Section V-B of our DSN 2014 paper [104].
Finding 1: Error Tolerance Varies Across Applicati-

ons. Figure 3(a) plots the probability of each of the evalu-
ated three applications crashing due to the occurrence of
single-bit soft or hard errors in their memory (we call this
application-level memory error vulnerability). For cases where
the application does not crash, Figure 3(b) plots the rate of
incorrect results per billion application queries under the
same conditions. We draw two key observations from these
results.
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Figure 3: Inter-application variations in vulnerability to
single-bit soft and hard memory errors for the three appli-
cations in terms of (a) probability of crash and (b) frequency
of incorrect results. Reproduced from [104].

First, there exists a signi�cant variance in vulnerability
among the three applications both in terms of crash proba-
bility and in terms of incorrect result rate, which varies by
up to six orders of magnitude. Second, these characteristics
may di�er depending on whether errors are soft or hard (for
example, the number of incorrect results for WebSearch dif-
fers by over two orders of magnitude between soft and hard
errors, with hard errors being more problematic). We the-
refore conclude that memory reliability techniques that treat
all applications similarly are ine�cient because there exists
signi�cant variation in error tolerance among applications.
Finding 2: Error Tolerance Varies Within an Appli-

cation. Figure 4(a) plots the probability of each of the three
applications crashing due to the occurrence of single-bit soft
or hard errors in di�erent regions of their memory address
space. Figure 4(b) plots the rate of incorrect results per billion
queries under the same conditions, for cases where a crash
did not occur.

We make two observations from Figure 4. First, for some
memory regions, the probability of an error leading to a crash
is much lower than for others (for example, in WebSearch, the
probability of a hard error leading to a crash in the heap or
private memory regions is much lower than in the stack me-
mory region). Second, even in the presence of memory errors,
some regions of some applications are still able to tolerate
memory errors (perhaps at reduced correctness). This may be
acceptable for applications such as WebSearch that aggregate
results from several servers before presenting them to the
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(b) Memory region incorrectness
Figure 4: Memory region variations in vulnerability to single-
bit soft and hardmemory errors for the applications in terms
of (a) probability of crash and (b) frequency of incorrect re-
sults. Reproduced from [104].

user, in which case the likelihood of the user being exposed
to an error is much lower than the reported probabilities. We
therefore conclude that memory reliability techniques that
treat all memory regions within an application similarly are
ine�cient because there exists signi�cant variance in the error
tolerance among di�erent memory regions.

2.3. Other Findings
In Section V-B of our DSN 2014 paper [104], we discuss four

other �ndings that we make based on our characterization
data. These �ndings focus on the memory error tolerance of
WebSearch, which we �nd to be representative of the behavior
of all three of our characterized applications. In particular,
we �nd that:
• More severe failures (i.e., failures that lead to system down-

times) due to memory errors tend to crash the application
or system quickly, while less severe failures tend to gene-
rate incorrect results periodically.

• Some memory regions are safer than others. This indicates
that either an application’s access pattern or computati-
onal operations on di�erent memory regions can be the
dominant factor to mask a majority of memory errors.

• More severe errors mainly decrease correctness, as opposed
to increase an application’s probability of crashing.

• Data recoverability varies across memory regions. For
data-intensive applications like WebSearch, software-only
memory error tolerance techniques are a promising di-
rection for enabling reliable system designs.

3. Heterogeneous-Reliability Memory
Based on the �ndings from our experimental characte-

rization, we propose heterogeneous-reliability memory
(HRM), a software/hardware cooperative framework that em-
ploys di�erent levels of memory reliability within a single
main memory subsystem to optimize datacenter cost based
on the memory error tolerance level of applications and their
memory regions. We examine three dimensions, and their
bene�ts and trade-o�s in the design space, for systems with
heterogeneous reliability memory: (1) hardware techniques
to detect and correct errors, (2) software responses to errors,
and (3) the granularity at which di�erent techniques are used.
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Table 2 lists the techniques we considered in each of the
dimensions along with their potential bene�ts and trade-o�s.

Using WebSearch as an example application, we evaluate
and compare �ve example design points (three non-HRM
systems, and two HRM systems):
• Typical Server (non-HRM): A baseline con�guration re-

sembling a typical server deployed in a modern datacenter.
All memory is homogeneously protected using SEC-DED
ECC.

• Consumer PC (non-HRM): Consumer PCs typically
have no hardware protection against memory errors, re-
ducing both their cost and reliability.

• Detect&Recover (HRM): Based on our observation that
some memory regions are safer than others, we consi-
der an HRM system design that, for the private region,
uses parity in hardware to detect errors and responds by
correcting them with a clean copy of data from disk in
software (Par+R, parity and recovery), and uses neither
error detection nor correction for the rest of its data.

• Less-Tested (L; non-HRM): Testing increases both the
cost and average reliability of memory devices [120, 121,
131]. This system examines the implications of using less-
thoroughly-tested memory throughout the entire memory
system.

• Detect&Recover/L (HRM): This system evaluates the De-
tect&Recover design with less-tested memory. ECC is used
in the private region and Par+R in the heap to compensate
for the reduced reliability of the less-tested memory.

Section VI-A of our DSN 2014 paper [104] discusses (1) the
metrics we use to evaluate the bene�ts and costs of the de-
signs, and (2) the memory error model we use to examine
the e�ectiveness of the �ve designs. We refer the reader to
Section VI-A in [104] for detail and a full understanding.

Our evaluation illustrates the ine�ciencies of traditional
homogeneous approaches to memory system reliability, as

well as the bene�ts of heterogeneous-reliability memory sy-
stem designs. Figure 5 shows the cost savings and single
server availability for our �ve evaluated design points. We
observe from the �gure that the two highlighted example
HRM design points (in orange color), which leverage our
heterogeneous-reliability memory system design, both can
achieve our target single server availability of 99.90% while
reducing server hardware cost by 2.9% and 4.7% respectively.
We therefore conclude that heterogeneous-reliability memory
system designs can enable systems to achieve both high cost
savings and high single server availability/reliability at the
same time.
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Figure 5: Comparison of server hardware cost savings and
single server availability for the �ve design points. Results
extracted from [104]. Orange bars indicate HRM designs.

Section VI of our DSN 2014 paper [104] contains a de-
tailed analysis of HRM, including (1) memory cost savings
(Section VI-B of [104]), (2) the expected crash and incor-
rect query frequency for each con�guration (Section VI-
B of [104]), (3) the maximum number of tolerable er-
rors per month for each application to achieve a reliabi-
lity target (Section VI-B of [104]), and (4) a discussion
of hardware/software support for and feasibility of HRM
(Section VI-C of [104]). We summarize the key empirical
�ndings here:
• Our two example HRM designs, Detect&Recover and De-

tect&Recover/L, reduce memory costs by 9.7% and 15.5%,

Table 2: Heterogeneous reliability design dimensions, example techniques, and their potential bene�ts and trade-o�s. Adap-
ted from [104].

Design dimension Technique Bene�ts Trade-o�s

Example hardware
techniques

No detection/correction No associated overheads (low cost) Unpredictable crashes and silent data corruption
Parity Relatively low cost with detection capability No hardware correction capability
SEC-DED/DEC-TED Tolerate common single-/double-bit errors Increased cost and memory access latency
Chipkill [35] Tolerate single-DRAM-chip errors Increased cost and memory access latency
Mirroring [53] Tolerate memory module failure 100% capacity overhead
Less-Tested DRAM Saved testing cost during manufacturing Increased error rates

Example software
responses

Consume errors in application Simple, no performance overhead Unpredictable crashes and data corruption
Automatically restart application Can prevent unpredictable application behavior May make little progress if error is frequent
Retire memory pages Low overhead, e�ective for repeating errors Reduces memory space (usually very little)
Conditionally consume errors Flexible, software vulnerability-aware Memory management overhead to make decision
Software correction Tolerates detectable memory errors Usually has performance overheads

Usage granularity

Physical machine Simple, uniform usage across memory space Costly depending on technique used
Virtual machine More �ne-grained, �exible management Host OS is still vulnerable to memory errors
Application Manageable by the OS Does not leverage di�erent region tolerance
Memory region Manageable by the OS Does not leverage di�erent page tolerance
Memory page Manageable by the OS Does not leverage di�erent data object tolerance
Cache line Most �ne-grained management Large management overhead; software changes
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respectively, compared to the cost of the Typical Server
system, which does not use HRM.

• The two example HRM designs limit the number of crashes
to 3 and 4 per server per month, respectively, and limit the
incorrect query frequency to 9 and 12 per million queries,
respectively.

• Without any error detection/correction, two out of our
three evaluated applications (WebSearch and Memcached)
are able to achieve 99.00% single server availability.
We therefore conclude that heterogeneous-reliability me-

mory system designs can enable systems to achieve both high
cost savings and high single server availability/reliability at
the same time. We believe that there is signi�cant opportu-
nity in many data-intensive applications for reducing server
hardware cost while achieving high single server availabi-
lity/reliability using our heterogeneous-reliability design met-
hodology.

4. Related Work
To our knowledge, our DSN 2014 paper [104] is the �rst

to (1) perform a comprehensive analysis of memory error
vulnerability for data-intensive datacenter applications across
a range of di�erent memory error types; (2) propose the idea of
heterogeneous reliability memory, which consists of multiple
memory types with di�erent levels of reliability and error
handling mechanisms; and (3) evaluate the cost-e�ectiveness
of di�erent heterogeneous-reliability memory organizations
with hardware/software cooperation. We discuss related re-
search in memory error vulnerability and DRAM architec-
ture below, categorizing the works into six broad classes:
(1) memory errors in datacenters, (2) characterizing applica-
tion error tolerance, (3) hardware-based memory reliability
techniques, (4) software-based memory reliability techniques,
(5) exploiting application error tolerance, and (6) heterogene-
ous (hybrid) memory architectures.
Studies of Memory Errors. Various works [92, 116, 141,

145, 146, 147] have conducted studies of DRAM error rates
that are deployed in production datacenters, studying failures
across a large sample size. These works note that memory
errors occur frequently in datacenters, and are induced by a
number of error sources. In particular, one of these studies
empirically demonstrates the increased memory errors and
increased memory cost to tolerate these errors in large-scale
datacenters [116]. A recent work [48] examines how vari-
ous hardware and software techniques to detect and mitigate
errors introduce signi�cant performance degradation in pro-
duction datacenters. This work shows that for WebSearch,
software error handling techniques can induce a performance
overhead of 3746× [48]. These studies motivate the need for
a low-overhead, cost-e�ective approach to memory reliabi-
lity, and motivate us to further explore hardware–software
cooperative techniques such as HRM.

There are several studies that characterize various sour-
ces of errors in DRAM at a �ne granularity. Many of these

works observe how speci�c factors a�ect DRAM errors, ana-
lyzing the impact of temperature [37,86] and hard errors [55].
A large number of works study errors through controlled
experiments, usually using FPGA-based DRAM testing in-
frastructures like SoftMC [51], to investigate errors due to
retention time [51, 62, 63, 64, 65, 99, 100, 131, 135], disturbance
from neighboring DRAM cells [60, 70, 72, 120], latency vari-
ation across/within DRAM chips [21, 23, 25, 82, 83, 86], and
supply voltage [23, 27]. None of these works study memory
errors in a system with heterogeneous-reliability memory.
Classifying Application Error Tolerance. Error in-

jection techniques based on hardware watchpoints [92, 112],
binary instrumentation [89], and architectural simulation [93]
have been used to investigate the impact of memory errors
on application behavior, including execution times, applica-
tion/system crashes, and output correctness. These works
study a range of applications including SPEC CPU bench-
marks, web servers, databases, and scienti�c applications. In
general, these works conclude that not all memory errors
cause application/system crashes and many memory errors
can be tolerated with minimal di�erence in the application
outputs. We generalize this observation to data-intensive ap-
plications, and leverage it to reduce datacenter TCO. Recent
work [149] develops a Markov-chain model for the error tole-
rance of HPC applications. Approximate computing techni-
ques [8,39,57], where the precision of program output can be
relaxed to achieve better performance or energy e�ciency, of-
fer further opportunities for leveraging the error-tolerance of
application data, though these typically require very careful
changes to the program source code.
Hardware-Based Memory Reliability Techniques.

There are various ECC techniques for memory, and we list
the most dominant ones in Table 1. Using eight bits, SEC-
DED can correct a single bit �ip and detect up to two bit
�ips out of every 64 bits. DEC-TED is a generalization of
SEC-DED that uses fourteen bits to correct two and detect
three �ipped bits out of every 64 bits. Chipkill [35] improves
reliability by interleaving error detection and correction data
among multiple DRAM chips. RAIM [111] is able to tolerate
entire DIMMs failing by storing detection and correction data
across multiple DIMMs. Virtualized ECC [155] maps ECC to
software-visible locations in memory so that software can
decide what ECC protection to use. While Virtualized ECC
can help reduce the DRAM hardware cost of memory reli-
ability, it requires modi�cation to the processor’s memory
management unit and cache(s).

Recent works propose new hardware-based techniques to
tolerate soft and hard memory errors e�ciently. We break
these down into four categories: (1) Tolerating soft errors:
BambooECC [67] proposes a new single-tier ECC family that
enables adaptive graceful downgrade of ECC capabilities. Cle-
anECC [45] provides both high memory reliability and �ex-
ible memory access granularity by using �ne-grained error
detection and coarse-grained error correction. XED [126]
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uses in-DRAM ECC to reduce the overhead of double Chip-
kill. (2) Tolerating hard errors: ArchShield [124] proposes
an architectural framework to identify and tolerate hard er-
rors caused by DRAM cell failures. Citadel [125] proposes
to tolerate large-granularity failures, such as row/bank failu-
res, by replacing them with spares. Other works propose to
identify and mitigate potentially recurring memory errors by
page o�ining [116], online testing [65, 131], and multi-rate
refresh [99, 135]. (3) Reducing memory cost: FrugalECC [68]
proposes a new �exible granularity compression to reduce
the redundancy and energy consumption of ECC. Morphable
ECC [29] proposes to reduce DRAM refresh overhead by re-
ducing ECC strength to 6-bit ECC when the DRAM is in idle
mode. (4) End-to-end memory error protection: AIECC [69]
provides end-to-end protection for clock, control, command,
and address (CCCA) signals in addition to data signals.
Software-BasedMemory Reliability Techniques. Pre-

vious works (e.g., [55,116,140,150]) show that the OS retiring
memory pages after a certain number of errors can elimi-
nate up to 96.8% of detected memory errors. While these
techniques improve system reliability, they still require costly
ECC hardware for detecting and identifying memory pages
with errors. Other works attempt to reduce the impact of
memory errors on system reliability by writing more reliable
software [7], modifying the OS memory allocator [132], or
using a compiler to generate a more error-tolerant version of
the program [5,22]. Other algorithmic solutions (e.g., memory
bounds checks [88], watchdog timers [88], and checkpoint
recovery [30,31,32,90,91,95,96,97,153,154]) can also be used
to improve resilience to memory errors.

Li et al. [98] propose to deploy software-based ECC in
an in-memory key-value store, and show that it incurs low
performance overhead. Recent works [149,161] improve upon
traditional RAIM-3 and use selective replication to reduce
unnecessary memory redundancy. SDECC [46, 47] proposes
to use strong error detection in the hardware, while tolerating
hard memory errors and recovering from soft errors in the
software.
Exploiting Application Error Tolerance. Flikker [102]

proposes a technique to trade o� DRAM reliability for energy
savings. It relies on the programmer to separate application
data into vulnerable or tolerant data. Less reliable mobile
DIMMs have been proposed [109, 156] as a replacement for
ECC DIMMs in servers to improve energy e�ciency. Re-
cent work [128] shows that RAMCloud can recover 35 GB of
data from a failed server in 1.6 seconds using a log-structure
storage.
Heterogeneous (Hybrid) Memory Architectures. Va-

rious recent works (e.g., [1, 6, 28, 36, 44, 94, 101, 113, 114, 133,
134, 136, 137, 157, 158, 160]) explore the use of heterogeneous
memory architectures, consisting of multiple di�erent types
of memories. These works are mainly concerned with either
mitigating the overheads of emerging memory technologies
or improving performance and power e�ciency. They do not

investigate the use of multiple devices with di�erent error
correction capabilities. CREAM [107] and Odd-ECC [108] de-
velop low-cost techniques to provide �exible provisioning of
memory error correction capabilities. Recent works [3, 152]
apply our heterogeneous reliability idea to processor caches
to achieve better cost-reliability trade-o�s.

5. Signi�cance and Long-Term Impact
We believe that our DSN 2014 paper [104] will have long-

term impact for three major reasons. First, it emphasizes
and aims to solve the increasing cost of ensuring memory
reliability as the error rates of memory devices continue to
grow, which is a major trend as memory technology scales
to smaller technology nodes [120, 121]. Second, it tackles
memory system cost in datacenters, which is a problem that
we expect will be increasingly important in the future. Third,
it proposes a novel framework that uses hardware–software
co-design to improve memory system reliability as well as
cost, thereby hopefully inspiring future works to exploit soft-
ware characteristics to improve system reliability and reduce
system cost (and other important metrics).
Increasing Memory Error Rate. As DRAM scales to

smaller process technology nodes, the reliability of DRAM
continues to degrade [55, 61, 116, 120, 121, 122, 123, 141, 145,
146, 147]. For example, recent works 1) show the existence
of disturbance errors in commodity DRAM chips operating
in the �eld [72, 120]; 2) experimentally demonstrate the
increasing importance of retention-related failures in mo-
dern DRAM devices [51, 62, 63, 64, 65, 99, 100, 131, 131, 135];
3) examine the trade-o� between DRAM reliability and la-
tency [21,23,25,27,51,66,82,83,86]; and 4) advocate, including
in a paper co-written by the Samsung and Intel memory de-
sign teams [61], for the use of in-DRAM error correcting
codes to overcome the reliability challenges [61,135]. As a re-
sult of decreasing DRAM reliability, maintaining the e�ective
error rate at the levels we have today can (1) increase DRAM
cost due to decreased yield, expensive quality assurance tests,
and/or extra capacity for storing stronger error-correcting
codes; or (2) reduce DRAM performance due to frequent
error correction and logging. All of these solutions might
make DRAM technology scaling more di�cult and less ap-
pealing [120, 121, 122]. Our paper proposes a solution that
enables the use of DRAM with higher error rates while still
achieving reasonable application reliability, which can enable
much more e�cient scaling of DRAM to smaller technology
nodes in the future.

Other memory technologies such as NAND �ash me-
mory [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 43, 105, 106, 115],
phase-change memory (PCM) [79, 80, 81, 114, 117, 136] and
STT-MRAM [78, 114] also show a similar decreasing trend
in their reliability with process technology scaling and the
advent of multi-level cell (MLC) technology [121]. For ex-
ample, like DRAM, NAND �ash memory su�ers from re-
tention errors [9, 10, 11, 13, 14, 15], cell-to-cell program in-
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terference errors [9, 10, 11, 14, 17, 19], and read disturb er-
rors [9, 10, 11, 14, 20]. Additionally, NAND �ash memory
su�ers from program/erase cycling errors [14, 18], and pro-
gramming errors [12, 105, 130]. PCM su�ers from endurance
issues [79, 81, 136] and resistance drift [56]. HRM can be app-
lied to these memory technologies with slight modi�cations
to enable reliable high-density non-volatile devices in the
future.
Increasing Datacenter Cost. Recent studies have shown

that capital costs can account for the majority (e.g., around
57% in [4]) of datacenter TCO (total cost of ownership). As
part of the cost of a server, the cost of the memory is com-
parable to that of the processors [77], and is likely to exceed
processor cost and become the dominant cost for servers
running data-intensive applications such as web search and
social media services [34, 103, 138]. As future datacenters
grow in scale, datacenter TCO will become an increasingly
important factor in system design. Our paper demonstrates
a way of optimizing datacenter TCO by reducing the cost of
the memory system. The cost savings can be signi�cant due
to the increasing scale of such datacenters [50], making our
proposed technique hopefully more important in the future.
Hardware–Software Co-Design. Our solution,

heterogeneous-reliability memory, utilizes hardware–
software cooperative design to reduce system cost. Our DSN
2014 paper [104] demonstrates the bene�ts of exploiting
application characteristics to improve overall system design.
For example, it shows that a signi�cant number of errors can
be corrected in software by reloading a clean copy of the data
from storage. This motivates us to rethink the placement of
di�erent functionalities (such as error detection and error
correction) across di�erent system components and across
software versus hardware to improve the cost–reliability
trade-o�.

Our DSN 2014 paper [104] has started a community discus-
sion [50] on the feasibility of solving the problem of memory
reliability by exploiting application memory error tolerance
in the future, inspiring reporters to ask the question: “How
good does memory need to be?” We hope that our characte-
rization results and mechanisms will hopefully continue to
inspire future works that can provide e�cient and extensive
characterization/estimation of application-level memory er-
ror tolerance [41], which can make our proposed technique
applicable to a broader set of applications.

Two example works that build on ours include Odd-
ECC [108] and CREAM [107]. Odd-ECC provides a mecha-
nism to enable di�erent levels of fault tolerance for the data
stored in a commodity DRAM module. Odd-ECC maps the
ECC bits to a memory address aligned with the data so that
the memory controller can access both the data and the ECC
bits e�ciently. CREAM provides a mechanism to dynamically
adjust the tradeo� between memory capacity/bandwidth used
for ECC bits and fault tolerance within an ECC DRAM mo-
dule. CREAM proposes several data layouts that reduce page

faults and improve memory performance signi�cantly when
strong fault tolerance is not needed.

6. Conclusion
In our DSN 2014 paper [104], we develop a new metho-

dology to quantify the tolerance of applications to memory
errors. Using this methodology, we perform a case study
of three new data-intensive workloads that show, among
other new insights, that there exists a diverse spectrum of
memory error tolerance both within and across these appli-
cations. Based on this observation, we introduce the idea of
heterogeneous-reliability memory (HRM), which combines
multiple di�erent memories that have di�erent reliability cha-
racteristics and error correction capabilities. We propose new
hardware/software heterogeneous-reliability memory system
designs, and evaluate them to show that (1) the one-size-�ts-
all approach to reliability in modern servers is ine�cient
in terms of cost, and (2) heterogeneous-reliability systems
can achieve the bene�ts of both low cost and high single
server availability/reliability. We hope that our techniques
can enable the use of lower-cost memory devices to reduce
the server hardware cost of datacenters, and that our ana-
lyses will spur future research on heterogeneous-reliability
memory systems. As DRAM technology scales into small fea-
ture sizes and becomes less reliable and memory cost becomes
more important in datacenters in the future, we hope that
our �ndings and ideas will inspire more research to improve
the cost–reliability trade-o� in memory systems. We believe
di�erent HRM designs can be employed to optimize other key
trade-o�s and target metrics (e.g., performance vs. energy
consumption) in modern systems. Our DSN 2014 paper just
scratches the surface of a large amount of research and design
space to be explored.
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This paper summarizes the idea and key contributions of
the Dynamic Row Bu�er Locality Aware Memory Controller
(RBLA), which was published in ICCD 2012 [125], and exami-
nes the work’s signi�cance and future potential. Non-volatile
memory (NVM) is a class of promising scalable memory techno-
logies that can potentially o�er higher capacity than DRAM
at the same cost point. Unfortunately, the access latency and
energy of NVM is often higher than those of DRAM, while the
endurance of NVM is lower. Many DRAM–NVM hybrid me-
mory systems, also known as heterogeneous memory systems,
use DRAM as a cache to NVM, to achieve the low access latency,
low energy, and high endurance of DRAM, while taking ad-
vantage of the large capacity of NVM. A key question for a
hybrid memory system is what data to cache in DRAM to best
exploit the advantages of each technology while avoiding the
disadvantages of each technology as much as possible.

We propose a new memory controller design that improves
hybrid memory performance and energy e�ciency. We observe
that both DRAM and NVM banks employ row bu�ers that act
as a cache for the most recently accessed memory row. Accesses
that are row bu�er hits incur similar latencies (and energy
consumption) in both DRAM and NVM, whereas accesses that
are row bu�er misses incur longer latencies (and higher energy
consumption) in NVM than in DRAM. To exploit this, we devise
a policy that caches heavily-reused data that frequently misses
in the NVM row bu�ers into DRAM. Our policy tracks the row
bu�er miss counts of recently-used rows in NVM, and caches in
DRAM the rows that are predicted to incur frequent row bu�er
misses. Our proposed policy also takes into account the high
write latencies of NVM, in addition to row bu�er locality and
more likely places the write-intensive pages in DRAM instead
of NVM.

We evaluate our proposal using a hybrid memory consis-
ting of DRAM and phase-change memory (PCM), a representa-
tive type of non-volatile memory. Compared to a conventional
DRAM–PCM hybrid memory system that caches frequently-
accessed data in DRAM, our row bu�er locality-aware hybrid
memory system improves average system performance by 14%,
and average energy e�ciency by 10%, on data-intensive server
and cloud workloads. Our proposed hybrid memory system
achieves a 31% performance gain over an all-PCM memory
system, and comes within 29% of the performance of an all-

DRAM memory system (not taking PCM’s capacity bene�t into
account) on our evaluated workloads.

1. Introduction
Multiprogrammed and multithreaded workloads on chip

multiprocessors require large amounts of main memory to
support the working sets of many concurrently-executing
threads. The demand for memory is increasing rapidly, as the
number of cores or accelerators (collectively called agents) on
a chip continues to increase and data-intensive applications
become more widespread [35, 87, 91, 109]. Dynamic Random
Access Memory (DRAM) is used to compose main memory in
modern computers. Though strides in DRAM manufacturing
process technology have enabled DRAM to scale to smaller
feature sizes, and, thus, higher densities (capacity per unit
area), it is predicted that DRAM density scaling will result in
higher costs and lower reliability as the process technology
feature size continues to decrease [19,45,50,64,75,87,88,91,99,
117]. Satisfying increasingly higher memory demands with
exclusively DRAM will soon become too expensive in terms
of both cost and energy.1

1.1. Non-Volatile Memory
Emerging non-volatile memory (NVM) technologies such as

phase-change memory (PCM) [55, 56, 57, 79, 97, 123, 126], spin-
transfer torque magnetic RAM (STT-MRAM) [21, 38, 54, 92],
resistive RAM (ReRAM) [24, 70, 110], and 3D XPoint [81],
have shown promise for future main memory system designs
to meet the increasing memory capacity demands of data-
intensive workloads. With projected scaling trends, NVM
cells can be manufactured more easily at smaller feature sizes
than DRAM cells, achieving high density and capacity [21,25,
26, 38, 54, 55, 56, 57, 70, 79, 92, 97, 99, 119, 123, 126, 131]. This is
due to two reasons: (1) while a DRAM cell stores data in the
form of charge, an NVM cell uses resistive values to represent
the data, which is expected to scale to smaller feature sizes;
and (2) unlike DRAM, several NVM devices use multi-level
cell technology, which stores more than one bit of data per
memory cell.

For example, PCM is a non-volatile memory technology
that stores data by varying the electrical resistance of a ma-
terial known as chalcogenide [55, 99, 123]. A PCM memory

1We refer the reader to our prior works [17, 18, 19, 20, 39, 40, 48, 49, 50, 51,
52,53,61,62,63,64,65,67,68,93,105,107] for a detailed background on DRAM.
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cell is programmed by applying heat (via electrical current)
to the chalcogenide and then cooling it at di�erent rates, de-
pending on the data to be stored. Rapid quenching places
the chalcogenide into an amorphous state which has high
resistance, representing the bit value of ‘0’ in single-level
cell PCM, and slow cooling places the chalcogenide into a
crystalline state which has low resistance, representing the
bit value of ‘1’ in single-level cell PCM. Multi-level cell PCM
can store multiple bits of data by providing more than two
distinguishable resistance levels for each cell, very similar to
the MLC NAND �ash technology that is prevalent in modern
storage systems [6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 73, 96, 126].

However, NVM has a number of disadvantages. Compared
to DRAM, NVM typically has a longer access latency, hig-
her write energy, and lower endurance [55, 97]. For example,
PCM’s long cooling duration required to crystallize chalco-
genide leads to high PCM write latency, high read (sensing)
latency, high read energy, and high write energy compared
to those of DRAM [77]. Furthermore, the repeated thermal
expansions and contractions of a PCM cell during program-
ming lead to �nite write endurance, which is estimated at 108

writes, an issue not present in DRAM [55].

1.2. Hybrid Memory Systems
Hybrid memory systems [1,4,5,22,29,30,34,66,76,94,95,97,

100,129] aim to combine the strengths of DRAM and emerging
memory technologies (e.g., NVM, reduced-latency DRAM [64,
80, 104], reduced reliability DRAM [74, 97]). Many previous
DRAM-NVM hybrid memory system designs employ DRAM
as a small cache [97] or write bu�er [29,129] to NVM of large
capacity. In this work, we utilize PCM to provide increased
overall memory capacity (which leads to reduced page faults
in the system), while the DRAM cache serves a large portion
of the memory requests at low latency and low energy with
high endurance. The combined e�ect increases overall system
performance and energy e�ciency [97]. A key question in
the design of a DRAM-PCM hybrid memory system is how
to place data between DRAM and PCM to best exploit the
strengths of each technology while avoiding their weaknesses
as much as possible.

1.3. Memory Device Architecture
In our ICCD 2012 paper [125], we develop new mecha-

nisms for deciding how data should be placed in a DRAM-
PCM hybrid memory system. Our main observation is that
both DRAM and PCM devices consist of banks that employ
row bu�er circuitry. The organization of a memory bank is
illustrated in Figure 1. Cells (memory elements) are typically
laid out in arrays of rows (cells sharing a common wordline)
and columns (cells sharing a common bitline). An access to
the array occur at the granularity of a row. To read from
the array, a wordline is �rst asserted to select a row of cells.
Then, through the bitlines, the contents of the selected cells
are detected by sense ampli�ers (labeled S/A in the �gure)
and latched by peripheral circuitry known as the row bu�er.

Word Line 

Bit Line 

Word Line 

Word Line 

S/A 

Data Out 

Bit Line 

S/A 

Data Out 

Bit Line 

S/A 

Data Out 

Row 

Column 

Row Buffer 

Cell Cell Cell 

Cell Cell Cell 

Cell Cell Cell 

DRAM PCM 

Figure 1: Memory cells organized in a 2D array of rows and
columns. Reproduced from [125].

Once the contents of a row are latched in the row bu�er,
subsequent memory requests to that row are served promptly
from the row bu�er, without having to bear the delay of
accessing the array. Such memory accesses are called row
bu�er hits. However, if a row di�erent from the one latched
in the row bu�er is requested, then the newly requested row
is read from the array into the row bu�er (replacing the row
bu�er’s previous contents). Such a memory access incurs
the high latency and energy of activating the array, and is
called a row bu�er miss. Row bu�er locality (RBL) refers to the
repeated reference to a row while its contents are in the row
bu�er. Memory requests to data with high row bu�er locality
are served e�ciently (at low latency and energy) without
having to frequently re-activate the memory cell array.

2. Row Bu�er Locality-Aware Caching Policy
Our ICCD 2012 paper [125] proposes Row Bu�er Locality-

Aware (RBLA) caching policies, which a hybrid memory con-
troller can use to guide data placement. RBLA can be used in
any hybrid memory system where each underlying memory
technology consists of banks with row bu�ers. We study
an example hybrid memory system that consists of a large
amount of PCM backed by a small DRAM cache [66,72,76,97],
whose organization is shown in Figure 2. Our main observa-
tion is that memory requests that hit in the row bu�er incur
similar latencies and energy consumption in both DRAM and
PCM [55, 57], whereas requests that miss in the row bu�er

...

Ctlr. Ctlr.

...

...

DRAM PCM

(High Capacity)

(Low Capacity)

Row BufferBankMemory Channel

CPU

PCM

DRAM Cache

Figure 2: DRAM-PCM hybrid memory system organization.
Reproduced from [125].
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incur higher latency and energy in PCM than in DRAM. As a
result, placing data that mostly leads to row bu�er hits (i.e.,
data that has high row bu�er locality) in DRAM provides little
bene�t over placing the same data in PCM. On the other hand,
placing heavily reused data that leads to frequent row bu�er
misses (i.e., data that has low row bu�er locality) in DRAM
avoids the high latency and energy of PCM array accesses.

This observation is illustrated in the example shown in
Figure 3. In the example, the service timelines for memory
requests to rows A–D are shown. Prior hybrid memory and
cache management proposals seek to improve the reuse of
data placed in the cache and reduce the access bandwidth of
the next level of memory (e.g., [43,98]). We call this approach
to cache management conventional mapping. Conventional
mapping (top half of Figure 3) can place rows A and B (which
have low row bu�er locality) both in PCM, causing the high
PCM array latency to become a bottleneck. In contrast, row
bu�er locality-aware mapping (bottom half of Figure 3) places
rows A and B in DRAM such that they can bene�t from
DRAM’s lower array latency, leading to faster overall memory
service.2 Placing rows C and D (high row locality) in DRAM
provides little bene�t over placing them in PCM.

Based on this observation, we devise a hybrid memory
caching policy that caches in DRAM the rows that mostly miss
in the row bu�er and are frequently reused. To implement this
policy, the memory controller maintains a count of the row
bu�er misses for recently-used rows in PCM, and places in
DRAM the data of rows whose row bu�er miss counts exceed
a certain threshold (dynamically adjusted at runtime in the
RBLA-Dyn mechanism, which we describe in Section 2.3).

2.1. Measuring Row Bu�er Locality
The RBLA mechanism tracks the row bu�er locality sta-

tistics for a small number of recently-accessed rows, in a
hardware structure called the stats store. The stats store resi-
des in the memory controller, and is organized similarly to

2Even though the �gure shows some requests being served in parallel,
if the individual requests arrived in the same order at di�erent times, the
average request latency would still be improved signi�cantly.

a cache, however its data payload per entry is a single row
bu�er miss counter.

On each PCM access, the memory controller looks for an
entry in the stats store using the address of the accessed row.
If there is no corresponding entry, a new entry is allocated
for the accessed row, possibly evicting an older entry. If the
access results in a row bu�er miss, the row’s row bu�er miss
counter is incremented. If the access results in a row bu�er
hit, no additional action is taken.

2.2. Triggering Row Caching

Rows that exhibit low row bu�er locality and high reuse
will have high row bu�er miss counter values. The RBLA
mechanism selectively caches these rows by triggering the
caching of a row in DRAM when the row’s row bu�er miss
counter exceeds a threshold value, MissThresh. Setting this
MissThresh to a low value causes more rows with a higher
row bu�er locality to be cached.

Caching rows based on their row bu�er locality attempts
to migrate data between PCM and DRAM only when such
data movement is bene�cial. This a�ects system performance
in three ways. First, placing in DRAM rows that have low row
bu�er locality improves average memory access latency, due
to the lower row bu�er miss latency of DRAM compared to
PCM. Second, by selectively caching data that bene�ts from
being migrated to DRAM, RBLA reduces unnecessary data
movement between DRAM and PCM (i.e., data that frequently
hits in the row bu�er incurs the same access latency in PCM
as in DRAM, and is thus left in PCM). This reduces memory
bandwidth consumption, allowing more bandwidth to be used
to serve demand requests, and enables better utilization of the
DRAM cache space. Third, allowing data that frequently hits
in the row bu�er to remain in PCM contributes to balancing
the memory request load between DRAM and PCM.

To prevent rows with low reuse from gradually building up
large enough row bu�er miss counts over an extended period
of time to exceed MissThresh and trigger row caching, we

Figure 3: Conceptual example showing the importance of row bu�er locality-awareness in hybrid memory data placement
decisions. Reproduced from [125].
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apply a periodic reset to all of the row bu�er miss count values.
We set this reset interval to 10 million cycles empirically.

2.3. Dynamic Threshold Adaptation: RBLA-Dyn

We improve the adaptivity of RBLA to workload and sy-
stem variations by dynamically determining the value of
MissThresh. The key idea behind this scheme, which we call
RBLA-Dyn, is that the number of cycles saved by caching rows
in DRAM should outweigh the cost of migrating that data to
DRAM. RBLA-Dyn estimates, on an interval basis, the �rst
order cost and bene�t of employing a certain MissThresh
value, and increases or decreases the MissThresh value to
maximize the net bene�t (i.e., bene�t minus cost).

Since data migration operations can delay demand requests,
we approximate cost as the number of cycles spent migrating
each row across the memory channels (tmigration) times the
number of rows migrated (NumMigrations):

Cost = NumMigrations × tmigration (1)

If these data migrations are eventually bene�cial, the access
latency to main memory will decrease. Hence, we can com-
pute the bene�t of migration as the number of cycles saved
by accessing the data from the DRAM cache as opposed to
PCM:

Bene�t =NumReadsdram × (tread,pcm – tread,dram)+ (2)
NumWritesdram × (twrite,pcm – twrite,dram)

In this equation, NumReadsdram and NumWritesdram are the
number of reads and writes performed in DRAM after migra-
tion, tread,dram and twrite,dram are the read and write latency
of a DRAM row bu�er miss, and tread,pcm and twrite,pcm are
the read and write latency of a PCM row bu�er miss. RBLA-
Dyn accounts for reads and writes separately, as they incur
di�erent latencies in many NVM technologies, such as PCM.

RBLA-Dyn uses a simple hill-climbing algorithm (see Al-
gorithm 1 in our ICCD 2012 paper [125]) to �nd the value of
MissThresh that maximizes the net bene�t. The algorithm is
executed at the end of each interval (10 million cycles in our
setup). We refer the reader to Section IV-C of our ICCD 2012
paper [125] for more details on the RBLA-Dyn mechanism.

2.4. Implementation and Hardware Cost

The primary hardware cost incurred in implementing a
row bu�er locality-aware caching mechanism on top of an
existing hybrid memory system is the stats store. We model a
16-way, 128-set, LRU-replacement stats store using 5-bit row
bu�er miss counters, which occupies a total of 9.25 KB. This
stats store achieves within 0.3% of the system performance
(and within 2.5% of the memory lifetime) of an unlimited-
sized stats store for RBLA-Dyn.

3. Evaluation Methodology
We use a cycle-level in-house x86 multi-core simulator,

whose front-end is based on Pin. The simulator is an early
predecessor of Ramulator [53, 103] and the ThyNVM simula-
tor [100]. We collect results using multiprogrammed worklo-
ads consisting of server- and cloud-type applications (inclu-
ding TPC-C/H [118], Apache Web Server, and video proces-
sing benchmarks) for a 16-core system. We compare our row
bu�er locality-aware caching policy (RBLA) against a policy
that caches data that is frequently accessed (FREQ, similar in
approach to [43]). We use this competitive baseline because
we �nd that conventional LRU caching performs worse due
to its high memory bandwidth consumption. FREQ caches a
row when the number of accesses to the row exceeds a thres-
hold value. FREQ-Dyn adopts the same dynamic threshold
adjustment algorithm as RBLA-Dyn (Section 2.3). Our met-
hodology and workloads are described in detail in Section VI
of our ICCD 2012 paper [125].

4. Evaluation
Performance. Figure 4 shows the weighted speedup of

the four caching techniques that we evaluate. As we observe
from the �gure, RBLA-Dyn provides the highest performance
(14% improvement in weighted speedup over FREQ) among
the four techniques. RBLA and RBLA-Dyn outperform FREQ
and FREQ-Dyn, respectively, because the RBLA techniques
place data with low row bu�er locality in DRAM where it can
be accessed at the lower DRAM array access latency, while
keeping data with high row bu�er locality in PCM where it
can be accessed at the already-low row bu�er hit latency.
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Figure 4: Weighted speedup of the four caching techni-
ques: FREQ, FREQ-Dyn, RBLA, and RBLA-Dyn. Reproduced
from [125].

Thread Fairness. Figure 5 shows the fairness of each
caching technique. We measure fairness using maximum
slowdown [3, 27, 28, 51, 52, 86, 112, 113, 115, 121, 122], which is
the highest slowdown (reciprocal of speedup) experienced
by any benchmark within the multiprogrammed workload.
A lower maximum slowdown indicates higher fairness. We
observe from the �gure that RBLA-Dyn provides the highest
thread fairness (6% improvement in maximum slowdown over
FREQ) out of all evaluated policies. RBLA-Dyn throttles back
on non-bene�cial data migrations, reducing the amount of
memory bandwidth and DRAM space consumed due to such
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Figure 5: Fairness of the four caching techniques: FREQ,
FREQ-Dyn, RBLA, and RBLA-Dyn (lower is better). Repro-
duced from [125].

migrations. Combined with the reduced average memory
access latency, RBLA-Dyn reduces contention for memory
bandwidth among co-running applications, providing higher
fairness.
Memory Energy E�ciency. Figure 6 shows that RBLA-

Dyn achieves the highest memory energy e�ciency (10% im-
provement over FREQ) compared to other policies, in terms of
performance per Watt. This is because RBLA-Dyn places data
with low row bu�er locality in DRAM, making the energy
cost of row bu�er miss accesses lower than it would be if such
data were placed in PCM. RBLA-Dyn also reduces energy con-
sumption by reducing the amount of non-bene�cial or useless
data migrations.
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Figure 6: Energy e�ciency of the four caching techni-
ques: FREQ, FREQ-Dyn, RBLA, and RBLA-Dyn. Reproduced
from [125].

We provide the following other evaluation results in
Section VII of our ICCD 2012 paper [125]:
• Impact of RBLA-Dyn on average memory latency

(Section VII-A of [125]).
• Impact of RBLA-Dyn on DRAM and PCM channel utiliza-

tion (Section VII-A of [125]).
• Memory access breakdown of each workload to DRAM and

PCM (Section VII-A of [125]).
• Impact of RBLA-Dyn on PCM lifetime (Section VII-D of

[125]).
• Comparison with all-PCM and all-DRAM systems

(Section VII-E of [125]).
As we discuss in detail in our ICCD 2012 paper [125], RBLA-
Dyn bridges the gap in performance between homogeneous
all-DRAM and all-PCM memory systems of equal addressable
capacity (achieving within 29% of the performance of an all-

DRAM system, and improving performance by 31% over an
all-PCM system), while providing close to seven years of
memory lifetime.3

We conclude that taking row bu�er locality into account
enables new hybrid memory caching policies that achieve
high performance and energy e�ciency.

5. Related Work
To our knowledge, our ICCD 2012 paper [125] is the �rst

work to observe that row bu�er hit latencies are similar in
di�erent memory technologies, and uses this observation to
devise a caching policy that improves the performance and
energy e�ciency of a hybrid memory system. No previous
work, as far as we know, considered row bu�er locality as
a key metric for deciding what data to cache and what not
to cache. We discuss related work on caching policies and
hybrid memory systems.
Caching Based on Data Access Frequency. Jiang et

al. [43] propose caching only the data that experiences a high
number of accesses in an on-chip DRAM cache (in 4–8 KB
block sizes), to reduce o�-chip memory bandwidth consump-
tion. Johnson and Hwu [44] use a counter-based mechanism
to track data reuse at a granularity larger than a cache block.
Cache blocks in a region with less reuse bypass a direct-
mapped cache if that region con�icts with another that has
more reuse. We propose to take advantage of row bu�er loca-
lity in memory banks when employing o�-chip DRAM and
PCM. We exploit the fact that accesses to DRAM and PCM
have similar average latencies for rows that have high row
bu�er locality.

Ramos et al. [98] adapt a bu�er cache replacement algo-
rithm to rank pages based on their frequency and recency of
accesses, and place the highly-ranking pages in DRAM, in a
DRAM-PCM hybrid memory system. Our work is orthogonal,
because the page-ranking algorithm can be adapted to rank
pages based on their frequency and recency of row bu�er
misses (not counting accesses that are row bu�er hits), for
which we expect improved performance.

Caching Based on Locality of Data Access. Gonzalez
et al. [37] propose placing data in one of two last-level caches
depending on whether it exhibits spatial or temporal loca-
lity. They also propose bypassing the cache when accessing
large data structures with large strides (e.g., big matrices) to
prevent cache thrashing. Rivers and Davidson [101] propose
separating out data without temporal locality from data with,
and placing it in a special bu�er to prevent the pollution of
the L1 cache. These works are primarily concerned with on-
chip L1/L2 caches that have access latencies on the order of a
few to tens of processor clock cycles, where o�-chip memory
bank row bu�er locality is less applicable.

3Note that lifetime can be further improved by enabling more aggressive
write optimization [106], and by taking advantage of application-level error
tolerance [74].
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There have been many works in on-chip caching to im-
prove cache utilization (e.g., a recent one uses an evicted
address �lter to predict cache block reuse [108]), but none of
these consider the row bu�er locality of cache misses.
Caching Based on Other Criteria. Chatterjee et al. [22]

observe that the �rst word of cache blocks is critical to
performance, and propose to store only the �rst word of
each block in fast DRAM. Phadke and Narayanasamy [95]
propose to classify applications into three categories ba-
sed on memory-level parallelism (MLP): latency-sensitive,
bandwidth-sensitive, and insensitive-to-both. To estimate
MLP, they pro�le the misses per kilo-instruction (MPKI) and
stall time of each application o�ine during the compilation
stage. Applications with high MPKI but low stall time are
considered to have good MLP.
Hybrid Memory Systems. Qureshi et al. [97] propose

increasing the size of main memory by adopting PCM, and
using DRAM as a conventional cache to PCM. The reduction
in page faults due to the increase in main memory size brings
performance and energy improvements to the system. Our
ICCD 2012 paper [125] proposes a new, e�ective DRAM ca-
ching policy to PCM, and studies performance e�ects without
page faults present.

Li et al. [66] propose UHM, a utility-based hybrid memory
management mechanism that expands upon our RBLA policy.
UHM estimates the utility of each page, which is the bene�t
to system performance of placing each page in di�erent types
of memory (e.g., DRAM and NVM). UHM migrates to the fast
memory of a hybrid memory system only those pages whose
utility would improve the most after migration.

Ren et al. [100] propose ThyNVM, which manages the
DRAM and PCM spaces carefully and adapts the granula-
rity of management to the access patterns in a manner that
provides crash consistency in a persistent memory system.

Dhiman et al. [29] propose a hybrid main memory system
that exposes DRAM and PCM addressability to the software
(OS). If the number of writes to a particular PCM page exceeds
a certain threshold, the contents of the page are copied to
another page (either in DRAM or PCM), thus facilitating PCM
wear-leveling. Mogul et al. [82] suggest that the OS exploit
metadata information available to it to make data placement
decisions between DRAM and non-volatile memory. Similar
to [29], their data placement criteria are centered around the
write frequency to data. Our proposal is complementary to
this work, and row bu�er locality information, if exposed,
can be used by the OS to place pages in DRAM or PCM.

Bivens et al. [4] examine the various design concerns
of a heterogeneous memory system such as memory la-
tency, bandwidth, and endurance requirements of employing
storage class memory (e.g., PCM, STT-MRAM, NAND �ash
memory). Their hybrid memory organization is similar to
ours and that in [97], in that DRAM is used as a cache to a
slower memory medium, transparently to software. Phadke
et al. [95] propose to pro�le the memory access patterns

of individual applications in a multi-core system, and place
their working sets in the particular type of DRAM that best
suits the application’s memory demands. In contrast, RBLA
dynamically makes �ne-grained data placement decisions
at a row granularity, depending on the row bu�er locality
characteristics of each page.

Agarwal et al. [1] propose a software-based approach to
manage huge pages (e.g., 2MB pages) in hybrid memory sys-
tems. The mechanism pro�les the memory access patterns of
huge pages, and uses the pro�ling information to guide page
migration between DRAM and NVM. Peña and Balaji [94]
propose a pro�ling tool to assess the impact of distributing
memory objects across memory devices in hybrid memory
systems. Bock et al. [5] propose a scheme that allows con-
current migration of multiple pages between di�erent types
of memory devices without signi�cantly a�ecting the me-
mory bandwidth. Gai et al. [34] propose a data placement
scheme that aims to minimize the energy consumption of
hybrid memory systems. Liu et al. [69] propose a scheme that
manages the entire memory hierarchy, which includes caches,
memory channels, and DRAM/NVM banks. Dulloor et al. [30]
propose a programmer-guided data placement tool, which
requires programmers to modify the source code, and needs
data from a representative pro�ling run of the application,
prior to making placement decisions. Ideas from all of these
works can be combined with RBLA for better performance
and e�ciency.
Exploiting Row Bu�er Locality. Many previous works

exploit row bu�er locality to improve memory system per-
formance, but none (to our knowledge) develop a cache data
placement policy that considers the row bu�er locality of
the block to be cached. Lee et al. [55, 56, 57] propose to use
multiple short row bu�ers in PCM devices, much like an in-
ternal device cache, to increase the row bu�er hit rate. Meza
et al. [77] examine the case for small row bu�ers for NVM de-
vices. Sudan et al. [116] propose a mechanism that identi�es
frequently referenced sub-rows of data, and migrates them
to reserved rows. By co-locating these frequently accessed
sub-rows, this scheme aims to increase the row bu�er hit rate
of memory accesses, and improve performance and energy
consumption. DRAM-aware last-level cache writeback sche-
mes [60, 111] speculatively issue writeback requests that are
predicted to hit in the row bu�er. RBLA is complementary to
these works, and can be applied together with them because
RBLA targets a di�erent problem.

Row bu�er locality is also commonly exploited in memory
scheduling algorithms. The First-Ready First-Come-First-
Serve algorithm (FR-FCFS) [102, 132] prioritizes memory
requests that hit in the row bu�er, improving the latency,
throughput, and energy cost of serving memory requests.
Many other memory scheduling algorithms [3, 31, 32, 33, 36,
41, 42, 46, 47, 51, 52, 58, 59, 60, 71, 83, 84, 85, 86, 89, 90, 111, 112,
113, 114, 115, 120, 121, 124, 130] build upon this “row-hit �rst”
principle.
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Muralidhara et al. [86] use a thread’s row bu�er locality as
a metric to decide which channel the thread’s pages should
be allocated to in a multi-channel memory system. Their goal
is to reduce memory interference between threads, and as
such their technique is complementary to ours.

6. Signi�cance
Our ICCD 2012 paper [125] makes several novel contri-

butions that we expect will have a long-term impact on the
design of memory systems, and we believe that our work
inspires several new research questions.

6.1. Long-Term Impact
The memory scaling bottleneck continues to be a signi�-

cant hurdle to system performance and energy e�ciency [87,
88, 91]. Emerging applications operate on increasingly-larger
sets of data, and require high-capacity, high-performance
main memories, but the poor scaling of DRAM limits the
ability of these applications to �t their entire working sets
within a DRAM-based main memory. Because DRAM cannot
keep pace with application needs, we expect that the demand
for alternative memory technologies will continue to grow
in the coming years.

Hybrid memory systems can allow systems to harness
these alternative memory technologies without fully sacri�-
cing the bene�ts of DRAM. By combining slower but larger
memories (e.g., NVM) with faster but smaller memories (e.g.,
DRAM), a hybrid memory system has the potential to provide
the illusion of a fast and large memory system at a reasona-
ble cost. However, as we discuss, this potential can only be
realized by carefully considering which pieces of data are pla-
ced in each of the constituent memories of a hybrid memory
system. To our knowledge, our ICCD 2012 paper [125] is the
�rst to show that the organization of the underlying memory
technologies, such as the existence of row bu�ers, can be
used to make more intelligent data placement decisions.

While our ICCD 2012 paper [125] shows the impact of our
proposed data placement policy on a hybrid memory con-
sisting of DRAM and PCM, it can be used to enable a wide
range of hybrid memory systems. For example, STT-MRAM
devices can make use of a row bu�er [2, 54, 77, 78], and ex-
pensive reduced-latency DRAM devices [80, 104] also make
use of a row bu�er. RBLA can be used to improve the perfor-
mance of hybrid memories that include any of these memory
technologies, as our general observations on row bu�er lo-
cality remain the same. We expect that this versatility will
increase the potential impact of RBLA, as no single memory
technology has yet to emerge as the dominant replacement
for DRAM.

6.2. Research Questions
As we show in our ICCD 2012 paper [125], the e�cient

management of hybrid memory systems requires the identi�-
cation and consideration of the key similarities and trade-o�s

of each memory type. An open research question inspired by
RBLA’s use of row bu�er locality is what other properties of
memory systems should hybrid memory management mecha-
nisms consider? For example, one of our recent works [66]
incorporates information on memory-level parallelism (MLP)
into data placement decisions in hybrid memory manage-
ment. As that work shows, we can use a combination of
access frequency, row bu�er locality, and MLP to predict the
overall performance impact of migrating a page between each
memory type. As future memory technologies are developed,
we expect that other such properties will be important to
consider, in order to maximize the bene�ts provided by the
hybrid memory system.

Several works propose on-chip DRAM caches [23, 43, 127,
128], where a small amount of DRAM is used as a last-level
cache to reduce the number of accesses to a larger o�-chip
DRAM. This is akin to the design of a hybrid memory system,
but there are di�erent trade-o�s in each design. For example,
while the row bu�er hit latency is typically similar across
memory technologies in hybrid memories, both a row bu�er
hit and a row bu�er miss take longer when accessing the
o�-chip DRAM as opposed to accessing the on-chip DRAM
cache. This inspires us to ask how can principles of hybrid
memory systems be applied to DRAM cache management, and
vice versa? Extending upon this, can we design general me-
chanisms that can be applied to both hybrid memory systems
and DRAM cache management? As one example, our recent
work [66] on predicting the utility of data placement decisi-
ons is highly parameterized, and these parameters can easily
be tuned to represent the trade-o�s in both hybrid memory
systems and in systems with a DRAM cache. We believe and
hope that future works should strive to develop other such
general mechanisms.

7. Conclusion
Our ICCD 2012 paper [125] observes that row bu�er access

latency (and energy) in DRAM and PCM are similar, while
PCM array access latency (and energy) is much higher than
DRAM array access latency (and energy). Therefore, in a
hybrid memory system where DRAM is used as a cache to
PCM, it makes sense to place in DRAM data that would cause
frequent row bu�er misses as such data, if placed in PCM,
would incur the high PCM array access latency. We develop
a caching policy that achieves this e�ect by keeping track
of rows that have high row bu�er miss counts (i.e., low row
bu�er locality, but high reuse) and places only such rows in
DRAM. Our �nal policy dynamically determines the thres-
hold used to decide whether a row has low locality based
on cost-bene�t analysis. Evaluations show that the propo-
sed row bu�er locality aware caching policy provides better
performance, fairness, and energy-e�ciency compared to
caching policies that only consider access frequency or re-
cency. Our mechanisms are applicable to and can improve
the performance of other hybrid memory systems consisting
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of di�erent technologies. We hope that our �ndings can help
ease the adoption of emerging memory technologies in future
systems, and inspire further research in data management
policies.
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This paper summarizes the idea of Zorua, which was pu-
blished in MICRO 2016 [88], and examines the work’s signi�-
cance and future potential. The application resource speci�ca-
tion—a static speci�cation of several parameters such as the
number of threads and the scratchpad memory usage per thread
block—forms a critical component of modern GPU program-
ming models. This speci�cation determines the parallelism, and
hence performance, of the application during execution because
the corresponding on-chip hardware resources are allocated
and managed based on this speci�cation. This tight-coupling
between the software-provided resource speci�cation and re-
source management in hardware leads to signi�cant challenges
in programming ease, portability, and performance. Zorua
is a new resource virtualization framework, that decouples
the programmer-speci�ed resource usage of a GPU application
from the actual allocation in the on-chip hardware resources.
Zorua enables this decoupling by virtualizing each resource
transparently to the programmer.

The virtualization provided by Zorua builds on two key con-
cepts—dynamic allocation of the on-chip resources, and their
oversubscription using a swap space in memory. Zorua pro-
vides a holistic GPU resource virtualization strategy designed
to (i) adaptively control the extent of oversubscription, and
(ii) coordinate the dynamic management of multiple on-chip
resources to maximize the e�ectiveness of virtualization. We de-
monstrate that by providing the illusion of more resources than
physically available via controlled and coordinated virtualiza-
tion, Zorua o�ers several important bene�ts: (i) Programming
Ease. Zorua eases the burden on the programmer to provide
code that is tuned to e�ciently utilize the physically available
on-chip resources. (ii) Portability. Zorua alleviates the neces-
sity of re-tuning an application’s resource usage when porting
the application across GPU generations. (iii) Performance. By
dynamically allocating resources and carefully oversubscribing
them when necessary, Zorua improves or retains the perfor-
mance of applications that are already highly tuned to best
utilize the resources. The holistic virtualization provided by
Zorua has many other potential uses, e.g., �ne-grained resource
sharing among multiple kernels, low-latency preemption of
GPU programs, and support for dynamic parallelism.

1. Motivation: Key Challenges in
Modern GPUs

Modern Graphics Processing Units (GPUs) o�er high per-
formance and energy e�ciency for many classes of appli-
cations by concurrently executing thousands of threads. In
order to execute, each thread requires several major on-chip
resources: (i) registers, (ii) scratchpad memory (if used in the
program), and (iii) a thread slot in the thread scheduler that
keeps all the bookkeeping information required for execution.

Today, these resources are statically allocated to threads ba-
sed on several parameters—the number of threads per thread
block, register usage per thread, and scratchpad usage per
block. We refer to these static application parameters as
the resource speci�cation of the application. This resource
speci�cation forms a critical component of modern GPU pro-
gramming models (e.g., CUDA [63], OpenCL [50]). The static
allocation over a �xed set of hardware resources based on
the software-speci�ed resource speci�cation creates a tight
coupling between the program and the physical hardware
resources. As a result of this tight coupling, for each applica-
tion, there are only a few optimized resource speci�cations
that maximize resource utilization. Picking a suboptimal spe-
ci�cation leads to underutilization of resources and hence,
very often, performance degradation. This leads to three key
di�culties related to obtaining good performance on mo-
dern GPUs: programming ease, portability, and performance
degradation.
Programming Ease. First, the burden falls upon the pro-

grammer to optimize the resource speci�cation. For a naive
programmer, this is a challenging task because, in addition to
selecting a speci�cation suited to an algorithm, the program-
mer needs to be aware of the details of the GPU architecture
to �t the speci�cation to the underlying hardware resources.
This tuning is easy to get wrong because there are many
highly suboptimal performance points in the speci�cation
space, and even a minor deviation from an optimized spe-
ci�cation can lead to a drastic drop in performance due to
lost parallelism. We refer to such drops as performance cli�s.
Even a small change in one resource can result in a signi�-
cant performance cli�, degrading performance by as much
as 50%. Figure 1 depicts multiple sizable cli�s in an example
application, when di�erent resource speci�cations are used
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Figure 1: Performance cli�s in Minimum Spanning Tree
(MST ) when run on the NVIDIA GTX 745. Reproduced
from [88].

when the program is run on a real modern GPU, the NVIDIA
GTX 745.1
Portability. Second, di�erent GPUs have varying quanti-

ties of each of the resources. Hence, an optimized speci�ca-
tion on one GPU may be highly suboptimal on another. This
lack of portability necessitates that the programmer re-tune
the resource speci�cation of the application for every new
GPU generation. This problem is especially signi�cant in
virtualized environments, such as data centers, cloud com-
puting, or compute clusters, where the same program may
run on a wide range of GPU architectures. Figure 2 depicts
the 69% performance loss when porting optimized code from
the NVIDIA Kepler [65]/Maxwell [66] architectures to the
NVIDIA Fermi [64] architecture.
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Figure 2: Performance variation across di�erentGPUgenera-
tions fromNVIDIA (Fermi, Kepler, andMaxwell) forDiscrete
Fourier Transform (DCT). Reproduced from [88].

Performance. Third, for a programmer who chooses to
employ software optimization tools (e.g., auto-tuners [21,
24, 49, 74, 75, 79]) or manually tailor the program to �t the
hardware, performance is still constrained by the �xed, static
resource speci�cation. It is well known [27, 42, 48, 62, 87, 97]
that the on-chip resource requirements of a GPU application
vary throughout execution. Since the program (even after
auto-tuning) has to statically specify its worst-case resource
requirements, severe dynamic underutilization of several GPU
resources ensues [87], leading to suboptimal performance.
1Our MICRO 2016 paper [88] describes the experimental methodology for
collecting these real system results.

2. A Holistic Approach to
Resource Virtualization

To address these three challenges at the same time, we pro-
pose Zorua, a new framework that decouples an application’s
resource speci�cation from the available hardware resources
by virtualizing all three major resources (i.e., scratchpad me-
mory, register �le, and thread slots) in a holistic manner. This
virtualization provides the illusion of more resources to the
GPU programmer and software than physically available, and
enables the runtime system and the hardware to dynamically
manage multiple resources in a manner that is transparent to
the programmer.

2.1. Key Concepts
The virtualization strategy used by Zorua is built upon two

key concepts. First, to mitigate performance cli�s when we do
not have enough physical resources, we oversubscribe resour-
ces by a small amount at runtime, by leveraging their dyna-
mic underutilization and maintaining a swap space (in main
memory) for the extra resources required. Second, Zorua
improves utilization by determining the runtime resource re-
quirements of an application. It then allocates and deallocates
resources dynamically, managing them (i) independently of
each other to maximize each resource’s utilization; and (ii) in
a coordinated manner, to enable e�cient execution of each
thread with all its required resources available.

Figure 3 depicts the high-level overview of the virtualiza-
tion provided by Zorua. The virtual space refers to the illusion
of the quantity of available resources. The physical space re-
fers to the actual hardware resources (speci�c to the target
GPU architecture), and the swap space refers to the resources
that do not �t in the physical space and hence are spilled to
other physical locations. For the register �le and scratchpad
memory, the swap space is mapped to the global memory
space in the memory hierarchy. For threads, only those that
are mapped to the physical space are available for scheduling
and execution at any given time. If a thread is mapped to the
swap space, its state (e.g., the PC) is saved in memory. Re-
sources in the virtual space can be freely re-mapped between
the physical and swap spaces to maintain the illusion of the
virtual space resources.

Threads Registers Scratchpad

Virtual Space

Swap Space Physical Space

ThreadsThreads
Scheduler

Compute 
Units

Registers

Scratchpad

Registers

Scratchpad

Figure 3: High-level overview of Zorua. Reproduced from
[88].
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2.2. Challenges in Virtualization
Unfortunately, oversubscription means that latency-critical

resources, such as registers and scratchpad, may be swapped
to memory at the time of access, resulting in high overhe-
ads in performance and energy. This leads to two critical
challenges in designing a framework to enable virtualization.
The �rst challenge is to e�ectively determine the extent of
virtualization, i.e., by how much each resource appears to be
larger than its real physical amount, such that we can mini-
mize oversubscription while still reaping its bene�ts. This is
di�cult as the resource requirements continually vary during
runtime. The second challenge is to minimize accesses to
the swap space. This requires coordination in the virtualized
management of multiple resources, so that enough of each
resource is available on-chip at the same time when needed.

2.3. Design Ideas
To solve these challenges, Zorua employs two key ideas.

First, we leverage the software (the compiler) to provide an-
notations with information regarding the future resource
requirements of each phase of the application. This infor-
mation enables the framework to make intelligent dynamic
decisions ahead of time, with respect to both the extent of
oversubscription and the allocation/deallocation of resources.
Second, we use an adaptive runtime system to control the
allocation of resources. This allows us to (i) dynamically alter
the extent of oversubscription; and (ii) continuously coor-
dinate the allocation of multiple on-chip resources and the
mapping between their virtual and physical/swap spaces; de-
pending on the varying runtime requirements of each thread.
We brie�y describe each design idea in turn.
2.3.1. Leveraging Software Annotations of Phase Cha-
racteristics. We observe that the runtime variation in re-
source requirements typically occurs at the granularity of
phases of a few tens of instructions. This variation occurs
because di�erent parts of kernels perform di�erent operati-
ons that require di�erent resources. For example, loops that
primarily load/store data from/to scratchpad memory tend to
be less register heavy. Sections of code that perform speci�c
computations (e.g., matrix transformation, graph manipula-
tion), can either be register heavy or primarily operate out of
scratchpad. Often, scratchpad memory is used for only short
intervals [97], e.g., when data exchange between threads is
required, such as for a reduction operation.

Figure 4 depicts a few example phases from the N-Queens
Solver (NQU) [18] kernel. NQU is a scratchpad-heavy applica-
tion, but it does not use the scratchpad at all during the initial
computation phase. During its second phase, it performs its
primary computation out of the scratchpad, using as much
as 4224B. During its last phase, the scratchpad is used only
for reducing results, which requires only 384B. There is also
signi�cant variation in the maximum number of live registers
in the di�erent phases, as shown in Figure 4.

__global__ void solve_nqueen_cuda_kernel(…){

.phasechange 16,0;----------------------------------------------------

// initialization phase

const int tid = threadIdx.x;

const int bid = blockIdx.x;

... 

.phasechange 24,4224;-------------------------------------------------

if(idx < total_conditions) {

mask[tid][i] = total_masks[idx];

... 

}

__syncthreads();

.phasechange 12,384;--------------------------------------------------

// reduction phase

if(tid < 64 && tid + 64 < BLOCK_SIZE) 

{ sum[tid] += sum[tid + 64]; } 

...

}

Phase #1: 16 Regs, 0B Scratchpad

Phase #2: 24 Regs, 4224B Scratchpad

Phase #3: 12 Regs, 
384B Scratchpad

Figure 4: Example phases from N-Queens Solver (NQU). Re-
produced from [88].

In order to capture both the resource requirements as well
as their variation over time, we partition the program into a
number of phases. A phase is a sequence of instructions with
su�ciently di�erent resource requirements than adjacent
phases.2 Barrier or fence operations also indicate a change
in requirements for a di�erent reason—threads that are wai-
ting at a barrier do not immediately require the thread slot
that they are holding. We interpret barriers and fences as
phase boundaries since they potentially alter the utilization
of their thread slots. The compiler inserts special instructions
called phase speci�ers to mark the start of a new phase. Each
phase speci�er contains information regarding the resource
requirements of the next phase. Phase changes are shown as
“.phasechange” pragmas in Figure 4.

A phase forms the basic unit for resource allocation and
deallocation, as well as for making oversubscription decisi-
ons. It o�ers a �ner granularity than an entire thread to make
such decisions. The phase speci�ers provide information
on the future resource usage of the thread at a phase boun-
dary. This enables (i) preemptively controlling the extent of
oversubscription at runtime, and (ii) dynamically allocating
and deallocating resources at phase boundaries to maximize
utilization of the physical resources.
2.3.2. Control with an Adaptive Runtime System. Phase
speci�ers provide information to make oversubscription and
allocation/deallocation decisions. However, we still need a
way to make decisions on the extent of oversubscription and
appropriately allocate resources at runtime. To this end, we
use an adaptive runtime system, which we refer to as the
coordinator. Figure 5 presents an overview of the coordinator.

The virtual space enables the illusion of a larger amount
of each of the resources than what is physically available,
to adapt to di�erent application requirements. This illusion
enables higher thread-level parallelism than what can be
achieved with solely the �xed, physically available resources,
by allowing more threads to execute concurrently. The size of
the virtual space at a given time determines this parallelism,
and those threads that are e�ectively executed in parallel are
referred to as active threads. All active threads have thread
2We refer the reader to Section 4.6 of our MICRO 2016 paper [88] for speci�c
details on how phases are identi�ed.

3

78



Pending 
Threads

Active Threads

Physical/Swap Space To Warp Scheduler 
& Compute Units

COORDINATOR

Application Threads

Schedulable 
Threads

Virtual Space

Figure 5: Overview of the coordinator. Reproduced
from [88].

slots allocated to them in the virtual space (and hence can
be executed), but some of them may not be mapped to the
physical space at any given time. As discussed previously,
the resource requirements of each application continuously
change during execution. To adapt to these runtime changes,
the coordinator leverages information from the phase speci-
�ers to make decisions on oversubscription. The coordinator
makes these decisions at every phase boundary and thereby
controls the size of the virtual space for each resource.

2.4. Zorua: An Overview
To address the challenges in virtualization by leveraging

the above ideas, Zorua employs a software-hardware code-
sign that comprises three components: (i) The compiler an-
notates the program by adding special instructions (phase
speci�ers) to partition it into phases and to specify the resource
needs of each phase of the application. (ii) The coordinator ,
a hardware-based adaptive runtime system, uses the compi-
ler annotations to dynamically allocate/deallocate resources
for each thread at phase boundaries. The coordinator plays
the key role of continuously controlling the extent of the
oversubscription at each phase boundary. (iii) Hardware
virtualization support includes a mapping table for each
resource to locate each virtual resource in either the physi-
cally available on-chip resources or the swap space in main
memory, and the machinery to swap resources between the
physical space and the swap space.

Zorua has two key hardware components: (i) the coordi-
nator that contains queues to bu�er the pending threads and
control logic to make oversubscription and resource manage-
ment decisions, and (ii) resource mapping tables to map each of
the resources to their corresponding physical or swap spaces.
Our MICRO 2016 paper [88] provides the detailed implemen-
tation of Zorua in Section 4. In particular, we describe several
key issues, including how (1) Zorua determines the amount
of oversubscription for each resource (Section 4.4 of [88]),
(2) Zorua virtualizes each resource (Section 4.5 of [88]), and
(3) the compiler identi�es each phase (Section 4.6 of [88]).

3. Results
In this section, we evaluate the e�ectiveness of Zorua in im-

proving programming ease, portability, and performance. Our

detailed experimental methodology is described in Section 5
of our MICRO 2016 paper [88]. More results are provided in
Section 6 of [88].

3.1. E�ect on Performance Variation and Cli�s
We �rst examine how Zorua alleviates the high variation

in performance by reducing the impact of resource speci�ca-
tions on resource utilization. Figure 6 summarizes the range
in performance across a wide range of resource speci�cations
(indicating an undesirable dependence on the speci�cation),
for the baseline architecture, WLM (which allocates resour-
ces at the �ner granularity of a warp [91]), and Zorua for a
representative set of applications, using a Tukey box plot [61].
The boxes in the box plot represent the range between the
�rst quartile (25%) and the third quartile (75%). The whiskers
extending from the boxes represent the maximum and mini-
mum points of the distribution, or 1.5× the length of the box,
whichever is smaller. Any points that lie more than 1.5× the
box length beyond the box are considered to be outliers [61],
and are plotted as individual points. The line in the middle
of the box represents the median, while the “X” represents
the average. We make two major observations from Figure 6.

Figure 6: Normalized performance distribution. Reproduced
from [88].

First, we �nd that Zorua signi�cantly reduces the per-
formance range across all evaluated resource speci�cati-
ons. Averaged across all of our applications, the worst re-
source speci�cation for Baseline achieves 96.6% lower per-
formance than the best performing resource speci�cation.
For WLM [91], this performance range reduces only slightly,
to 88.3%. With Zorua, the performance range drops signi�-
cantly, to 48.2%. We see drops in the performance range for
all applications except SSSP. With SSSP, the range is already
small to begin with (23.8% in Baseline), and Zorua exploits
the dynamic underutilization, which improves performance
but also adds a small amount of variation.

Second, while Zorua reduces the performance range, it also
preserves or improves performance of the best performing
points. As we examine in more detail in Section 3.2, the
reduction in performance range occurs as a result of improved
performance mainly at the lower end of the distribution.

To gain insight into how Zorua reduces the performance
range and improves performance for the worst performing
points, we analyze how it reduces performance cli�s. We
study the tradeo� between resource speci�cation and exe-
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Figure 7: E�ect on performance cli�s. Reproduced from [88].

cution time for three representative applications: DCT (Fi-
gure 7a), MST (Figure 7b), and NQU (Figure 7c). For all three
�gures, we normalize execution time to the best execution
time under Baseline. We make two observations from the
�gures.

First, Zorua successfully mitigates the performance cli�s
that occur in Baseline. For example, DCT and MST are both
sensitive to the thread block size, as shown in Figures 7a
and 7b, respectively. We have circled the locations at which
cli�s exist in Baseline. Unlike Baseline, Zorua maintains
more steady execution times across the number of threads
per block, employing oversubscription to overcome the loss
in parallelism due to insu�cient on-chip resources. We see
similar results across all of our applications.

Second, we observe that while WLM [91] can reduce some
of the cli�s by mitigating the impact of large block sizes,
many cli�s still exist under WLM (e.g., NQU in Figure 7c).
This cli� in NQU occurs as a result of insu�cient scratchpad
memory, which cannot be handled by warp-level manage-
ment. Similarly, the cli�s for MST (Figure 7b) also persist with
WLM because MST has a lot of barrier operations, and the
additional warps scheduled by WLM ultimately stall, waiting
for other warps within the same block to acquire resources.
We �nd that, with oversubscription, Zorua is able to smooth
out those cli�s that WLM is unable to eliminate.

3.2. E�ect on Performance
As Figure 6 shows, Zorua either retains or improves the

best performing point for each application, compared to the
Baseline. Zorua improves the best performing point for each
application by 12.8% on average, and by as much as 27.8%
(for DCT ). This improvement comes from the improved pa-
rallelism obtained by exploiting the dynamic underutilization
of resources, which exists even for optimized speci�cations.
Applications such as SP and SLA have little dynamic unde-
rutilization, and hence do not show any performance impro-
vement. NQU does have signi�cant dynamic underutilization,
but Zorua does not signi�cantly improve the best performing
point as the overhead of oversubscription outweighs the be-
ne�t, and Zorua dynamically chooses not to oversubscribe.
We conclude that even for many speci�cations that are opti-

mized to �t the underlying hardware resources, Zorua is able
to further improve performance.

We also note that, in addition to reducing performance vari-
ation and improving performance for optimized points, Zorua
improves performance by 25.2% on average for all resource
speci�cations across all evaluated applications.

3.3. E�ect on Portability
Performance cli�s often behave di�erently across di�erent

GPU architectures, and can signi�cantly shift the best per-
forming resource speci�cation point. We study how Zorua
can ease the burden of performance tuning if an application
has been already tuned for one GPU model, and is later por-
ted to another GPU. To understand this, we de�ne a new
metric, porting performance loss, that quanti�es the perfor-
mance impact of porting an application without re-tuning
it. To calculate this, we �rst normalize the execution time
of each speci�cation point to the execution time of the best
performing speci�cation point. We then pick a source GPU
architecture (i.e., the architecture that the GPU was tuned for)
and a target GPU architecture (i.e., the architecture that the
code will run on), and �nd the point-to-point drop in perfor-
mance (when the code is executed on the target GPU) for all
points whose performance on the source GPU comes within
5% of the performance at the best performing speci�cation
point.3

Figure 8 shows the maximum porting performance loss
for each application, across any two pairings of our three
simulated GPU architectures (NVIDIA Fermi, Kepler, and
Maxwell). We �nd that Zorua greatly reduces the maximum
porting performance loss that occurs under both Baseline
and WLM for all but one of our applications. On average,
the maximum porting performance loss is 52.7% for Baseline,
51.0% for WLM, and only 23.9% for Zorua.

Notably, Zorua delivers signi�cant improvements in porta-
bility for applications that previously su�ered greatly when
ported to another GPU, such as DCT and MST. For both of
these applications, the performance variation di�ers so much
3We include any point within 5% of the best performance as there are often
multiple points close to the best point, and the programmer may choose
any of them.
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Figure 8: Maximum porting performance loss. Reproduced
from [88].

between GPU architectures that, despite tuning the applica-
tion on the source GPU to be within 5% of the best achievable
performance, their performance on the target GPU is often
more than twice as slow as the best achievable performance
on the target platform. Zorua signi�cantly lowers this porting
performance loss down to 28.1% for DCT and 36.1% for MST.
We also observe that for BH, Zorua actually slightly increases
the porting performance loss with respect to the Baseline.
This is because for Baseline, there are only two points that
perform within the 5% margin for our metric, whereas with
Zorua, we have �ve points that fall in that range. Despite
this, the increase in porting performance loss for BH is low,
deviating only 7.0% from the best performance.

We conclude that Zorua enhances portability of applica-
tions by reducing the impact of a change in the hardware
resources for a given resource speci�cation. For applicati-
ons that have already been tuned on one platform, Zorua
signi�cantly lowers the penalty of not re-tuning for another
platform, allowing programmers to save development time.

4. Related Work
To our knowledge, our MICRO 2016 paper [88] is the �rst

work to propose a holistic framework to decouple a GPU
application’s resource speci�cation from its physical on-chip
resource allocation by virtualizing multiple on-chip resour-
ces. This enables the illusion of more resources than what
physically exists to the programmer, while the hardware re-
sources are managed at runtime by employing a swap space
(in main memory), transparently to the programmer. We
design a new hardware/software cooperative framework to
e�ectively virtualize multiple on-chip GPU resources in a con-
trolled and coordinated manner, thus enabling many bene�ts
of virtualization in GPUs.

We brie�y discuss prior work related to di�erent aspects
of our proposal: (i) virtualization of resources, (ii) improving
programming ease and portability, and (iii) more e�cient
management of on-chip resources.
Virtualization of Resources. Virtualization [20, 22, 33,

41] is a concept designed to provide the illusion, to the soft-
ware and programmer, of more resources than what truly
exists in physical hardware. It has been applied to the ma-
nagement of hardware resources in many di�erent contexts
[5, 10, 20, 22, 33, 41, 67, 89], with virtual memory [11, 22, 26, 41]
being one of the oldest forms of virtualization that is com-
monly used in high-performance processors today. Ab-

straction of hardware resources and use of a level of indi-
rection in their management leads to many bene�ts, including
improved utilization, programmability, portability, isolation,
protection, sharing, and oversubscription.

In this work, we apply the general principle of virtuali-
zation to the management of multiple on-chip resources in
modern GPUs. Virtualization of on-chip resources o�ers the
opportunity to alleviate many di�erent challenges in modern
GPUs. However, in this context, e�ectively adding a level
of indirection introduces new challenges, necessitating the
design of a new virtualization strategy. There are two key
challenges. First, we need to dynamically determine the extent
of the virtualization to reach an e�ective tradeo� between
improved parallelism due to oversubscription and the laten-
cy/capacity overheads of swap space usage. Second, we need
to coordinate the virtualization of multiple latency-critical
on-chip resources. To our knowledge, this is the �rst work to
propose a holistic software-hardware cooperative approach
to virtualizing multiple on-chip resources in a controlled and
coordinated manner that addresses these challenges, enabling
the di�erent bene�ts provided by virtualization in modern
GPUs.

Prior works propose to virtualize a speci�c on-chip re-
source for speci�c bene�ts, mostly in the CPU context. For
example, in CPUs, the concept of virtualized registers was
�rst used in the IBM 360 [5] and DEC PDP-10 [10] architec-
tures to allow logical registers to be mapped to either fast
yet expensive physical registers, or slow and cheap memory.
More recent works [67, 93, 94], propose to virtualize registers
to increase the e�ective register �le size to much larger re-
gister counts. This increases the number of thread contexts
that can be supported in a multi-threaded processor [67], or
reduces register spills and �lls [93, 94]. Other works propose
to virtualize on-chip resources in CPUs (e.g., [15,19,25,31,99]).
In GPUs, Jeon et al. [42] propose to virtualize the register
�le by dynamically allocating and deallocating physical re-
gisters to enable more parallelism with smaller, more power-
e�cient physical register �les. Concurrent to this work, Yoon
et al. [98] propose an approach to virtualize thread slots to in-
crease thread-level parallelism. These works propose speci�c
virtualization mechanisms for a single resource for speci�c be-
ne�ts. None of these works provide a cohesive virtualization
mechanism for multiple on-chip GPU resources in a control-
led and coordinated manner, which forms a key contribution
of our MICRO 2016 work.
Enhancing Programming Ease and Portability. There

is a large body of work that aims to improve programmability
and portability of modern GPU applications using software
tools, such as auto-tuners [21, 24, 49, 74, 75, 79], optimizing
compilers [17, 37, 47, 59, 95, 96], and high-level programming
languages and runtimes [23, 35, 72, 85]. These tools tackle a
multitude of optimization challenges, and have been demon-
strated to be very e�ective in generating high-performance
portable code. They can also be used to tune the resource
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speci�cation. However, there are several shortcomings in
these approaches. First, these tools often require pro�ling
runs [17, 21, 75, 79, 95, 96] on the GPU to determine the best
performing resource speci�cations. These runs have to be
repeated for each new input set and GPU generation. Second,
software-based approaches still require signi�cant program-
mer e�ort to write code in a manner that can be exploited
by these approaches to optimize the resource speci�cations.
Third, selecting the best performing resource speci�cations
statically using software tools is a challenging task in vir-
tualized environments (e.g., cloud computing, data centers),
where it is unclear which kernels may be run together on the
same SM or where it is not known, a priori, which GPU gene-
ration the application may execute on. Finally, software tools
assume a �xed amount of available resources. This leads to
runtime underutilization due to static allocation of resources,
which cannot be addressed by these tools.

In contrast, the programmability and portability bene�ts
provided by Zorua require no programmer e�ort in optimi-
zing resource speci�cations. Furthermore, these auto-tuners
and compilers can be used in conjunction with Zorua to furt-
her improve performance.
E�cient Resource Management. Prior works aim to

improve parallelism by increasing resource utilization using
hardware-based [6, 7, 30, 42, 45, 46, 55, 57, 62, 71, 84, 86, 91, 97],
software-based [32, 36, 53, 58, 68, 92, 97], and hardware-
software cooperative [8, 9, 43, 44, 73, 81, 82, 87] approaches.
Among these works, the closest to ours are [42,98] (discussed
earlier), [97], and [91]. These approaches propose e�cient
techniques to dynamically manage a single resource, and
can be used along with Zorua to improve resource e�ciency
further. Yang et al. [97] aim to maximize utilization of the
scratchpad with software techniques, and by dynamically
allocating/deallocating scratchpad memory. Xiang et al. [91]
propose to improve resource utilization by scheduling threads
at the �ner granularity of a warp rather than a thread block.
This approach can help alleviate performance cli�s, but not in
the presence of synchronization or scratchpad memory, nor
does it address the dynamic underutilization within a thread
during runtime. We quantitatively compare to this approach
in Section 3 and demonstrate Zorua’s bene�ts over it.

Other works leverage resource underutilization to improve
energy e�ciency [2, 27, 28, 29, 42] or perform other useful
work [54, 87]. These works are complementary to Zorua.

5. Signi�cance and Long-Term Impact
In this section, we describe the signi�cance and long-term

impact of our MICRO 2016 work, Zorua, by delineating its no-
velty, what it can enable in future systems, and new research
directions that it triggers.

5.1. Novelty
• This is the �rst work that takes a holistic approach to de-
coupling a GPU application’s resource speci�cation from its

physical on-chip resource allocation via the use of virtuali-
zation. We develop a comprehensive virtualization frame-
work that provides controlled and coordinated virtualization
of multiple on-chip resources to maximize the e�ectiveness
of virtualization.
• Making GPUs easy to program is critical for their wide-
spread use, and also to achieve the high performance pro-
mised by the massively parallel architecture. A key limiting
factor in GPU programming today is the burden placed on
the programmer in �nding a hardware resource speci�cation
that achieves very high performance. This is the �rst work
to ease that burden without compromising performance by
virtualizing the major hardware resources programmers are
required to manage today.
• Portability across GPU architectures is vital in environments
such as cloud computing and data centers to achieve predicta-
bly good performance, irrespective of the GPU generation the
application is executing on. This is the �rst work to tackle
the portability challenges that arise from the programmer’s
management of the �xed on-chip resources with a holistic
resource virtualization strategy.

5.2. What Zorua Can Enable in Future Systems
GPUs have emerged as the dominant massively parallel

GPU architecture, used as the platform of choice for a wide
range of parallel applications from machine learning to scien-
ti�c simulation. However, there are a number of key challen-
ges that limit the adoption of GPUs across broader classes
of applications and environments, e.g., data centers, cloud
computing, etc. Programmability and portability of GPU ap-
plications are two such challenges. But future GPUs will
need to address several other challenges before truly beco-
ming �rst-class compute engines. As we describe below, we
believe that our work can help address some of these other
challenges.
Multiprogramming in Virtualized Environments.

Zorua lends itself to easily addressing two key challenges
in enabling multiprogramming in virtualized environments
today:

Fine-grained resource sharing across kernels: Zorua manages
the di�erent resources independently and at a �ne granula-
rity, using a dynamic runtime system. Hence, Zorua can be
extended to support �ne-grained sharing and partitioning of
resources across multiple kernels to enable e�cient multipro-
gramming in GPUs. Zorua enables better resource utilization
in these multiprogrammed environments, while providing
the ability to control the partitioning of resources at runtime
to provide QoS, fairness, etc., by leveraging the hardware
runtime system. Zorua can work synergistically with sys-
tems such as Mosaic [8] and MASK [9], which enable e�cient
memory virtualization techniques for GPUs, to enable true
full-system multi-kernel execution.
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Preemptive multitasking: Another key challenge in ena-
bling true multiprogramming in GPUs is enabling rapid
preemption of kernels [69,83,90]. Context switching on GPUs
incurs a very high latency and overhead, as a result of the
large amount of register �le/scratchpad state that needs to
be saved before a new kernel can be executed. Zorua enables
�ne-grained management and virtualization of on-chip re-
sources. It can be naturally extended to enable quick preemp-
tion of a task via intelligent management of the swap space
and the mapping tables. It can also work synergistically with
CABA [87], framework for assist warp execution in GPUs,
to provide �exible and e�cient support for multitasking and
context switching.
Support for Other Parallel Programming Paradigms.

The �xed static resource allocation for each thread in modern
GPU architectures requires statically dictating the parallelism
for the program throughout its execution. Other forms of
parallel execution that are dynamic (e.g., CILK [12]) require
more �exible allocation of resources at runtime, and are hence
more challenging to enable on GPUs. Examples of this include
nested parallelism [56], where a kernel can dynamically spawn
new kernels or thread blocks, and helper threads [87] to utilize
idle resource at runtime to perform di�erent optimizations or
background tasks in parallel. Zorua makes it easy to enable
these paradigms by providing on-demand dynamic allocation
of resources.
Energy E�ciency, Scalability, and Reliability. To sup-

port massive parallelism, on-chip resources are a precious
and critical resource. However, these resources cannot grow
arbitrarily large as GPUs continue to be area-limited and on-
chip memory tends to be extremely power hungry and area
intensive [2, 27, 28, 42, 73, 98], which are trends we believe
will become increasingly important for the foreseeable future.
Furthermore, complex thread schedulers that can select a
thread for execution from an increasingly large thread pool
are required. Zorua enables using smaller register �les, scrat-
chpad memory and less complex or fewer thread schedulers
to save power and area while still retaining or improving
parallelism. The indirection o�ered by Zorua, along with
the dynamic management of resources, could also enable bet-
ter reliability. The virtualization framework trivially allows
portions of a resource that contain hard or soft faults to be
remapped to other portions of the resource that do not con-
tain faults, or to spare structures, thereby increasing the error
tolerance of these resources.

5.3. New Research Directions Zorua Enables
Zorua opens up several new avenues for more research,

which we brie�y discuss here.
Flexible Programming Models for GPUs and Hetero-

geneous Systems. By providing a �exible but dynamically
controlled view of the on-chip hardware resources, Zorua
changes the abstraction of the on-chip resources that is of-
fered to the programmer and software. This o�ers the op-

portunity to rethink resource management in GPUs from the
ground up. One could envision more powerful resource allo-
cation and better programmability with programming models
that do not require static resource speci�cation, leaving the
compiler/runtime system and the underlying virtualized fra-
mework to completely handle all forms of on-chip resource
allocation, unconstrained by the �xed physical resources in a
speci�c GPU, entirely at runtime. This is especially signi�-
cant in future systems that are likely to support a wide range
of compute engines and accelerators, making it important
to be able to write high-level code that can be partitioned
easily, e�ciently, and at a �ne granularity across any set of
accelerators, without statically tuning any code segment to
run e�ciently on the GPU.
Virtualization-AwareCompilation andAuto-Tuning.

Zorua changes the contract between the hardware and soft-
ware to provide a more powerful resource abstraction (in the
software) that is �exible and dynamic, by pushing some more
functionality to the hardware, which can more easily react
to runtime resource requirements of the program. We can
re-imagine compilers and auto-tuners to be more intelligent,
leveraging this new abstraction and, hence the virtualization,
to deliver more e�cient and high-performing code optimizati-
ons that are not possible with the �xed and static abstractions
of today. They could, for example, leverage the oversubscrip-
tion and dynamic management that Zorua provides to tune
the code to more aggressively use resources.
Support for System-Level Tasks on GPUs. As GPUs

become increasingly general purpose, a key requirement is
better integration with the CPU operating system, and with
complex distributed software systems such as those employed
for large-scale distributed machine learning [1, 39] or graph
processing [3, 4, 60]. If GPUs are architected to be �rst-class
compute engines, rather than the slave devices they are today,
they can be programmed and utilized in the same manner as
a modern CPU. This integration requires the GPU execution
model to support system-level tasks like interrupts, excepti-
ons, etc. and more generally provide support for access to
distributed �le systems, disk I/O, or network communication.
Support for these tasks and execution models require dyna-
mic provisioning of resources for execution of system-level
code. Zorua provides a building block to enable this.
Applicability to General Resource Management in

Accelerators. Zorua uses a program phase as the granu-
larity for managing resources. This allows handling resour-
ces across phases dynamically, while leveraging static in-
formation regarding resource requirements from the soft-
ware by inserting annotations at phase boundaries. Fu-
ture work could potentially investigate the applicability of
the same approach to manage resources and parallelism
in other accelerators (e.g., processing-in-memory accelera-
tors [3, 4, 13, 14, 34, 38, 40, 51, 52, 70, 77, 78, 80, 100] or direct-
memory access engines [16, 55, 76]) that require e�cient dy-
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namic management of large amounts of particular critical
resources.

6. Conclusion
We propose Zorua, a new framework that decouples the

application resource speci�cation from the allocation in the
physical hardware resources (i.e., registers, scratchpad me-
mory, and thread slots) in GPUs. Zorua encompasses a ho-
listic virtualization strategy to e�ectively virtualize multiple
latency-critical on-chip resources in a controlled and coordi-
nated manner. We demonstrate that by providing the illusion
of more resources than physically available, via dynamic ma-
nagement of resources and the judicious use of a swap space
in main memory, Zorua enhances (i) programming ease (by
reducing the performance penalty of suboptimal resource spe-
ci�cation), (ii) portability (by reducing the impact of di�erent
hardware con�gurations), and (iii) performance for code with
an optimized resource speci�cation (by leveraging dynamic
underutilization of resources). We conclude that Zorua is
an e�ective, holistic virtualization framework for GPUs. We
believe that the indirection provided by Zorua’s virtualization
mechanism makes it a generic framework that can address
other challenges in modern GPUs. For example, Zorua can
enable �ne-grained resource sharing and partitioning among
multiple kernels/applications, as well as low-latency preemp-
tion of GPU programs. We hope that future work explores
these promising directions, building on the insights and the
framework developed in our MICRO 2016 paper.
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This paper summarizes the idea of Memory Divergence Cor-
rection (MeDiC), which was published at PACT 2015 [6], and
examines the work’s signi�cance and future potential. In a
modern GPU architecture, all threads within a warp execute
the same instruction in lockstep. For a memory instruction, this
can lead to memory divergence: the memory requests for some
threads are serviced early, while the remaining requests incur
long latencies. This divergence stalls the warp, as it cannot
execute the next instruction until all requests from the current
instruction complete.

In this work, we make three new observations. First, GPGPU
warps exhibit heterogeneous memory divergence behavior at
the shared cache: some warps have most of their requests hit
in the cache (high cache utility), while other warps see most of
their request miss (low cache utility). Second, a warp retains the
same divergence behavior for long periods of execution. Third,
due to high memory level parallelism, requests going to the
shared cache can incur queuing delays as large as hundreds of
cycles, exacerbating the e�ects of memory divergence.
We propose a set of techniques, collectively called Memory

Divergence Correction (MeDiC), that reduce the negative per-
formance impact of memory divergence and cache queuing.
MeDiC uses online warp divergence characterization to guide
three components: (1) a cache bypassing mechanism that ex-
ploits the latency tolerance of low cache utility warps to both
alleviate queuing delay and increase the hit rate for high cache
utility warps, (2) a cache insertion policy that prevents data
from high cache utility warps from being prematurely evicted,
and (3) a memory controller that prioritizes the few requests
received from high cache utility warps to minimize stall time.
We compare MeDiC to four cache management techniques, and
�nd that it delivers an average speedup of 21.8%, and 20.1%
higher energy e�ciency, over a state-of-the-art GPU cache ma-
nagement mechanism across 15 di�erent GPGPU applications.

1. Introduction
Graphics Processing Units (GPUs) have enormous paral-

lel processing power to leverage thread-level parallelism.
GPU applications are usually broken down into thousands
of threads, allowing GPUs to use �ne-grained multithrea-
ding [128, 136] to prevent GPU cores from stalling due to de-
pendencies and long memory latencies. Ideally, there should
always be available threads for GPU cores to continue exe-
cution, preventing stalls within the core. GPUs also take
advantage of the SIMD (Single Instruction, Multiple Data)

execution model [30]. The thousands of threads within a
GPU application are clustered into thread blocks, each of
which contains multiple smaller bundles (warps) of threads
that run concurrently. Each thread in a warp executes the
same instruction on a di�erent piece of data. A warp comple-
tes an instruction when all threads in the warp complete the
instruction.

While many GPGPU applications can tolerate a signi�-
cant amount of memory latency due to their parallelism and
the use of �ne-grained multithreading, memory divergence
(where the threads of a warp reach a memory instruction,
and some of the threads’ memory requests take longer to ser-
vice than others) can signi�cantly increase the stall time of a
warp [51, 52, 63, 75, 89, 101, 116, 117, 155]. Because all threads
within a warp operate in lockstep due to the SIMD execution
model, the warp cannot proceed to the next instruction until
the slowest request within the warp completes. Figures 1a
and 1b show examples of memory divergence within a warp.
Figure 1a shows a mostly-hit warp, where most of the warp’s
memory accesses hit in the cache ( 1 ). Only a single access
misses in the cache and must go to main memory ( 2 ). As a
result, the entire warp is stalled until the much longer cache
miss completes. Figure 1b shows a mostly-miss warp, where
most of the warp’s memory requests miss in the cache ( 3 ),
resulting in many accesses to main memory. Even though
some requests are cache hits ( 4 ), these do not bene�t the
execution time of the warp since the execution of the warp
ends when the slowest thread �nishes the instruction.

Based on these three observations, we aim to devise a
mechanism that has two major goals: (1) convert mostly-hit
warps into all-hit warps (warps where all requests hit in the
cache, as shown in Figure 1c), and (2) convert mostly-miss
warps into all-miss warps (warps where none of the requests
hit in the cache, as shown in Figure 1d). As we can see in
Figure 1a, the stall time due to memory divergence for the
mostly-hit warp can be eliminated by converting only the
single cache miss ( 2 ) into a hit. Doing so requires additional
cache space. If we convert the two cache hits of the mostly-
miss warp (Figure 1b, 4 ) into cache misses, we can allocate
the cache space previously used by these hits to the mostly-
hit warp, thus converting the mostly-hit warp into an all-hit
warp. Though the mostly-miss warp is now an all-miss warp
(Figure 1d), it incurs no extra stall penalty, as the warp was
already waiting on the other six cache misses to complete.
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Figure 1: Memory divergence within a warp. (a) and (b)
show the heterogeneity betweenmostly-hit andmostly-miss
warps, respectively. (c) and (d) show the change in stall time
from converting mostly-hit warps into all-hit warps, and
mostly-miss warps into all-miss warps, respectively. Repro-
duced from [6].

Moreover, now that it is an all-miss warp, we can predict
that its future memory requests will also not be in the L2
cache. Based on this prediction, we can simply have these
requests bypass the cache. By doing so, the requests from the
all-miss warp can completely avoid unnecessary L2 access
and queuing delays, and enable the use of L2 cache bandwidth
and bu�er space by warps that bene�t from the L2 cache. This
decreases the total number of requests going to the L2 cache,
thus reducing the queuing latencies for requests from mostly-
hit and all-hit warps, as there is less contention.

2. Observation on GPU Memory Divergence
We make three new key observations about memory di-

vergence (at the shared L2 cache). First, we observe that the
degree of memory divergence can di�er across warps (as illus-
trated in Figure 1). This inter-warp heterogeneity a�ects how
well each warp takes advantage of the shared cache. Second,
we observe that a warp’s memory divergence behavior tends
to remain stable for long periods of execution, making it pre-
dictable. Third, we observe that requests to the shared cache
experience long queuing delays due to the large amount of
parallelism in GPGPU programs, which exacerbates the me-
mory divergence problem and slows down GPU execution.
Next, we describe each of these observations in detail and
motivate our solutions.

2.1. Memory Divergence Heterogeneity
There is heterogeneity across warps in the degree of memory

divergence experienced by each warp at the shared L2 cache.
Figures 1a and 1b show examples of two di�erent types of
warps that exhibit di�erent degrees of memory divergence.

We observe that di�erent warps have di�erent amounts
of sensitivity to memory latency and cache utilization. We
study the cache utilization of a warp by determining its hit
ratio, the percentage of memory requests that hit in the ca-
che when the warp issues a single memory instruction. As
Figure 2 shows, the warps from each of our three representa-
tive GPGPU applications are distributed across all possible
ranges of hit ratio, exhibiting signi�cant heterogeneity. To
better characterize warp behavior, we break the warps down
into the �ve types shown in Figure 3 based on their hit ratios:
all-hit, mostly-hit, balanced, mostly-miss, and all-miss.
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Figure 2: L2 cache hit ratio of di�erent warps in three repre-
sentative GPGPU applications. Reproduced from [6].
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ced from [6].

MeDiC provide two mechanisms, warp-type-aware cache
bypassing and warp-type-aware cache insertion policy, in
order to convert mostly-hit warps into all-hit warps, where
all requests in the warp hit in the cache, thereby reducing
the stall time of mostly-hit warp signi�cantly. This is done
at the cost of converting the mostly-miss warps into all-miss
warps, but doing so does not increase the stall time of such
warps. To speed up uncacheable cache misses from mostly-
hit warps, the warp-type-aware memory scheduling policy in
MeDiC prioritizes memory requests from mostly-hit warps
over memory requests from mostly-miss warps.

2.2. Memory Divergence Stability Over Time
A warp tends to retain its memory divergence behavior (e.g.,

whether or not it is mostly-hit or mostly-miss) for long periods
of execution, and is thus predictable. This is due to the spatial
and temporal locality of each thread within the warp. Figure 4
shows a sample of warps from a representative application
(i.e., BFS [10]) that shows this predictability. This predicta-
bility enables us to perform history-based warp divergence
characterization.
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2.3. High Queuing Latencies at the Shared Cache

Due to the amount of thread parallelism within a GPU, a
large number of memory requests can arrive at the L2 cache
in a small window of execution time, leading to signi�cant
queuing delays. Prior work observes high access latencies
for the shared L2 cache within a GPU [126, 127, 142], but
does not identify why these latencies are so high. We show
that when a large number of requests arrive at the L2 cache,
both the limited number of read/write ports and backpres-
sure from cache bank con�icts force many of these requests
to queue up for long periods of time. We observe that this
queuing latency can sometimes add hundreds of cycles to the
cache access latency, and that non-uniform queuing across
the di�erent cache banks exacerbates memory divergence.
Figure 5 quanti�es the magnitude of this queue contention if
we set the cache lookup latency at one cycle, for one appli-
cation, BFS [10]. As shown, a signi�cant number of requests
experience tens to hundreds of cycles of queuing delay.
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Figure 5: Distribution of per-request queuing latencies for L2
cache requests from BFS. Reproduced from [6].

The warp-type-aware bypassing logic in MeDiC helps to al-
leviate these L2 queuing latencies. By preventing mostly-miss
and all-miss warps from accessing the cache, which yields
little or no bene�t to them, we reduce the access latencies
for requests from (1) mostly-hit and all-hit warps, which be-
ne�t from the cache much more; and also (2) mostly-miss
and all-miss warps themselves; thereby improving the overall
performance of all warps and the system.

3. MeDiC: Memory Divergence Correction
Based on these three new observations we made, we de�ne

three major goals for our new mechanism. We would like to
devise a mechanism that (1) converts mostly-hit warps into
all-hit warps (warps where all requests hit in the cache, as
shown in Figure 1c), (2) converts mostly-miss warps into all-
miss warps (warps where none of the requests hit in the cache,
as shown in Figure 1d) and (3) reduces L2 cache queuing
delay for all warp types. As we can see in Figure 1a, the
stall time due to memory divergence for the mostly-hit warp
can be eliminated by converting only the single cache miss
(Figure 1a, 2 ) into a cache hit.

To this end, we introduce Memory Divergence Correction
(MeDiC), a GPU-speci�c mechanism that exploits memory
divergence heterogeneity across warps at the shared cache
and at main memory to improve the overall performance of
GPGPU applications. MeDiC consists of three di�erent com-
ponents, which work together to achieve our three goals: (1) a
warp-type-aware cache bypassing mechanism, which prevents
requests from mostly-miss and all-miss warps from accessing
the shared L2 cache; (2) a warp-type-aware cache insertion
policy, which prioritizes requests from mostly-hit and all-hit
warps, in order to increase the likelihood that they all become
cache hits; and (3) a warp-type-aware memory scheduling me-
chanism, which prioritizes requests from mostly-hit warps
that were not successfully converted to all-hit warps, in order
to minimize the stall time due to divergence. These three
components are all driven by an online mechanism that can
identify the expected memory divergence behavior of each
warp.

Figure 6 shows the overall MeDiC mechanism. Me-
DiC consists of four di�erent components: 1 a warp-type-
identi�cation mechanism that classi�es warps into one of the
four warp types as described in Section 2.1; 2 a bypass mecha-
nism that bypasses requests from all-miss and mostly-miss
warps, reducing the queuing delay in the L2 cache; 3 an
insertion policy that prevent mostly-hit requests from being
evicted from the cache; and 4 a memory scheduler that priori-
tizes requests from mostly-hit warps, which are more latency
sensitive.

3.1. Warp Type Identi�cation
In order to take advantage of the memory divergence he-

terogeneity across warps, we must �rst add hardware that
can identify the divergence behavior of each warp. The key
idea is to periodically sample the hit ratio of a warp, and to
classify the warp’s divergence behavior as one of the �ve
types in Figure 3 based on the observed hit ratio. This in-
formation can then be used to drive the warp-type-aware
components of MeDiC. In general, warps tend to retain the
same memory divergence behavior for long periods of execu-
tion. However, there can be some long-term shifts in warp
divergence behavior, requiring periodic resampling of the
hit ratio to potentially re-evaluate the warp type. Warp type
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identi�cation through hit ratio sampling requires hardware
within the cache to periodically count the number of hits
and misses each warp incurs. We append two counters to
the metadata stored for each warp, which represent the total
number of cache hits and cache accesses for the warp during
the sampling interval.

3.2. Warp-type-aware Shared Cache Bypassing
Once the warp type is known and a warp generates a re-

quest to the L2 cache, our mechanism �rst decides whether to
bypass the cache based on the warp type. The key idea behind
warp-type-aware cache bypassing is to convert mostly-miss
warps into all-miss warps, as they do not bene�t greatly from
the few cache hits that they get. By bypassing these requests,
we achieve three bene�ts: (1) bypassed requests can avoid
L2 queuing latencies entirely, (2) other requests that do hit
in the L2 cache experience shorter queuing delays due to the
reduced contention, and (3) space is created in the L2 cache
for mostly-hit warps.

The cache bypassing logic must make a simple decision: if
an incoming memory request was generated by a mostly-miss
or all-miss warp, the request is bypassed directly to DRAM.
This is determined by reading the warp type stored in the
warp metadata from the warp type identi�cation mechanism.
A simple 2-bit demultiplexer can be used to determine whet-
her a request is sent to the L2 bank arbiter, or directly to the
DRAM request queue.

3.3. Warp-type-aware Cache Insertion Policy
Our cache bypassing mechanism frees up space within the

L2 cache, which we want to use for the cache misses from
mostly-hit warps (to convert the cache miss memory requests
into cache hits). However, even with the new bypassing
mechanism, other warps (e.g., balanced, mostly-miss) still
insert some data into the cache. In order to aid the conversion
of mostly-hit warps into all-hit warps, we develop a warp-
type-aware cache insertion policy, whose key idea is to ensure
that in a given cache set, data from mostly-miss warps are

evicted �rst, while data from mostly-hit warps and all-hit
warps are evicted last.

To ensure that a cache block from a mostly-hit warp stays
in the cache for as long as possible, we insert the block closer
to the MRU position. A cache block requested by a mostly-
miss warp is inserted closer to the LRU position, making it
more likely to be evicted. To track the warp type associated
with these cache blocks, we add two bits of metadata to each
cache block, indicating the warp type. These bits are then
appended to the replacement policy bits. The bits modify
the replacement policy behavior, such that a cache block
from a mostly-miss warp is more likely to get evicted than a
block from a balanced warp. Similarly, a cache block from a
balanced warp is more likely to be evicted than a block from
a mostly-hit or all-hit warp.

3.4. Warp-type-aware Memory Scheduler
Our cache bypassing mechanism and cache insertion policy

work to increase the likelihood that all requests from a mostly-
hit warp become cache hits, converting the warp into an all-
hit warp. However, due to cache con�icts, or due to poor
locality, there may still be cases when a mostly-hit warp
cannot be fully converted into an all-hit warp, and is therefore
unable to avoid stalling due to memory divergence as at least
one of its requests has to go to DRAM. In such a case, we want
to minimize the amount of time that this warp stalls. To this
end, we propose a warp-type-aware memory scheduler that
prioritizes the occasional DRAM requests from mostly-hit
warps.

The design of our memory scheduler is very simple. Each
memory request is tagged with a single bit, which is set if the
memory request comes from a mostly-hit warp (or an all-hit
warp, in case the warp was mischaracterized). We modify
the request queue at the memory controller to contain two
di�erent queues, where a high-priority queue contains all
requests that have their mostly-hit bit set to one. The low-
priority queue contains all other requests, whose mostly-hit
bits are set to zero. Each queue uses FR-FCFS [115, 156] as
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the scheduling policy; however, the scheduler always selects
requests from the high priority queue over requests in the
low priority queue.1

We describe each component of MeDiC in more detail in
Sections 4.1, 4.2, 4.3 and 4.4 of our PACT 2015 paper [6].

4. Methodology
We model our mechanism using GPGPU-Sim 3.2.1 [9]. We

modi�ed GPGPU-Sim to accurately model cache bank con-
�icts, and added the cache bypassing, cache insertion, and
memory scheduling mechanisms needed to support MeDiC.
We use GPUWattch [76] to evaluate power consumption.
We have open sourced our simulator source code at [118].
We evaluate our system across multiple GPGPU applications
from the CUDA SDK [102], Rodinia [19], MARS [39], and
Lonestar [10] benchmark suites.

We report performance results using the harmonic average
of the IPC speedup (over the baseline GPU) of each kernel
of each application.2 Harmonic speedup [28, 85] was shown
to re�ect the average normalized execution time in multi-
programmed workloads. We calculate energy e�ciency for
each workload by dividing the IPC by the energy consumed
Section 5 of our PACT 2015 paper [6] provides more detail
on our experimental methodology.

5. Evaluation
Figure 7 shows the performance of MeDiC compared to

four GPU cache management mechanisms: the Evicted Ad-
dress Filter insertion policy [123] (EAF), PCAL bypassing
policy [79] (PCAL), PC-based cache bypassing policy (PC-
Byp) and an idealized random bypassing policy (Rand) over
15 di�erent GPGPU applications from 4 benchmark suites.
We also show the performance of each individual component
of MeDiC: our warp-type-aware insertion policy (WIP), our
warp-type-aware memory scheduling policy (WMS) and our
warp-type-aware bypassing policy (WByp).

We found that each component of MeDiC individually pro-
vides signi�cant performance improvement: WIP (32.5%),
WMS (30.2%), and WByp (33.6%). MeDiC, which combines
all three mechanisms, provides a 41.5% performance impro-
vement over Baseline, on average. MeDiC matches or outper-
forms its individual components for all benchmarks except
BP, where MeDiC has a higher L2 miss rate and lower row
bu�er locality than WMS and WByp.

Our insertion policy, WIP, outperforms EAF [123] by 12.2%.
We observe that the key bene�t of WIP is that cache blocks

1Using two queues ensures that high-priority requests are not blocked
by low-priority requests even when the low-priority queue is full. Two-queue
priority also uses simpler logic design than comparator-based priority [5,
132, 133].

2We con�rm that for each application, all kernels have similar speedup
values, and that aside from SS and PVC, there are no outliers (i.e., no kernel
has a much higher speedup than the other kernels). To verify that harmonic
speedup is not swayed greatly by these few outliers, we recompute it for
SS and PVC without these outliers, and �nd that the outlier-free speedup is
within 1% of the harmonic speedup we report in the paper.

from mostly-miss warps are much more likely to be evicted.
In addition, WIP reduces the cache miss rate of several appli-
cations. Our memory scheduler, WMS, provides signi�cant
performance gains (30.2%) over Baseline, because the memory
scheduler prioritizes requests from warps that have a high
hit ratio, allowing these warps to become active much sooner
than they do in Baseline. Our bypassing mechanism, WByp
provides an average 33.6% performance improvement over
Baseline, because it is e�ective at reducing the L2 queuing
latency..

Compared to PCAL [79], WByp provides 12.8% better per-
formance, and full MeDiC provides 21.8% better performance.
We observe that while PCAL reduces the amount of cache
thrashing, the reduction in thrashing does not directly trans-
late into better performance. We observe that warps in the
mostly-miss category sometimes have high reuse, and acquire
tokens to access the cache. This causes less cache space to
become available for mostly-hit warps, limiting how many
of these warps become all-hit. However, when high-reuse
warps that possess tokens are mainly in the mostly-hit cate-
gory (PVC, PVR, SS, and BH), we �nd that PCAL performs
better than WByp.

Compared to Rand,3 MeDiC performs 6.8% better, because
MeDiC is able to make bypassing decisions that do not incre-
ase the miss rate signi�cantly. This leads to lower o�-chip
bandwidth usage under MeDiC than under Rand. Rand in-
creases the cache miss rate by 10% for the kernels of several
applications (BP, PVC, PVR, BFS, and MST). We observe that
in many cases, MeDiC improves the performance of applicati-
ons that tend to generate a large number of memory requests,
and thus experience substantial queuing latencies.

Compared to PC-Byp, MeDiC performs 12.4% better. We
observe that the overhead of tracking the PC becomes signi-
�cant, and that thrashing occurs as two PCs can hash to the
same index, leading to inaccuracies in the bypassing decisi-
ons.

We conclude that each component of MeDiC, and the full
MeDiC framework, are e�ective. Note that each component
of MeDiC addresses the same problem (i.e., memory diver-
gence of threads within a warp) using di�erent techniques
on di�erent parts of the memory hierarchy. For the majority
of workloads, one optimization is enough. However, we see
that for certain high-intensity workloads (BFS and SSSP), the
congestion is so high that we need to attack divergence on
multiple fronts. Thus, MeDiC provides better average perfor-
mance than all of its individual components, especially for
such memory-intensive workloads.

We provide the following other evaluation results in our
PACT 2015 paper [6]:
• Impact of MeDiC on cache miss rate.

3Note that our evaluation uses an ideal random bypassing mechanism,
where we manually select the best individual percentage of requests to
bypass the cache for each workload. As a result, the performance shown for
Rand is better than can be practically realized.
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Figure 7: Performance of MeDiC. Adapted from [6].
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Figure 8: Energy e�ciency of MeDiC. Adapted from [6].

• Impact of MeDiC on queuing latency.
• Impact of MeDiC on row bu�er locality.
• Analysis of reuse in GPGPU applications.
• Hardware cost of MeDiC.

6. Related Work
To our knowledge, MeDiC is the �rst work that identi�es

inter-warp memory divergence heterogeneity and exploits
it to achieve better system performance in GPGPU applicati-
ons. Our new mechanism consists of warp-type-aware com-
ponents for cache bypassing, cache insertion, and memory
scheduling. We have already provided extensive quantitative
and qualitative comparisons to state-of-the-art mechanisms
in GPU cache bypassing [79], cache insertion [123], and me-
mory scheduling [115, 156]. In this section, we discuss other
related work in these areas.
Hardware-based Cache Bypassing. PCAL is a bypas-

sing mechanism that addresses the cache thrashing problem
by throttling the number of threads that time-share the cache
at any given time [79]. The key idea of PCAL is to limit the
number of threads that get to access the cache. Concurrent
work by Li et al. [78] proposes a cache bypassing mechanism
that allows only threads with high reuse to utilize the cache.
The key idea is to use locality �ltering based on the reuse
characteristics of GPGPU applications, with only high reuse
threads having access to the cache. Xie et al. [146] propose
a bypassing mechanism at the thread block level. In their
mechanism, the compiler statically marks whether thread
blocks prefer caching or bypassing. At runtime, the mecha-
nism dynamically selects a subset of thread blocks to use the
cache, to increase cache utilization.

Chen et al. [20,21] propose a combined warp throttling and
bypassing mechanism for the L1 cache based on the cache-
conscious warp scheduler [116]. The key idea is to bypass the
cache when resource contention is detected. This is done by
embedding history information into the L2 tag arrays. The L1
cache uses this information to perform bypassing decisions,
and only warps with high reuse are allowed to access the L1
cache. Jia et al. propose an L1 bypassing mechanism [48],
whose key idea is to bypass requests when there is an associ-
ativity stall. Dai et al. propose a mechanism to bypass cache
based on a model of a cache miss rate [23].

MeDiC di�ers from these prior cache bypassing works
because it uses warp memory divergence heterogeneity for
bypassing decisions. We also show (in Section 6.4 of our
PACT 2015 paper [6]) that our mechanism implicitly takes
reuse information into account.
Software-based Cache Bypassing. Concurrent work by

Li et al. [77] proposes a compiler-based technique that per-
forms cache bypassing using a method similar to PCAL [79].
Xie et al. [145] propose a mechanism that allows the compiler
to perform cache bypassing for global load instructions. Both
of these mechanisms are di�erent from MeDiC in that Me-
DiC applies bypassing to all loads and stores that utilize the
shared cache, without requiring additional characterization
at the compiler level. Mekkat et al. [87] propose a bypassing
mechanism for when a CPU and a GPU share the last level
cache. Their key idea is to bypass GPU cache accesses when
CPU applications are cache sensitive, which is not applicable
to GPU-only execution.
CPUCache Bypassing. There are also several other CPU-

based cache bypassing techniques. These techniques include
using additional bu�ers track cache statistics to predict cache
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blocks that have high utility based on reuse count [18, 27,
32, 50, 55, 81, 144, 152], reuse distance [18, 24, 29, 31, 34, 104,
143, 149], behavior of the cache block [46] or miss rate [22,
88, 120, 137] As they do not operate on SIMD systems, these
mechanisms do not (need to) account for memory divergence
heterogeneity when performing bypassing decisions.
Cache Insertion and Replacement Policies. Many

works propose di�erent insertion policies for CPU systems
(e.g., [44, 45, 54, 110, 112, 123]). We compare our insertion
policy against the Evicted-Address Filter (EAF) [123], and
show that our policy, which takes advantage of inter-warp
divergence heterogeneity, outperforms EAF. Dynamic Inser-
tion Policy (DIP) [44] and Dynamic Re-Reference Interval
Prediction (DRRIP) [45] are insertion policies that account
for cache thrashing. The downside of these two policies is
that they are unable to distinguish between high-reuse and
low-reuse blocks in the same thread [123]. The Bi-modal
Insertion Policy [110] dynamically characterizes the cache
blocks being inserted. None of these works take warp type
characteristics or memory divergence behavior into account.
Other work proposed prefetch-aware insertion and replace-
ment policies [25, 124, 130]. MeDiC can be combined with
such policies.
Memory Scheduling. Yuan et al. propose a GPU intercon-

nect design that rearrange the sequence of memory requests
that arrive at each memory channel to reduce the complexity
of GPU memory scheduler [151]. Chatterjee et al. propose a
GPU memory scheduler that allows requests from the same
warp to be grouped together, in order to reduce the memory
divergence across di�erent memory requests within the same
warp [17]. Jog et al. propose a GPU memory scheduler that
exploit the criticality information of warps in the GPU cores
in order to improve the performance of GPGPU applicati-
ons [49]. Principles of MeDiC can be incorporated into these
schedulers.

There are several memory scheduler designs that target
systems with CPUs [26, 33, 43, 56, 57, 59, 60, 67, 68, 69, 82, 93, 94,
95, 96, 98, 99, 115, 131, 132, 133, 134, 135, 147, 153], and hetero-
geneous compute elements [5, 47, 138]. Memory schedulers
for CPUs and heterogeneous systems generally aim to reduce
interference across di�erent applications.
Improving DRAM. An alternative approach to mitigate

memory divergence is to improve the performance of the
main memory itself. Previous works propose new DRAM
designs that are capable of reducing memory latency in con-
ventional DRAM [1, 2, 3, 4, 11, 12, 13, 13, 14, 14, 15, 16, 35, 36,
37, 38, 40, 41, 42, 53, 58, 61, 70, 71, 72, 73, 74, 83, 86, 92, 97, 100,
103,109,119,121,122,125,129,141,154] as well as non-volatile
memory [62,64,65,66,80,84,90,91,111,113,114,148,150]. Data
compression techniques can increase the e�ective DRAM
bandwidth [105, 106, 107, 108, 140]. All these techniques are
orthogonal to MeDiC and can be used to further improve the
performance of GPGPU applications.

Other Ways to Handle Memory Divergence. In addi-
tion to cache bypassing, cache insertion policy, and memory
scheduling, other works propose di�erent methods of decrea-
sing memory divergence [51, 52, 63, 75, 89, 101, 116, 117, 155].
These methods range from thread throttling [51,52,63,116] to
warp scheduling [75, 89, 101, 116, 117, 155]. While these met-
hods share our goal of reducing memory divergence, none
of them exploit inter-warp heterogeneity and, as a result, are
either orthogonal or complementary to our proposal. Our
work also makes new observations about memory divergence
not covered by these works.

7. Potential Impact
While the problem that MeDiC is trying to solve, which

is memory divergence, is not new, key �ndings in this work
provide novelty and create potential research topics for the
future. We discuss at least three such opportunities and future
directions.
Taking Advantage of Memory Divergence Heteroge-

neity. MeDiC modi�es the memory hierarchy to introduce
awareness of the memory divergence heterogeneity between
di�erent types of warps. There are many other applicati-
ons that can exploit warp type information. Other resources
within the GPU (e.g., GPU cores, warp scheduler) can ex-
ploit the memory divergence heterogeneity across di�erent
warps to further improve the performance of GPGPU ap-
plications. For example, the warp type information can be
used by the warp scheduler and thread block scheduler to
ensure that they do not schedule warps of the same type to
execute at the same time, to limit the amount of cache con-
tention that occurs. Incorporating the warp type information
with other techniques, such as assist warps to relieve execu-
tion bottlenecks [140], can enable GPUs to utilize resources
based on the type of warps the GPU is executing. For exam-
ple, mostly-hit warps favor a mechanism that provides low
memory latency, while mostly-miss warps might favor a me-
chanism that provides higher o�-chip bandwidth. Memory
divergence heterogeneity can also be used to assist GPU re-
source virtualization [139], as virtual resource allocation can
take into account the utilization of shared memory resources
to determine how much of a particular memory resource to
allocate to each thread block.

Warp type information can be used to improve the perfor-
mance of GPU address translation. Prior works [7, 8] show
that address translations that do not hit in a TLB can incur
long-latency page table walks, which can a�ect hundreds of
application threads at once. Such long-latency address trans-
lations might have a greater impact on warps that are latency
sensitive (e.g., mostly-hit and all-hit warps). Thus, warp-
type information can be combined with previously-proposed
techniques that aim to reduce the overhead of GPU address
translation [7, 8] to provide synergistic performance bene�ts.

We believe the idea of warp-type heterogeneity enables
many di�erent mechanisms to customize execution on a GPU
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to achieve higher performance and energy e�ciency. Hence,
our PACT 2015 paper [6] paves the way for �ne-grained
customization of a GPU.
Identifying Long-Latency Threads in a Warp. Our

PACT 2015 paper [6] shows how to intelligently reduce the
memory latency of threads within a warp in order to reduce
the memory divergence problem. However, MeDiC focuses
on reducing the stall time of mostly-hit warps. Long-latency
threads can still exist in the mostly-hit warps due to other
problems such as load balancing at the memory partitions.
Additional work on (1) how to identify latency-critical threads
within a warp and (2) how to accelerate these speci�c threads
can further improve the performance and energy e�ciency
of GPGPU applications.
Reducing High Queuing Delays and Memory Con-

tention in the GPUMemory Hierarchy. As shown in our
PACT 2015 paper [6], the queuing delay of throughput proces-
sors such as GPUs can become a performance bottleneck, as
the delay increases the stall time of warps of all types. While
the proposed warp-type-aware cache bypassing mechanism
in MeDiC aims to reduce the queuing delay, non-uniform
memory access patterns can still cause contention at a few
L2 cache banks and memory partitions. In future systems,
the parallelism of throughput processors is likely to increase
further. For example, future GPUs will likely come with a
higher number of GPU cores and larger SIMD widths. This is
expected to greatly increase the amount of contention and,
thus, queuing delay, for many resources. The di�erent com-
ponents of MeDiC can serve as a starting point for future
research on alleviating cache and memory contention in fu-
ture systems, and can ultimately enable a larger amount of
thread-level parallelism. We believe studying the mitigation
of high cache and memory contention is very promising for
future parallel throughput processors and encourage future
work in this area.

8. Conclusion
Warps from GPGPU applications exhibit heterogeneity in

their memory divergence behavior at the shared L2 cache
within the GPU. We �nd that (1) some warps bene�t sig-
ni�cantly from the cache, while others make poor use of it;
(2) such divergence behavior for a warp tends to remain stable
for long periods of the warp’s execution; and (3) the impact
of memory divergence can be ampli�ed by the high queuing
latencies at the L2 cache.

We propose Memory Divergence Correction (MeDiC), whose
key idea is to identify memory divergence heterogeneity on-
line in hardware and use this information to drive cache
management and memory scheduling, by prioritizing warps
that take the greatest advantage of the shared cache. To
achieve this, MeDiC consists of threewarp-type-aware compo-
nents for (1) cache bypassing, (2) cache insertion, and (3) me-
mory scheduling. MeDiC delivers signi�cant performance
and energy improvements over multiple previously proposed

policies, and over a state-of-the-art GPU cache management
technique. We conclude that exploiting inter-warp heteroge-
neity is e�ective, and hope future works explore other ways
of improving systems based on this key observation of our
work.
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This paper summarizes the idea and key contributions of
Mosaic, which was published at MICRO 2017 [8], and examines
the work’s signi�cance and future potential. Contemporary
discrete GPUs support rich memory management features such
as virtual memory and demand paging. These features sim-
plify GPU programming by providing a virtual address space
abstraction similar to CPUs and eliminating manual memory
management, but they introduce high performance overheads
during (1) address translation and (2) page faults. A GPU re-
lies on high degrees of thread-level parallelism (TLP) to hide
memory latency. Address translation can undermine TLP, as a
single miss in the translation lookaside bu�er (TLB) invokes an
expensive serialized page table walk that often stalls multiple
threads. Demand paging can also undermine TLP, as multiple
threads often stall while they wait for an expensive data transfer
over the system I/O (e.g., PCIe) bus when the GPU demands a
page.

In modern GPUs, we face a trade-o� on how the page size
used for memory management a�ects address translation and
demand paging. The address translation overhead is lower when
we employ a larger page size (e.g., 2MB large pages, compared
with conventional 4KB base pages), which increases TLB co-
verage and thus reduces TLB misses. Conversely, the demand
paging overhead is lower when we employ a smaller page size,
which decreases the system I/O bus transfer latency. Support
for multiple page sizes can help relax the page size trade-o�
so that address translation and demand paging optimizations
work together synergistically. However, existing page coales-
cing (i.e., merging base pages into a large page) and splintering
(i.e., splitting a large page into base pages) policies require costly
base page migrations that undermine the bene�ts multiple page
sizes provide. In this paper, we observe that GPGPU applications
present an opportunity to support multiple page sizes without
costly data migration, as the applications perform most of their
memory allocation en masse (i.e., they allocate a large number
of base pages at once). We show that this en masse allocation
allows us to create intelligent memory allocation policies which
ensure that base pages that are contiguous in virtual memory
are allocated to contiguous physical memory pages. As a result,
coalescing and splintering operations no longer need to migrate
base pages.

We introduce Mosaic, a GPU memory manager that provides
application-transparent support for multiple page sizes. Mosaic

uses base pages to transfer data over the system I/O bus, and
allocates physical memory in a way that (1) preserves base page
contiguity and (2) ensures that a large page frame contains
pages from only a single memory protection domain. We take
advantage of this allocation strategy to design a novel in-place
page size selection mechanism that avoids data migration. This
mechanism allows the TLB to use large pages, reducing address
translation overhead. During data transfer, this mechanism
enables the GPU to transfer only the base pages that are needed
by the application over the system I/O bus, keeping demand
paging overhead low. Our evaluations show that Mosaic reduces
address translation overheads while e�ciently achieving the
bene�ts of demand paging, compared to a contemporary GPU
that uses only a 4KB page size. Relative to a state-of-the-art
GPU memory manager, Mosaic improves the performance of
homogeneous and heterogeneous multi-application workloads
by 55.5% and 29.7% on average, respectively, coming within
6.8% and 15.4% of the performance of an ideal TLB where all
TLB requests are hits.

1. Introduction
Graphics Processing Units (GPUs) are used for an ever-

growing range of application domains due to their capability
to provide high throughput. GPUs provide a high amount of
throughput but they require a di�erent programming model
than CPUs, making their general adoption di�cult. Recent
support within GPUs for memory virtualization features, such
as a uni�ed virtual address space [57,70], demand paging [73],
and preemption [2,73], can ease programming by allowing de-
velopers to exploit key bene�ts such as application portability
and multi-application execution.

Hardware-supported memory virtualization relies on ad-
dress translation to map each virtual memory address to a
physical address within the GPU memory. Address transla-
tion uses page-granularity virtual-to-physical mappings that
are stored within a multi-level page table. To look up a map-
ping within the page table, the GPU performs a page table
walk, where a page table walker traverses through each level
of the page table in main memory until the walker locates
the page table entry for the requested mapping in the last
level of the table. GPUs with virtual memory support have
translation lookaside bu�ers (TLBs), which cache page table
entries and avoid the need to perform a page table walk for
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the cached entries, thereby reducing the address translation
latency.

State-of-the-art GPU memory virtualization provides sup-
port for demand paging [3, 57, 73, 81, 102]. In demand paging,
all of the memory used by a GPU application does not need
to be transferred to the GPU memory at the beginning of
application execution. Instead, during application execution,
when a GPU thread issues a memory request to a page that
has not yet been allocated in the GPU memory, the GPU
issues a page fault, at which point the data for that page is
transferred over the o�-chip system I/O bus (e.g., the PCIe
bus [76] in contemporary systems) from the CPU memory to
the GPU memory. The transfer requires a long latency due
to its use of an o�-chip bus. Once the transfer completes, the
GPU runtime allocates a physical GPU memory address to
the page, and the thread can complete its memory request.
GPU Virtualization Challenges. Two fundamental

challenges prevent further adoption of virtualization in GPUs:
(1) the address translation challenge, and (2) the demand pa-
ging challenge. The address translation challenge stems from
a long latency process that consists of a series of serialized
memory accesses required to traverse the page table [80, 81].
As many threads can access di�erent data present in a single
page, these serialized page walk accesses signi�cantly limit
GPU concurrency, by lowering thread-level parallelism (TLP)
and thereby reducing the latency hiding capability of a GPU.
Translation lookaside bu�ers (TLBs) can reduce the latency of
address translation by caching recently-used address trans-
lation information. Unfortunately, as application working
sets and DRAM capacity have increased in recent years, state-
of-the-art TLB designs [80, 81] su�er from poor TLB reach,
i.e., the TLB covers only a small fraction of the physical me-
mory working set of an application. We found that the poor
TLB reach has a detrimental e�ect on GPU performance, be-
cause a single TLB miss can stall hundreds of threads at once,
undermining TLP within a GPU and signi�cantly reducing
performance [8, 61, 95].

Figure 1 shows the performance of two GPU-MMU designs:
(1) a design that uses the base 4KB page size, and (2) a design
that uses a 2MB large page size, where both designs have
no demand paging overhead (i.e., the system I/O bus transfer
takes zero cycles to transfer a page). We normalize the perfor-
mance of the two designs to a GPU with an ideal TLB, where
all TLB requests hit in the L1 TLB. Our full experimental met-
hodology is described in detail in our MICRO 2017 paper [8].
We make two major observations from the �gure.

First, compared to the ideal TLB, the GPU-MMU with 4KB
base pages experiences an average performance loss of 48.1%.
We observe that with 4KB base pages, a single TLB miss
often stalls many of the warps, which undermines the latency
hiding behavior of the SIMT execution model used by GPUs.
Second, the �gure shows that using a 2MB page size with
the same number of TLB entries as the 4KB design allows
applications to come within 2% of the ideal TLB performance.
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Figure 1: Performance of a GPUwith no demand paging over-
head, using (1) 4KB base pages and (2) 2MB large pages, nor-
malized to the performance of a GPU with an ideal TLB. Re-
produced from [8].

We �nd that with 2MB pages, the TLB has a much larger reach,
which reduces the TLB miss rate substantially. Thus, there is
strong incentive to use large pages for address translation.

To increase the TLB reach, large pages (e.g., the 2MB or 1GB
pages used in many modern CPU architectures [39,40]) can be
employed. However, large pages increase the risk of internal
fragmentation, where a portion of the large page is unallo-
cated (or unused). Internal fragmentation occurs because it
might often be di�cult for an application to completely uti-
lize large contiguous regions of memory. This fragmentation
leads to (1) memory bloat, where a much greater amount of
physical memory is allocated than the amount of memory
that the application needs; and (2) longer memory access
latencies, due to a potentially lower e�ective TLB reach and
more page faults [56].

The demand paging challenge stems from a page fault,
which requires a long-latency data transfer for an entire page
over the system I/O bus [76]. Since GPU threads often access
data in the same page due to data locality, a single page fault
can cause multiple threads to stall at once. As a result, the
page fault can signi�cantly reduce the amount of TLP that
the GPU can exploit, and thus signi�cantly degrade perfor-
mance [8, 102].

Unlike address translation, which bene�ts from larger pa-
ges, the overhead of demand paging is smaller when a smaller
page size is used. A larger amount of data transfer increases
the transfer time, increases the amount of time that GPU thre-
ads stall, and decreases TLP. Furthermore, as the size of a page
increases, there is a greater probability that an application
does not need all of the data in the page. As a result, threads
may stall for a longer time without gaining any further be-
ne�t in return. Based on these two con�icting observations,
memory virtualization in GPU systems has a fundamental
trade-o� due to the page size choice. We provide more detail
on the trade-o� in our MICRO 2017 paper [8].

2. Mosaic
In our MICRO 2017 paper [8], we propose Mosaic, a new

GPU memory management scheme that aims to get the best
of both small and large page sizes. Mosaic relaxes the page
size trade-o� by using multiple page sizes transparently to the
application, and, thus, to the programmer. With multiple page
sizes, and the ability to change virtual-to-physical mappings
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dynamically, the GPU system can support good TLB reach
by using large pages for address translation, while providing
good demand paging performance by using base pages for data
transfer. However, while coalescing multiple small pages into
a large page requires a contiguous region, existing memory
allocation mechanisms make it di�cult to �nd regions of
physical memory where base pages can be coalesced without
a large number of page migration operations. This is because
existing GPU memory allocation mechanisms do not allocate
base pages in a manner that is aware of the contiguity of
memory allocated to each application. Figure 2 shows how
a state-of-the-art GPU memory manager [81] allocates me-
mory for two applications. Within a single large page frame
(i.e., a contiguous piece of physical memory that is the size
of a large page and whose starting address is page aligned),
the GPU memory manager allocates base pages from both
Applications 1 and 2 ( 1 in Figure 2). As a result, the memory
manager cannot coalesce the base pages into a large page ( 2 )
without �rst migrating some of the base pages, which would
incur a high latency. Instead, Mosaic allocates physical base
pages in a way that avoids the need to migrate data during
coalescing ( 3 in Figure 3), and uses a simple coalescing me-
chanism to combine base pages into large pages (e.g., 2MB)
and thus increase TLB reach ( 4 in Figure 3).

Large Page Frame 2

Large Page Frame 1

Standard Memory Allocation Cannot Coalesce Pages

Without Migrating Data

Large Page Frame 2

Large Page Frame 1

Application 1 Base Pages Application 2 Base Pages Unallocated Pages

1 2

Figure 2: Page allocation and coalescing behavior of a state-
of-the-art GPU memory manager [81]. Adapted from [8].

Large Page Frame 2

Large Page Frame 1

Contiguity-Conserving 

Allocation
 

Coalesced Large Page 2

Coalesced Large Page 1

Lazy Coalescer

3 4

Figure 3: Page allocation and coalescing behavior of Mosaic.
Adapted from [8].

We make a key observation about the memory behavior
of contemporary general-purpose GPU (GPGPU) applicati-
ons. We �nd that the vast majority of memory allocations
in GPGPU applications are performed en masse (i.e., a large
number of pages are allocated at the same time). The en masse
memory allocation presents us with an opportunity: with so
many pages being allocated at once, we can rearrange how
we allocate the base pages to ensure that (1) all of the base
pages allocated within a large page frame belong to the same
virtual address space, and (2) base pages that are contiguous

in virtual memory are allocated to a contiguous portion of
physical memory and aligned within the large page frame.
Mosaic is designed to achieve these two goals. It con-

sists of three major components: Contiguity-Conserving
Allocation (CoCoA), the In-Place Coalescer , and Contiguity-
Aware Compaction (CAC). These three components work
together to coalesce (i.e., combine) base pages into large pages
and splinter (i.e., split apart) large pages back to base pages
during memory management. Memory management operati-
ons for Mosaic take place at two times: (1) when memory is
allocated, and (2) when memory is deallocated. We describe
what happens at each component brie�y. Figure 4 depicts
the three components of Mosaic, and we will use Figure 4 to
provide a walkthrough of the actions taken during memory
allocation and deallocation.
Memory Allocation. When a GPGPU application wants

to access data that is not currently in the GPU memory, it
sends a request to the GPU runtime (e.g., OpenCL, CUDA
runtimes) to transfer the data from the CPU memory to the
GPU memory ( 1 in Figure 4). A GPGPU application typi-
cally allocates a large number of base pages at the same time.
CoCoA allocates space within the GPU memory ( 2 ) for the
base pages, working to conserve the contiguity of base pages,
if possible during allocation. Regardless of contiguity, CoCoA
provides a soft guarantee that a single large page frame con-
tains base pages from only a single application. Once the base
page is allocated, CoCoA initiates the data transfer across
the system I/O bus ( 3 ). When the data transfer is complete
( 4 ), CoCoA noti�es the In-Place Coalescer that allocation is
done by sending a list of the large page frame addresses that
were allocated ( 5 ). For each of these large page frames, the
runtime portion of the In-Place Coalescer then checks to see
whether (1) all base pages within the large page frame have
been allocated, and (2) the base pages within the large page
frame are contiguous in both virtual and physical memory.
If both conditions are true, the hardware portion of the In-
Place Coalescer updates the page table to coalesce the base
pages into a large page ( 6 ). Section 4.3 of our MICRO 2017
paper [8] describes how page tables are modi�ed to support
coalescing.
Memory Deallocation. When a GPGPU application

would like to deallocate memory (e.g., when an application
kernel �nishes), it sends a deallocation request to the GPU
runtime ( 7 ). For all deallocated base pages that are coales-
ced into a large page, the runtime invokes Contiguity-Aware
Compaction (CAC) for the corresponding large page. The
runtime portion of CAC checks to see whether the large page
has a high degree of internal fragmentation (i.e., if the num-
ber of unallocated base pages within the large page exceeds
a predetermined threshold). For each large page with high
internal fragmentation, the hardware portion of CAC updates
the page table to splinter the large page back into its consti-
tuent base pages ( 8 ). Next, CAC compacts the splintered
large page frames, by migrating data from multiple splintered
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Figure 4: High-level overview ofMosaic, showing how and when its three components interact with the GPUmemory. Repro-
duced from [8].

large page frames into a single large page frame ( 9 ). Finally,
CAC noti�es CoCoA of the large page frames that are now
free after compaction (10 ), which CoCoA can use for future
memory allocations. We describe each component of Mosaic
in more detail in Sections 4.2, 4.3, and 4.4 of our MICRO 2017
paper [8].

3. Evaluation Methodology
Table 1 shows the system con�guration we simulate for

our evaluations, including the con�gurations of the GPU
cores and memory partitions. We modify the MAFIA frame-
work [43], which uses GPGPU-Sim 3.2.2 [10], to evaluate Mo-
saic. We add a memory allocator into cuda-sim, the CUDA si-
mulator within GPGPU-Sim, to handle all virtual-to-physical
address translations and to provide memory protection. We
add an accurate model of address translation to GPGPU-Sim,
including TLBs, page tables, and a page table walker. The
page table walker is shared across all SMs, and allows up to
64 concurrent walks. Both the L1 and L2 TLBs have separate
entries for base pages and large pages [32, 47, 48, 75, 78, 79].
Each TLB contains miss status holding registers (MSHRs) [54]
to track in-�ight page table walks. Our simulation infrastruc-
ture supports demand paging by detecting page faults and
faithfully modeling the system I/O bus (i.e., PCIe) latency
based on measurements from NVIDIA GTX 1080 cards [74].
We use a worst-case model for the performance of our com-
paction mechanism conservatively, by stalling the entire GPU
(all SMs) and �ushing the pipeline. We have publicly released
our simulator modi�cations as open source software [88, 89].

We evaluate the performance of Mosaic using both homo-
geneous and heterogeneous workloads. We categorize each
workload based on the number of concurrently-executing
applications, which ranges from one to �ve for our homoge-
neous workloads, and from two to �ve for our heterogene-
ous workloads. We form our homogeneous workloads using
multiple copies of the same application. We build 27 homo-
geneous workloads for each category using GPGPU appli-
cations from the Parboil [92], SHOC [25], LULESH [49, 50],
Rodinia [20], and CUDA SDK [69] suites. We form our he-
terogeneous workloads by randomly selecting a number of
applications out of these 27 GPGPU applications. We build 25

GPU Core Con�guration

Shader Core 30 cores, 1020 MHz, GTO warp scheduler [84]
Con�g

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2, 1-cycle latency

Private L1 TLB 128 base page/16 large page entries per core,
fully associative, LRU, single port, 1-cycle latency

Memory Partition Con�guration
(6 memory partitions in total

with each partition accessible by all 30 cores)

Shared L2 Cache 2MB total, 16-way associative, LRU, 2 cache banks,
2 ports per memory partition, 10-cycle latency

Shared L2 TLB 512 base page/256 large page entries,
16-way/fully-associative (base page/large page),
, non-inclusive, LRU,2 ports, 10-cycle latency

DRAM 3GB GDDR5 [37, 53], 1674 MHz,
6 channels, 8 banks per rank,
FR-FCFS scheduler [83, 104], burst length 8

Table 1: Con�guration of the simulated system. Adapted
from [8].

heterogeneous workloads per category. In total we evaluate
235 homogeneous and heterogeneous workloads.

We compare Mosaic to two mechanisms: (1) GPU-MMU,
a baseline GPU with a state-of-the-art memory manager ba-
sed on the work by Power et al. [81]; and (2) Ideal TLB, a
GPU with an ideal TLB, where every address translation re-
quest hits in the L1 TLB (i.e., there are no TLB misses). We
report workload performance using the weighted speedup
metric [28, 29], which is calculated as:

Weighted Speedup =
∑ IPCshared

IPCalone
(1)

where IPCalone is the retired instructions per cycle (IPC) of an
application in the workload that runs on the same number
of shader cores using the baseline state-of-the-art con�gura-
tion [81], but does not share GPU resources with any other
applications; and IPCshared is the IPC of the application when
it runs concurrently with other applications. We report the
performance of each application within a workload using
IPC.
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Section 5 of our MICRO 2017 paper [8] provides more detail
on our experimental methodology.

4. Experimental Results
Figure 5 shows the performance of Mosaic for the homo-

geneous workloads we evaluated. We make two observati-
ons from the �gure. First, we observe that Mosaic is able to
recover most of the performance lost due to the overhead
of address translation (i.e., an ideal TLB) in homogeneous
workloads. Compared to the GPU-MMU baseline, Mosaic im-
proves system performance by 55.5%, averaged across all 135
of our homogeneous workloads. The performance of Mosaic
comes within 6.8% of the Ideal TLB performance, indicating
that Mosaic is e�ective at extending the TLB reach. Second,
we observe that Mosaic provides good scalability. As we in-
crease the number of concurrently-executing applications,
which puts more pressure on the shared TLBs, we observe
that the performance of Mosaic remains close to the Ideal TLB
performance.
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Figure 5: Homogeneous workload performance of GPU me-
mory managers as we vary the number of concurrently-
executing applications in each workload. Reproduced
from [8].

Figure 6 shows the performance of Mosaic for heterogene-
ous workloads that consist of multiple di�erent randomly-
selected GPGPU applications (100 workloads in total). From
the �gure, we observe that on average across all of the wor-
kloads, Mosaic provides a performance improvement of 29.7%
over GPU-MMU, and comes within 15.4% of the Ideal TLB
performance. We �nd that the improvement comes from the
signi�cant reduction in the TLB miss rate with Mosaic. We
also see that Mosaic’s scalability is good, as the number of ap-
plications increases, yet there is still room for improvement to
reach the performance of Ideal TLB. We conclude that Mosaic
is a more e�ective memory manager than the state-of-the-art.
A detailed analysis of the results in Figures 5 and 6 can be
found in Sections 6.1 and 6.2 of our MICRO 2017 paper [8].
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Figure 6: Heterogeneous workload performance of the GPU
memory managers. Reproduced from [8].

Impact of Demand Paging on Performance. All of
our results so far show the performance of the GPU-MMU

baseline and Mosaic when demand paging is enabled. Figure 7
shows the normalized weighted speedup of the GPU-MMU
baseline and Mosaic, compared to GPU-MMU without de-
mand paging, where all data required by an application is
moved to the GPU memory before the application starts exe-
cuting. We make two observations from the �gure. First, we
�nd that Mosaic outperforms GPU-MMU without demand
paging by 58.5% on average for homogeneous workloads and
47.5% on average for heterogeneous workloads. Second, we
�nd that demand paging has little impact on the weighted
speedup. This is because demand paging latency occurs only
when a kernel launches, at which point the GPU retrieves
data from the CPU memory. The data transfer overhead is
required regardless of whether or not demand paging is ena-
bled, and thus the GPU incurs similar overhead with and
without demand paging. We conclude that Mosaic improves
performance signi�cantly, regardless of the demand paging
overhead in the baseline.
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Figure 7: Performance of GPU-MMU and Mosaic compared
to GPU-MMUwithout demand paging. Reproduced from [8].

TLB Hit Rate. Figure 8 compares the overall TLB hit rate
of GPU-MMU to Mosaic for 214 of our 235 workloads, which
su�er from limited TLB reach (i.e., workloads that have an
L2 TLB hit rate lower than 98%). We make two observations
from the �gure. First, we observe that Mosaic is very e�ective
at increasing the TLB reach of these workloads. We �nd that
for the GPU-MMU baseline, every fully-mapped large page
frame contains pages from multiple applications, as the GPU-
MMU allocator does not provide the soft guarantee of CoCoA
(i.e., a single large page frame contains base pages from only
a single application). As a result, GPU-MMU does not have
any opportunities to coalesce base pages into a large page
without performing signi�cant amounts of data migration. In
contrast, Mosaic can coalesce a vast majority of base pages
thanks to CoCoA. As a result, Mosaic reduces the TLB miss
rate drastically for these workloads, with the average miss
rate falling below 1% in both the L1 and L2 TLBs. Second, we
observe an increasing amount of interference in GPU-MMU
when more than three applications are running concurrently.
This results in a lower TLB hit rate as the number of applica-
tions increases from three to four, and from four to �ve. The
L2 TLB hit rate of GPU-MMU drops from 81% in workloads
with two concurrently-executing applications to 62% in wor-
kloads with �ve concurrently-executing applications. Mosaic
experiences no such drop due to interference as we increase
the number of concurrently-executing applications, since it
makes much greater use of large page coalescing and enables
a much larger TLB reach. We conclude that Mosaic is very
e�ective in improving the hit rate.
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Reproduced from [8].

We provide the following additional results in our full
MICRO 2017 paper [8]:
• Individual applications’ performance with Mosaic and the

baseline GPU-MMU
• TLB size sensitivity of Mosaic and the baseline GPU-MMU
• Analysis of the e�ectiveness of CAC to reduce memory

fragmentation incurs by using large pages

5. Related Work
To our knowledge, this is the �rst work to (1) analyze the

fundamental trade-o�s between TLB reach, demand paging
performance, and internal page fragmentation; and (2) pro-
pose an application-transparent GPU memory manager that
preemptively coalesces pages at allocation time to improve
address translation performance, while avoiding the demand
paging ine�ciencies and memory copy overheads typically
associated with large page support. Reducing performance
degradation from address translation overhead is an active
area of work for CPUs, and the performance loss that we
observe as a result of address translation is well corrobora-
ted [13, 15, 31, 33, 63]. In this section, we discuss previous
techniques that aim to reduce the overhead of address trans-
lation and demand paging.

5.1. TLB Designs for CPU Systems

TLB miss overhead can be reduced by (1) accelerating page
table walks [11, 14] or reducing the walk frequency [32]; or
(2) reducing the number of TLB misses (e.g., through prefet-
ching [16, 46, 90], prediction [75], structural changes to the
TLB [77, 78, 93] or a TLB hierarchy [4, 5, 13, 15, 31, 47, 60, 91]).

Support for Multiple Page Sizes. Multi-page mapping
techniques [77,78,93] use a single TLB entry for multiple page
translations, improving TLB reach by a small factor. Much
greater improvements to TLB reach are needed to deal with
modern memory sizes. MIX TLB [24] accommodates entries
that translate multiple page sizes, eliminating the need for
a dedicated set of large page entries in the TLB. MIX TLB
is orthogonal to our work, and can be used with Mosaic to
further improve TLB reach.

Navarro et al. [66] identify contiguity-awareness and frag-
mentation reduction as primary concerns for large page mana-
gement, proposing reservation-based allocation and deferred
promotion (i.e., coalescing) of base pages to large pages. Simi-
lar ideas are widely used in modern OSes [23]. Instead of the

reservation-based scheme, Ingens [56] employs a utilization-
based scheme that uses a bit vector to track spatial and tem-
poral utilization of base pages.
Techniques to Increase Memory Contiguity.

GLUE [79] groups contiguous, aligned base page translations
under a single speculative large page translation in the
TLB. GTSM [26] provides hardware support to leverage the
contiguity of physical memory region even when pages
have been retired due to bit errors. These mechanisms for
preserving or recovering contiguity are orthogonal to the
contiguity-conserving allocation we propose for Mosaic, and
they can help Mosaic by avoiding the need for compaction.

Gorman et al. [35] propose a placement policy for an OS’s
physical page allocator that mitigates fragmentation and pro-
motes contiguity by grouping pages according to the amount
of migration required to achieve contiguity. Subsequent
work [36] proposes a software-exposed interface for applicati-
ons to explicitly request large pages like libhugetlbfs [34].
These ideas are complementary to our work. Mosaic can po-
tentially bene�t from similar policies if such policies can be
simpli�ed enough to be implementable in hardware.
Alternative TLB Designs. Research on shared last-level

TLB designs [15, 17, 60] and page walk cache designs [14] has
yielded mechanisms that accelerate multithreaded CPU appli-
cations by sharing translations between cores. SpecTLB [12]
provides a technique that predicts address translations. While
speculation works on CPU applications, speculation for
highly-parallel GPUs is more complicated [41,44], and can po-
tentially waste o�-chip DRAM bandwidth, which is a highly-
contended resource in GPUs. Direct segments [13] and redun-
dant memory mappings [47] provide virtual memory support
for server workloads that reduces the overhead of address
translation. These proposals map large contiguous chunks
of virtual memory to the physical address space in order to
reduce the address translation overhead. While these techni-
ques improve the TLB reach, they increase the transfer latency
depending on the size of the virtual chunks they map.

5.2. TLB Designs for GPU Systems

TLB Designs for Heterogeneous Systems. Previous
works provide several TLB designs for heterogeneous sys-
tems with GPUs [80,81,95] and with accelerators [22]. Mosaic
improves upon a state-of-the-art TLB design [81] by provi-
ding application-transparent, high-performance support for
multiple page sizes in GPUs. No prior work provides such
support.
TLB-AwareWarp Scheduler. Pichai et al. [80] extend the

cache-conscious warp scheduler [84] to be aware of the TLB in
heterogeneous CPU-GPU systems. Other more sophisticated
warp schedulers [51,59,62,65,84,85,103] can also be extended
to be TLB aware. These techniques are orthogonal to the
problem we focus on, and can be applied in conjunction with
Mosaic to further improve performance.
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TLB-Aware Memory Hierarchy. Ausavarungnirun et
al. [9] improve the performance of the GPU under the pre-
sence of memory protection by redesigning the GPU main
memory hierarchy to be aware of TLB-related memory reque-
sts. Many prior works propose memory scheduling designs
for GPUs [7, 42, 45, 101] and heterogeneous systems [6, 94].
These memory scheduling design can be modi�ed to be aware
of TLB-related memory requests and used in conjunction with
Mosaic to further improve the performance of the GPUs.
Analysis of Address Translation in GPUs. Vesely et

al. [95] analyze support for virtual memory in heterogeneous
systems, �nding that the cost of address translation in GPUs is
an order of magnitude higher than that in CPUs. They observe
that high-latency address translations limit the GPU’s latency
hiding capability and hurt performance. Mei et al. [61] use a
set of microbenchmarks to evaluate the address translation
process in commercial GPUs. Their work concludes that
previous NVIDIA architectures [71, 72] have o�-chip L1 and
L2 TLBs, which lead to poor performance.
GPU Core Modi�cations. Many prior works propose

modi�cations to the GPU core design [7, 45, 51, 52, 55, 59, 62,
65, 84, 85, 86, 87, 97, 98, 103]. These techniques are complemen-
tary to Mosaic, and can be combined with Mosaic to further
improve GPU performance.

5.3. GPU Virtualization
VAST [58] is a software-managed virtual memory space

for GPUs. In that work, the authors observe that the limi-
ted size of physical memory typically prevents data-parallel
programs from utilizing GPUs. To address this, VAST automa-
tically partitions GPU programs into chunks that �t within
the physical memory space to create the illusion of in�nite
virtual memory. Unlike Mosaic, VAST is unable to provide
memory protection from concurrently-executing GPGPU ap-
plications. Zorua [96] is a holistic mechanism to virtualize
multiple hardware resources within the GPU. Zorua does not
virtualize the main memory, and is thus orthogonal to our
work. vmCUDA [99] and rCUDA [27] provide close-to-ideal
performance, but they require signi�cant modi�cations to
GPGPU applications and the operating system, which sacri-
�ce transparency to the application, performance isolation,
and compatibility across multiple GPU architectures.

5.4. Demand Paging for GPUs
Demand paging is a challenge for GPUs [95]. Recent

works [3, 102], and the AMD hUMA [57] and NVIDIA PAS-
CAL architectures [73, 102] provide various levels of support
for demand paging in GPUs. These techniques do not tackle
the existing trade-o� in GPUs between using large pages to
improve address translation and using base pages to minimize
demand paging overhead, which we relax with Mosaic.

6. Potential Impact of Mosaic
While several previous works propose mechanisms to lo-

wer the overhead of virtual memory [13, 15, 26, 31, 33, 63, 79,

80,81,95], only a handful of these works extensively evaluate
virtual memory on GPUs [58, 80, 81, 95], and no work has
investigated virtual memory as a shared resource when mul-
tiple GPGPU applications need to share the GPUs. In this
section, we explore the potential future impact of Mosaic.
Support for Concurrent Application Execution in

GPUs. The large number of cores within a contemporary
GPU make it an attractive substrate for executing multiple
applications in parallel. This can be especially useful in vir-
tualized cloud environments, where hardware resources are
safely partitioned across multiple virtual machines to provide
e�cient resource sharing. Prior approaches to execute mul-
tiple applications concurrently on a GPU have been limited,
as they either (1) lack su�cient memory protection support
across multiple applications; (2) incur a high performance
overhead to provide memory protection; or (3) perform a
conservative static partitioning of the GPU, which can often
underutilize many resources in the GPU.

Mosaic provides the �rst �exible support for memory pro-
tection within a GPU, allowing applications to dynamically
partition GPU resourceswithout violating memory protection
guarantees. This support can enable the practical virtualiza-
tion and sharing of GPUs in a cloud environment, which in
turn can increase the appeal of GPGPU programming and
the use cases of GPGPUs. By enabling practical support for
concurrent application execution on GPUs, Mosaic encoura-
ges and enables future research in several areas, such as re-
source sharing mechanisms, kernel scheduling, and quality-
of-service enforcement within the GPU and heterogeneous
systems.
Virtual Memory for SIMD Architectures. Mosaic is an

important �rst step to enable low overhead virtual memory in
GPUs. We believe that the key ideas and general observations
that we make are applicable to any highly-parallel SIMD
architecture [30], and to heterogeneous systems with SIMD-
based processing cores [1, 18, 19, 21, 38, 39, 40, 64, 67, 68, 82,
100]. Future works can expand upon our �ndings and adapt
our mechanisms to reduce the overhead of page walks and
demand paging on other SIMD-based systems.
Improved Programmability. Aside from memory pro-

tection, virtual memory can be used to (1) improve the pro-
grammability of GPGPU applications, and (2) decouple a GPU
kernel’s working set size from the size of the GPU memory. In
fact, Mosaic transparently allows applications to bene�t from
virtual memory without incurring a signi�cant performance
overhead. This is a key advantage for programmers, many of
whom are used to the conventional programming model used
in CPUs to provide application portability and memory pro-
tection. By providing programmers with a familiar and sim-
ple memory abstraction, we expect that a greater number of
programmers will start writing high-performance GPGPU ap-
plications. Furthermore, by enabling low-overhead memory
virtualization, Mosaic can enable new classes of GPGPU appli-
cations. For example, in the past, programmers were not able
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to easily write GPGPU applications whose memory working
set sizes exceeded the physical memory within the GPU. With
Mosaic, programmers no longer need to restrict themselves to
applications whose working sets �t within the physical me-
mory; they can rely on the GPU itself software-transparently
managing page migration and address translation.
Publicly-Released Infrastructure. Our simulation in-

frastructure is publicly available as open-source software [88].
Other researchers can utilize our infrastructure to conduct
future research on virtual memory management on GPUs.
Some examples of research topics that can be investigated
using our infrastructure include (1) how to manage which
pages reside in CPU memory or GPU memory, (2) how to dyn-
amically partition the physical main memory across multiple
concurrently-executing applications, and (3) how to maintain
programmability of the virtual memory as the GPU architec-
ture evolves and becomes more heterogeneous over time. We
hope and believe that our new, open-source infrastructure
can inspire future research in these and other research areas
on GPU and heterogeneous system memory virtualization.

7. Conclusion
We introduce Mosaic, a new GPU memory manager that

provides application-transparent support for multiple page
sizes. The key idea of Mosaic is to perform demand paging
using smaller page sizes, and then coalesce small (i.e., base)
pages into a larger page immediately after allocation, which
allows address translation to use large pages and thus in-
crease TLB reach. We have shown that Mosaic signi�cantly
outperforms state-of-the-art GPU address translation designs
and achieves performance close to an ideal TLB, across a wide
variety of workloads. We conclude that Mosaic e�ectively
combines the bene�ts of large pages and demand paging in
GPUs, thereby breaking the conventional tension that exists
between these two concepts. We hope the ideas presented in
our MICRO 2017 paper can lead to future works that analyze
Mosaic in detail and provide even lower-overhead support for
synergistic address translation and demand paging in GPUs
and heterogeneous systems.

Acknowledgments
We thank the anonymous reviewers and SAFARI group

members for their feedback. Special thanks to Nastaran Haji-
nazar, Juan Gómez Luna, and Mohammad Sadr for their feed-
back. We acknowledge the support of our industrial partners,
especially Google, Intel, Microsoft, NVIDIA, Samsung, and
VMware. This research was partially supported by the NSF
(grants 1409723 and 1618563), the Intel Science and Techno-
logy Center for Cloud Computing, and the Semiconductor
Research Corporation.

References
[1] Advanced Micro Devices, Inc., “AMD Accelerated Processing Units,” http://www.

amd.com/us/products/technologies/apu/Pages/apu.aspx.

[2] Advanced Micro Devices, Inc., “OpenCL: The Future of Accelerated Applica-
tion Performance Is Now,” https://www.amd.com/Documents/FirePro_OpenCL_
Whitepaper.pdf.

[3] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch, “Un-
locking Bandwidth for GPUs in CC-NUMA Systems,” in HPCA, 2015.

[4] J. Ahn, S. Jin, and J. Huh, “Revisiting Hardware-Assisted Page Walks for Virtua-
lized Systems,” in ISCA, 2012.

[5] J. Ahn, S. Jin, and J. Huh, “Fast Two-Level Address Translation for Virtualized
Systems,” IEEE TC, 2015.

[6] R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and O. Mutlu, “Staged
Memory Scheduling: Achieving High Performance and Scalability in Heteroge-
neous Systems,” in ISCA, 2012.

[7] R. Ausavarungnirun, S. Ghose, O. Kayıran, G. H. Loh, C. R. Das, M. T. Kandemir,
and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to Improve GPGPU Perfor-
mance,” in PACT, 2015.

[8] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Rossbach,
and O. Mutlu, “Mosaic: A GPU Memory Manager with Application-Transparent
Support for Multiple Page Sizes,” in MICRO, 2017.

[9] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog, C. Ross-
bach, and O. Mutlu, “MASK: Redesigning the GPU Memory Hierarchy to Support
Multi-Application Concurrency,” in ASPLOS, 2018.

[10] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA
Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[11] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t Walk (the
Page Table),” in ISCA, 2010.

[12] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for Speculative
Address Translation,” in ISCA, 2011.

[13] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “E�cient Virtual Me-
mory for Big Memory Servers,” in ISCA, 2013.

[14] A. Bhattacharjee, “Large-Reach Memory Management Unit Caches,” in MICRO,
2013.

[15] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-level TLBs for Chip
Multiprocessors,” in HPCA, 2011.

[16] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB Behavior of Emer-
ging Parallel Workloads on Chip Multiprocessors,” in PACT, 2009.

[17] A. Bhattacharjee and M. Martonosi, “Inter-Core Cooperative TLB for Chip Mul-
tiprocessors,” in ASPLOS, 2010.

[18] D. Bouvier and B. Sander, “Applying AMD’s "Kaveri" APU for Heterogeneous
Computing,” in Hot Chips, 2014.

[19] B. Burgess, B. Cohen, J. Dundas, J. Rupley, D. Kaplan, and M. Denman, “Bobcat:
AMD’s Low-Power x86 Processor,” IEEE Micro, 2011.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Shea�er, S.-H. Lee, and K. Skadron, “Ro-
dinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC, 2009.

[21] M. Clark, “A New X86 Core Architecture for the Next Generation of Computing,”
in Hot Chips, 2016.

[22] J. Cong, Z. Fang, Y. Hao, and G. Reinman, “Supporting Address Translation for
Accelerator-Centric Architectures,” in HPCA, 2017.

[23] J. Corbet, “Transparent Hugepages,” https://lwn.net/Articles/359158/, 2009.
[24] G. Cox and A. Bhattacharjee, “E�cient Address Translation for Architectures

with Multiple Page Sizes,” in ASPLOS, 2017.
[25] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spa�ord, V. Tip-

paraju, and J. S. Vetter, “The Scalable Heterogeneous Computing (SHOC) Bench-
mark Suite,” in GPGPU, 2010.

[26] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Supporting Superpa-
ges in Non-Contiguous Physical Memory,” in HPCA, 2015.

[27] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA: Reducing
the Number of GPU-based Accelerators in High Performance Clusters,” in HPCS,
2010.

[28] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[29] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance,” IEEE CAL, 2014.

[30] M. Flynn, “Very High-Speed Computing Systems,” Proc. of the IEEE, vol. 54, no. 2,
1966.

[31] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “E�cient Memory Virtualization:
Reducing Dimensionality of Nested Page Walks,” in MICRO, 2014.

[32] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging: Exceeding the Best of
Nested and Shadow Paging,” in ISCA, 2016.

[33] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and V. Quema, “Large
Pages May Be Harmful on NUMA Systems,” in USENIX ATC, 2014.

[34] M. Gorman, “Huge Pages Part 2 (Interfaces),” https://lwn.net/Articles/375096/,
2010.

[35] M. Gorman and P. Healy, “Supporting Superpage Allocation Without Additional
Hardware Support,” in ISMM, 2008.

[36] M. Gorman and P. Healy, “Performance Characteristics of Explicit Superpage
Support,” in WIOSCA, 2010.

[37] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0.
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf

[38] Intel Corp., “Sandy Bridge Intel Processor Graphics Performance Developer’s
Guide.”

[39] Intel Corp., “Introduction to Intel® Architecture,” 2014.

8

103



[40] Intel Corp., “6th Generation Intel® CoreTM Processor Family Datasheet, Vol. 1,”
2017.

[41] J. A. Jablin, T. B. Jablin, O. Mutlu, and M. Herlihy, “Warp-aware Trace Scheduling
for GPUs,” in PACT, 2014.

[42] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-Aware Memory Con-
troller for Dynamically Balancing GPU and CPU Bandwidth Use in an MPSoC,”
in DAC, 2012.

[43] A. Jog, O. Kayıran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler,
M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory System for Multi-
Application Execution,” in MEMSYS, 2015.

[44] A. Jog, O. Kayıran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Orchestrated Scheduling and Prefetching for GPGPUs,” in ISCA, 2013.

[45] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[46] G. B. Kandiraju and A. Sivasubramaniam, “Going the Distance for TLB Prefet-
ching: An Application-Driven Study,” in ISCA, 2002.

[47] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-
mirovsky, M. M. Swift, and O. Ünsal, “Redundant Memory Mappings for Fast
Access to Large Memories,” in ISCA, 2015.

[48] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,
M. M. Swift, and O. Unsal, “Energy-E�cient Address Translation,” in HPCA,
2016.

[49] I. Karlin et al., “Exploring Traditional and Emerging Parallel Programming Mo-
dels Using a Proxy Application,” in IPDPS, 2013.

[50] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,” Lawrence
Livermore National Lab, Tech. Rep. LLNL-TR-641973, 2013.

[51] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More Nor Less: Op-
timizing Thread-Level Parallelism for GPGPUs,” in PACT, 2013.

[52] O. Kayıran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H.
Loh, O. Mutlu, and C. R. Das, “Managing GPU Concurrency in Heterogeneous
Architectures,” in MICRO, 2014.

[53] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-
lator,” CAL, 2015.

[54] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organization,” in ISCA,
1981.

[55] H.-K. Kuo, B. C. Lai, and J.-Y. Jou, “Reducing Contention in Shared Last-Level
Cache for Throughput Processors,” ACM TODAES, vol. 20, no. 1, 2014.

[56] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated and E�-
cient Huge Page Management with Ingens,” in OSDI, 2016.

[57] G. Kyriazis, “Heterogeneous System Architecture: A Technical Review,” https:
//developer.amd.com/wordpress/media/2012/10/hsa10.pdf, Advanced Micro De-
vices, Inc., 2012.

[58] J. Lee, M. Samadi, and S. Mahlke, “VAST: The Illusion of a Large Memory Space
for GPUs,” in PACT, 2014.

[59] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-Aware Warp Scheduling for GPGPU
Workloads,” in PACT, 2014.

[60] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements for Chip Mul-
tiprocessors: Inter-Core Cooperative Prefetchers and Shared Last-Level TLBs,”
ACM TACO, 2013.

[61] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy Through Microbench-
marking,” IEEE TPDS, 2017.

[62] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for Integrated
Branch and Memory Divergence Tolerance,” in ISCA, 2010.

[63] T. Merri�eld and H. R. Taheri, “Performance Implications of Extended Page Ta-
bles on Virtualized x86 Processors,” in VEE, 2016.

[64] R. Mijat, “Take GPU Processing Power Beyond Graphics with Mali GPU Compu-
ting,” 2012.

[65] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving GPU Performance via Large Warps and Two-Level Warp Scheduling,”
in MICRO, 2011.

[66] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent Operating
System Support for Superpages,” in OSDI, 2002.

[67] NVIDIA Corp., “NVIDIA Tegra K1,” http://www.nvidia.com/content/pdf/tegra_
white_papers/tegra-k1-whitepaper-v1.0.pdf.

[68] NVIDIA Corp., “NVIDIA Tegra X1,” https://international.download.nvidia.com/
pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf.

[69] NVIDIA Corp., “CUDA C/C++ SDK Code Samples,” 2011.
[70] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi,” http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_
compute_architecture_whitepaper.pdf, 2011.

[71] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Architecture: Kep-
ler GK110,” 2012.

[72] NVIDIA Corp., “NVIDIA GeForce GTX 750 Ti,” 2014.
[73] NVIDIA Corp., “NVIDIA Tesla P100,” 2016.
[74] NVIDIA Corp., “NVIDIA GeForce GTX 1080,” 2017.

[75] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-Based
Superpage-Friendly TLB Designs,” in HPCA, 2015.

[76] PCI-SIG, “PCI Express Base Speci�cation Revision 3.1a,” 2015.
[77] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB Reach by

Exploiting Clustering in Page Translations,” in HPCA, 2014.
[78] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coalesced

Large-Reach TLBs,” in MICRO, 2012.
[79] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee, “Large Pages and Lightweight

Memory Management in Virtualized Systems: Can You Have It Both Ways?” in
MICRO, 2015.

[80] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Address Trans-
lation on GPUs: Designing Memory Management Units for CPU/GPUs with Uni-
�ed Address Spaces,” in ASPLOS, 2014.

[81] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 Address Translation
for 100s of GPU Lanes,” in HPCA, 2014.

[82] PowerVR, “PowerVR Hardware Architecture Overview for Developers,”
http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+
Overview+for+Developers.pdf, 2016.

[83] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[84] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious Wavefront
Scheduling,” in MICRO, 2012.

[85] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware Warp Sche-
duling,” in MICRO, 2013.

[86] M. Sadrosadati, A. Mirhosseini, B. Ehsani, H. Sarbazi-Azad, M. P. Drumond,
B. Falsa�, R. Ausavarungnirun, and O. Mutlu, “LTRF: A Latency Tolerant Re-
gister File Architecture for GPUs,” in ASPLOS, 2018.

[87] M. Sadrosadati, A. Mirhosseini, B. Ehsani, H. Sarbazi-Azad, M. P. Drumond,
B. Falsa�, R. Ausavarungnirun, and O. Mutlu, “LTRF: Enabling High-Capacity Re-
gister Files for GPUs via Hardware/Software Cooperative Register Prefetching,”
in ASPLOS, 2018.

[88] SAFARI Research Group, “Mosaic – GitHub Repository,” https://github.com/
CMU-SAFARI/Mosaic/.

[89] SAFARI Research Group, “SAFARI Software Tools – GitHub Repository,” https:
//github.com/CMU-SAFARI/.

[90] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-Based TLB Preloading,”
in ISCA, 2000.

[91] S. Srikantaiah and M. Kandemir, “Synergistic TLBs for High Performance Ad-
dress Translation in Chip Multiprocessors,” in MICRO, 2010.

[92] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari, G. D.
Liu, and W. W. Hwu, “Parboil: A Revised Benchmark Suite for Scienti�c and
Commercial Throughput Computing,” Univ. of Illinois at Urbana-Champaign,
IMPACT Research Group, Tech. Rep. IMPACT-12-01, 2012.

[93] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of Superpages with
Less Operating System Support,” in ASPLOS, 1994.

[94] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH: Deadline-Aware High-
Performance Memory Scheduler for Heterogeneous Systems with Hardware
Accelerators,” ACM TACO, vol. 12, no. 4, Jan. 2016.

[95] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee, “Observations
and Opportunities in Architecting Shared Virtual Memory for Heterogeneous
Systems,” in ISPASS, 2016.

[96] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,
P. B. Gibbons, and O. Mutlu, “Zorua: A Holistic Approach to Resource Virtuali-
zation in GPUs,” in MICRO, 2016.

[97] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with As-
sist Warps,” in ISCA, 2015.

[98] N. Vijaykumar, G. Pekhimenko, A. Jog, S. Ghose, A. Bhowmick, R. Ausavarung-
nirun, C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Framework for Acce-
lerating Bottlenecks in GPU Execution with Assist Warps,” in Advances in GPU
Research and Practice, 2016.

[99] L. Vu, H. Sivaraman, and R. Bidarkar, “GPU Virtualization for High Performance
General Purpose Computing on the ESX Hypervisor,” in HPC, 2014.

[100] S. Wasson, “AMD’s A8-3800 Fusion APU.” http://techreport.com/articles.x/
21730, 2011.

[101] G. Yuan, A. Bakhoda, and T. Aamodt, “Complexity E�ective Memory Access
Scheduling for Many-Core Accelerator Architectures,” in MICRO, 2009.

[102] T. Zheng, D. Nellans, A. Zul�qar, M. Stephenson, and S. W. Keckler, “Towards
High Performance Paged Memory for GPUs,” in HPCA, 2016.

[103] Z. Zheng, Z. Wang, and M. Lipasti, “Adaptive Cache and Concurrency Allocation
on GPGPUs,” IEEE CAL, 2014.

[104] W. K. Zuravle� and T. Robinson, “Controller for a Synchronous DRAM That
Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” US Patent No. 5,630,096, 1997.

9

104



Reviewers: 
 

Australia 
Abramov, Vyacheslav; Monash University 
Begg, Rezaul; Victoria University 
Bem, Derek; University of Western Sydney 
Betts, Christopher; Pegacat Computing Pty. Ltd. 
Buyya, Rajkumar; The University of Melbourne 
Chapman, Judith; Australian University Limited 
Chen, Yi-Ping Phoebe; Deakin University 
Hammond, Mark; Flinders University 
Henman, Paul; University of Queensland 
Palmisano, Stephen; University of Wollongong 
Ristic, Branko; Science and Technology Organisation 
Sajjanhar, Atul; Deakin University 
Sidhu, Amandeep; University of Technology, Sydney 
Sudweeks, Fay; Murdoch University 
Austria 
Derntl, Michael; University of Vienna 
Hug, Theo; University of Innsbruck 
Loidl, Susanne; Johannes Kepler University Linz 
Stockinger, Heinz; University of Vienna 
Sutter, Matthias; University of Innsbruck 
Brazil 
Parracho, Annibal; Universidade Federal Fluminense 
Traina, Agma; University of Sao Paulo 
Traina, Caetano; University of Sao Paulo 
Vicari, Rosa; Federal University of Rio Grande 
Belgium 
Huang, Ping; European Commission 
Canada 
Fung, Benjamin; Simon Fraser University 
Grayson, Paul; York University 
Gray, Bette; Alberta Education 
Memmi, Daniel; UQAM 
Neti, Sangeeta; University of Victoria 
Nickull, Duane; Adobe Systems, Inc. 
Ollivier-Gooch, Carl; The University of British Columbia 
Paulin, Michele; Concordia University 
Plaisent, Michel; University of Quebec 
Reid, Keith; Ontario Ministry og Agriculture 
Shewchenko, Nicholas; Biokinetics and Associates 
Steffan, Gregory; University of Toronto 
Vandenberghe, Christian; HEC Montreal 
Czech Republic 
Kala, Zdenek; Brno University of Technology 
Korab, Vojtech; Brno University of technology 
Lhotska, Lenka; Czech Technical University 
Finland 
Lahdelma, Risto; University of Turku 
Salminen, Pekka; University of Jyvaskyla 
France 
Cardey, Sylviane; University of Franche-Comte 
Klinger, Evelyne; LTCI – ENST, Paris 
Roche, Christophe; University of Savoie 
Valette, Robert; LAAS - CNRS 
Germany 
Accorsi, Rafael; University of Freiburg 
Glatzer, Wolfgang; Goethe-University 
Gradmann, Stefan; Universitat Hamburg 
Groll, Andre; University of Siegen 
Klamma, Ralf; RWTH Aachen University 
Wurtz, Rolf P.; Ruhr-Universitat Bochum 
India 
Pareek, Deepak; Technology4Development 
Scaria, Vinod; Institute of Integrative Biology 
Shah, Mugdha; Mansukhlal Svayam 
Ireland 
Eisenberg, Jacob; University College Dublin 
Israel 
Feintuch, Uri; Hadassah-Hebrew University 
Italy 
Badia, Leonardo; IMT Institute for Advanced Studies 
Berrittella, Maria; University of Palermo 
Carpaneto, Enrico; Politecnico di Torino 
Japan 
Hattori, Yasunao; Shimane University 
Livingston, Paisley; Linghan University 
Srinivas, Hari; Global Development Research Center 

Obayashi, Shigeru; Institute of Fluid Science, Tohoku 
University 
Netherlands 
Mills, Melinda C.; University of Groningen 
Pires, Luís Ferreira; University of Twente 
New Zealand 
Anderson, Tim; Van Der Veer Institute 
Portugal 
Cardoso, Jorge; University of Madeira 
Natividade, Eduardo; Polytechnic Institute of Coimbra 
Oliveira, Eugenio; University of Porto 
Singapore 
Tan, Fock-Lai; Nanyang Technological University 
South Korea 
Kwon, Wook Hyun; Seoul National University 
Spain 
Barrera, Juan Pablo Soto; University of Castilla 
Gonzalez, Evelio J.; University of La Laguna 
Perez, Juan Mendez; Universidad de La Laguna 
Royuela, Vicente; Universidad de Barcelona 
Vizcaino, Aurora; University of Castilla-La Mancha 
Vilarrasa, Clelia Colombo; Open University of 
Catalonia 
Sweden 
Johansson, Mats; Royal Institute of Technology 
Switzerland 
Niinimaki, Marko; Helsinki Institute of Physics 
Pletka, Roman; AdNovum Informatik AG 
Rizzotti, Sven; University of Basel 
Specht, Matthias; University of Zurich 
Taiwan 
Lin, Hsiung Cheng; Chienkuo Technology University 
Shyu, Yuh-Huei; Tamkang University 
Sue, Chuan-Ching; National Cheng Kung 
University 
United Kingdom 
Ariwa, Ezendu; London Metropolitan University 
Biggam, John; Glasgow Caledonian University 
Coleman, Shirley; University of Newcastle 
Conole, Grainne; University of Southampton 
Dorfler, Viktor; Strathclyde University 
Engelmann, Dirk; University of London 
Eze, Emmanuel; University of Hull 
Forrester, John; Stockholm Environment Institute 
Jensen, Jens; STFC Rutherford Appleton Laboratory 
Kolovos, Dimitrios S.; The University of York 
McBurney, Peter; University of Liverpool 
Vetta, Atam; Oxford Brookes University 
WHYTE, William Stewart; University of Leeds 
Xie, Changwen; Wicks and Wilson Limited 
USA 
Bach, Eric; University of Wisconsin 
Bolzendahl, Catherine; University of California 
Bussler, Christoph; Cisco Systems, Inc. 
Charpentier, Michel; University of New Hampshire 
Chong, Stephen; Cornell University 
Collison, George; The Concord Consortium 
DeWeaver, Eric; University of Wisconsin - Madison 
Gans, Eric; University of California 
Gill, Sam; San Francisco State University 
Hunter, Lynette; University of California Davis 
Iceland, John; University of Maryland 
Kaplan, Samantha W.; University of Wisconsin 
Langou, Julien; The University of Tennessee 
Liu, Yuliang; Southern Illinois University Edwardsville 
Lok, Benjamin; University of Florida 
Minh, Chi Cao; Stanford University 
Morrissey, Robert; The University of Chicago 
Mui, Lik; Google, Inc 
Rizzo, Albert ; University of Southern California 
Rosenberg, Jonathan M. ; University of Maryland 
Shaffer, Cliff ; Virginia Tech 
Sherman, Elaine; Hofstra University 
Snyder, David F.; Texas State University 
Song, Zhe; University of Iowa 
Wei, Chen; Intelligent Automation, Inc. 
Yu, Zhiyi; University of California

 

Authors of papers are responsible for the contents and layout of their papers. 



 
 
 
 
Welcome to IPSI BgD Conferences and Journals! 

 
http://tar.ipsitransactions.org 

 
http://www.ipsitransactions.org 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CIP – Katalogizacija u publikaciji  

Narodna biblioteka Srbije, Beograd  
ISSN 1820 – 4511  

The IPSI BGD Transactions  

on Advanced Research  

COBISS.SR - ID 119128844 

 

 

 
 

 

 

http://tar.ipsitransactions.org/
http://www.ipsitransactions.org/

